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Abstract: Two subseries of aminated quinolinequinones (AQQs, AQQ1–16) containing electron-
withdrawing group (EWG) or electron-donating group (EDG) in aryl amine moiety were successfully
synthesized. Antimicrobial activity assessment indicates that some of the AQQs (AQQ8–10 and
AQQ12–14) with an EDG in aryl amine exhibited strong antibacterial activity against Gram-positive
bacterial strains, including Staphylococcus aureus (ATCC® 29213) and Enterococcus faecalis (ATCC®

29212). In contrast, AQQ4 with an EWG in aryl amine displayed excellent antifungal activity against
fungi Candida albicans (ATCC® 10231) with a MIC value of 1.22 µg/mL. To explore the mode of
action, the selected AQQs (AQQ4 and AQQ9) were further evaluated in vitro to determine their
antimicrobial activity against each of 20 clinically obtained resistant strains of Gram-positive bacteria
by performing antibiofilm activity assay and time-kill curve assay. In addition, in silico studies were
carried out to determine the possible mechanism of action observed in vitro. The data obtained from
these experiments suggests that these molecules could be used to target pathogens in different modes
of growth, such as planktonic and biofilm.

Keywords: antibacterial activity; antibiofilm activity; antifungal activity; bactericidal effect; kinetic
study; quinolinequinones

1. Introduction

Antibiotics, dubbed as miracle drugs, play an important role in combating infec-
tions and also determine the success of common surgical and organ transplantation
procedures [1]. The acronymously named “ESKAPE” pathogens (Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter species) are a group of bacteria that have grown resistant to available
antimicrobials and are responsible for life-threatening infections [2]. Among ESKAPE
pathogens, resistant S. aureus remains the most notorious pathogen and is responsible for
severe infections [3]. Fungal pathogens such as Candida albicans, Aspergillus fumigatus, and
Cryptococcus neoformans are also known to cause severe fungal infections [4]. For exam-
ple, one of the most common causes of infections in hospitalized immunocompromised
patients is C. albicans [5]. Epidemiologically, the over 400,000 cases per year of systemic
candidiasis have been associated with C. albicans at a global level [6]. Therefore, developing
antibacterial and/or antifungal drugs with good inhibitory potential against these resistant
pathogens remains a key demand.
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The 1,4-quinone core is an important structural motif in a wide range of natural prod-
ucts [7–9], pharmaceuticals [10–14], and bioactive molecules [15–17]. Over the last 20 years
or so, the quinone chemistry, especially in the synthesis of novel compounds showing
versatile biological properties such as antibacterial [18], anticancer [19], antichagasic [20],
antifungal [21], anti-HIV [22], antimalarial [23,24], anti-mycobacterial [25], antitubercu-
lar [26], antiureolytic [27], and antiviral [28] properties, has enabled the design of efficient
and general reactions, mostly for the formation of heterocyclic quinones. Because of
the significance of this core, considerable efforts have been made to design, synthesize,
and explore novel 1,4-quinones fused with C2X [29–32], CX2 [33–37], C3X [25,38], and
C2X2 [39–41] ring systems as bicyclic heterocyclic compounds containing one or more het-
eroatoms such as sulfur, oxygen, and nitrogen shown in Figure 1, to explore their biological
profiles. A literature survey on the rational design of antimicrobial agents highlights the
importance of the bicyclic heterocyclic quinones [25,42]. From earlier studies, the presence
and position of the heteroatom such as nitrogen, sulfur, or oxygen in the ring system have
been found to be very important for the activity [43–45]. Among a considerable number
of those molecules in the literature, such as cribostatin I [46], streptonigrin [47,48], and
lavendamycin [49], we have particularly focused on the most important 1,4-quinone fused
with C3X ring system where X is a nitrogen atom, named quinolinequinones (QQs). Since
their discovery, QQs have gained widespread attention, becoming the most widely used
category of antibacterial, anticancer, and/or antifungal agents in drug design [25,42,50,51].
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Figure 1. Design strategy for antimicrobial activity based on our previous studies and literature.

When searching for new molecules, the exchange of one bioisostere for another is one
of the most effective strategies to improve the desired biological and/or physical properties
without making significant changes in chemical structure [52,53]. Among versatile small-
molecule antimicrobials developed in our laboratory, the 1,4-quinone molecules fused with
phenyl moiety, named 1,4-naphthoquinones, showed significant properties indicative of
antimicrobial activity [54–56]. Accordingly, we replaced the phenyl moiety of the naph-
thoquinone with the two methyl groups based on the plant product Plastoquinones (PQs).
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Furthermore, diverse antimicrobial potencies displayed by dimethylbenzoquinones, named
nonhalogenated and halogenated (chlorinated or brominated) PQ analogs, have also been
described. Recent results documented by our group showed that dimethylbenzoquinones
such as compound I (Figure 2) could be a good starting point to identify new potential
molecular hits to develop more effective antimicrobial agents. In our previous studies, two
important chlorinated PQ analogs of I were active against S. epidermidis [57]. While the
chlorinated PQ analogs of II containing electron-withdrawing group (EWG) did not display
any significant antimicrobial potency, the chlorinated PQ analogs of II containing electron-
donating group (EDG) showed excellent antimicrobial activity against S. epidermidis [58].
To accelerate the discovery process, replacing the chlorine atom with the hydrogen atom in
III decreased the activity, especially against Gram-positive strains [59]. The brominated
PQ analogs have been obtained by replacing the chlorine atom with a bromine atom. The
brominated PQ analogs (IV) showed a significant biological potency against bacteria and
fungi [60,61]. In our recent studies on this type of 1,4-quinones, we structurally modified
the main core by replacing the two methyl groups of the quinone with pyridine moiety
to generate QQs. Thus, the presence of dimethyl groups within the 1,4-quinone core in-
stead of phenyl moiety or pyridine moiety within the 1,4-quinone core instead of dimethyl
groups seems to be associated with an increase in antimicrobial potency [62]. Our previ-
ous structure–activity relationship (SAR) studies and literature have clearly shown three
important points: (1) Albeit the quinone molecules with dimethyl groups is important for
the biological potency, the azaquinone molecules have displayed relatively higher activity,
particularly against most cancer cell lines, bacteria, and fungi [55,58]. (2) Incorporation of
aryl amines containing EDG or EWG group(s) into the azaquinone moiety would change
the physicochemical properties and hit to a new pharmacophore with a different biological
profile [62]. (3) The presence of halogen or hydrogen atoms within the quinone moiety was
a considerably important factor in understanding the effects on biological profiles [59,62,63].
Based on the literature investigation and our long-term findings on the synthesis and biolog-
ical activity studies of 1,4-quinones, we needed novel molecules with versatile substituent(s)
within aryl amines. Accordingly, the 1,4-quinone molecules fused with pyridine, named
quinolinequinones (QQs), were designed and synthesized to evaluate their antibacterial
and antifungal activities in the present study. The corresponding aryl amines containing
EWG or EDG were inserted into the quinone skeleton. We also have analyzed the SAR
study for further studies. Considering all the available information, the most important
AQQs were selected for their antibiofilm activity, potential antimicrobial activity against
each of 20 clinically obtained strains of Gram-positive bacteria, and bactericidal time-kill
kinetic study.

DmsD (PDB: 3CW0) is a redox enzyme maturation protein implicated in oxidoreduc-
tase maturation. It interacts with the twin-arginine leader sequence of DmsA, the catalytic
subunit of DMSO reductase. Studies have reported that DmsD may help escort its substrate
through a cascade of chaperone-assisted protein-folding maturation events [64]. Thiore-
doxin reductase 1 (PDB: 3EAN) is critical for redox regulation of protein function and is
crucial in the survival of various bacterial species by helping them combat oxidative stress.
Studies have shown its importance in the survival of bacteria stress Staphylococcus aureus,
and others have also targeted the thioredoxin system [65]. Polynucleotide phosphorylase
(PNPase) (PDB: 5XEX) is an exoribonuclease responsible for mRNA turnover and rRNA
precursor quality control in several bacteria, including S. aureus. Considering the crucial
role played by these proteins in the survival of S. aureus, we selected these proteins to
perform molecular docking studies [66].
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2. Results and Discussion
2.1. Chemistry

The target AQQs (AQQ1–16) were synthesized using the synthetic sequence illustrated
in Scheme 1. While Petrow and Sturgeon reported the synthesis of QQs in five steps, we
preferred the approach used by Shaikh et al. and synthesized the precursor (6,7-dichloro-2-
methyl-5,8-quinolinequinone, QQ) in one step using the commercially available 8-hydroxy-
2-methyl-quinoline (HQ) with sodium chlorate in concentrated HCl solution [67] with
minor modifications. Since the precursor (2) has two asymmetric chlorine atoms at the C6
and C7 positions, in principle, two alternative pathways can produce the two isomers [68].
After the first step, the AQQs (AQQ1–16) containing EWG or EDG were obtained by the
regioselective amination of the acceptor quinone nucleus (QQ) at the C6 position with
corresponding aryl amines in the presence of a Lewis acid such as CeCl3·7H2O as catalyst
according to the previously reported literature [69]. Particularly, the two lone pairs of
electrons on the nitrogen atom of pyridine moiety and the oxygen atom of quinone moiety
as shown in Figure 3 bonded to the Ce(III) ion via the chelation, reducing the electron
density of C6 [68,70]. Additionally, the solvents used in this method like ethanol or water
promoted the substitution with the chlorine atom linked at C6 position [68]. As expected,
the observed regioselectivity for products (AQQ1–16) aligns with the report published by
Ryu, Choi, and Kim [71] with perfect compatibility.

The regioselective amination of QQs at the C6 position was performed based on
the nucleophilic substitution to electrophilic 1,4-quinone (Scheme 1) [69]. To synthesize
the first subseries of a series of the AQQs, AQQ1–5 were synthesized by amination of
6,7-dichloro-2-methyl-5,8-quinolinequinone (QQ) in the presence of CeCl3·7H2O with the
corresponding aryl amines containing EWG such as trifluoromethyl and cyano groups
(-CF3 and -CN) at different positions. The second subseries of the AQQs (AQQ6–16) were
synthesized by following the same method using the corresponding aryl amines containing
EDG such as alkyl and substituted amino groups (-R and -NR2) at different positions in
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ethanol. All AQQs were isolated as pure molecules by column chromatography using
silica gel. The structures of the AQQs were characterized by versatile modern spectral
techniques, including Fourier-transform infrared spectroscopy (FTIR), 1H nuclear magnetic
resonance (NMR), 13C NMR, and high-resolution mass spectrometry (HRMS).
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The regioselective amination of QQs at the C6 position was confirmed by X-ray
crystallographic studies [69,72]. The single-crystal X-ray crystallographic analysis of the
AQQs provided the molecular structures of AQQ7 and AQQ10. The ORTEP diagrams are
shown in Figure 4. These QQs (AQQ7 and AQQ10) were dissolved in ethanol and stored
for one week for crystallization to yield good quality crystals. X-ray diffraction analyses to
confirm the regioselectivity of the displacement reactions showed that AQQ7 and AQQ10
both contain an aromatic amino group at the 6th position.
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Figure 4 presents ORTEP drawings of the AQQ7 and AQQ10 at 50% probability
level and atom numbering of the crystals. The crystallographic and structure refinement
data for the AQQ7 and AQQ10 are summarized in Table 1. When the AQQ7 crystallized
in the monoclinic crystal system (space group P 1 21/c 1) with the unit cell parameters
a = 4.8838 (5), b = 25.878 (3), c = 11.6611 (12), α, γ = 90◦, β = 98.331 (2)◦, the AQQ10
crystallized in the trigonal crystal system (space group R 3 c) with the unit cell parameters
a = 28.573 (6), b = 28.573 (6), c = 10.771 (3), α, β = 90◦, γ = 120◦. Unit cells contain four
molecules in the AQQ17 and eighteen molecules in the AQQ10 (Table 1). The average
value of the distances between the C and N atoms of the quinoline ring in the AQQ7 and
AQQ10 is 1.33 Å. The lengths of the C=O bonds on the benzoquinone ring of both QQs
are about 1.22 Å, while the C=C bond lengths are around 1.38 Å, confirming that these are
typical double bonds. The lengths of the C-Cl bonds in the compounds are 1.73 Å. The bond
lengths between the sp2-hybridized C atoms of the benzene and quinoline ring are about
1.38 Å, confirming the aromatic character of the rings. The fact that the single bond length
between the sp3-hybridized carbon atom of the methyl substituent in the benzene ring and
the sp2-hybridized carbon atoms in the benzene ring is 1.49 Å, which is higher than the
values between the sp2-hybridized carbon atoms, is also compatible with the hybridization
theory (Table S1 in Supplementary Material). The C-C-C angles of the benzoquinone,
quinoline, and benzene rings and the C-C-O angles of the benzoquinone ring in two QQs
are very close to 120◦, which supports the structures involving sp2-hybridized atoms. It is
known that methyl groups generally adopt an ideal tetrahedral geometry with H-C-H and
C-C-H bond angles of 109.5◦, and the methyl group shows an angle of 109.5◦ in compounds
(Table S2 in Supplementary Material). The torsion angles of the AQQ7 and AQQ10 are
provided as Table S3 in the Supplementary Material. The crystal structure of the AQQ7
is stabilized by hydrogen bonds, which are formed between the C-H groups as H-bond
donors (D) and O atom as H-bond acceptors (A). The crystal structure of the AQQ10 is
stabilized by hydrogen bonds, which are formed between the N-H groups as H-bond
donors (D) and O or Cl atoms as H-bond acceptors (A). All parameters of the hydrogen
bonds are shown in Table S4 in Supplementary Material.

Table 1. Crystallographic data for the AQQ7 and AQQ10.

Identification Code AQQ7 AQQ10

Chemical formula C17H13ClN2O2 C19H17ClN2O2
Formula weight (g mol−1) 312.74 340.79
Temperature (K) 292(2) 299(2)
Radiation λ (Å) 0.71073 0.71073
Crystal system Monoclinic Trigonal
Space groups, Z P 1 21/c 1, 4 R 3 c, 18
Unit cell dimensions (Å) a = 4.8838 (5) a = 28.573 (6)

b = 25.878 (3) b = 28.573 (6)
c = 11.6611 (12) c = 10.771 (3)

α, γ = 90◦ α, β = 90◦

β = 98.331 (2)◦ γ = 120◦

Volume (Å3) 1458.2 (3) 7615.(4)
Crystal sizes (mm) 0.068 × 0.146 × 0.500 0.038 × 0.070 × 0.434
dcalc (g cm−3) 1.425 1.338
Absorption coefficient (mm−1) 0.270 0.239
Tmin, Tmax 0.8770, 0.9820 0.9030, 0.9910
θmax, deg 27.48 25.02
Goodness-of-fit on F2 1.014 1.041
Index ranges −6 ≤ h ≤ 6 −33 ≤ h ≤ 34

−33 ≤ k ≤ 33 −33 ≤ k ≤ 34
−15 ≤ l ≤ 15 −12 ≤ l ≤ 12

Reflections collected 21278 54427
Independent reflections 3346 [R(int) = 0.0599] 2980 [R(int) = 0.0831]
Final R indices [I > 2σ(I)] 2635 data 1930 data

R1 = 0.0446 R1 = 0.0526
wR2 = 0.1219 wR2 = 0.1344
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Table 1. Cont.

Identification Code AQQ7 AQQ10

R indices (all data) R1 = 0.0579 R1 = 0.0919
wR2 = 0.1305 wR2 = 0.1589

Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2

Data/restraints/parameters 3346/0/202 2980/1/220
Largest diff. peak and hole (eÅ−3) 0.446 and −0.277 0.189 and −0.144

2.2. Antimicrobial Activity
2.2.1. Determination of Minimum Inhibitory Concentrations (MIC)

Before biological testing, the purity of the AQQs was analyzed using high-performance
liquid chromatography (HPLC) with hexane/2-propanol = 95:5 as the mobile phase at a
flow rate of 1.0 mL/min. The purity of all analogs was ≥95%. Their chromatograms are
provided as a Supplementary File (Figures S1–S16). The antibacterial activity of the AQQs
was evaluated by determining their minimum inhibitory concentration (MIC) against
Gram-negative and Gram-positive bacterial strains. In order to heuristically realize the
antibacterial profile of the AQQs, the MIC values of these molecules summarized in Table 2
were compared with those of commercially available reference drug Ciprofloxacin. Gram-
negative bacteria are reportedly more resistant to most drugs; unfortunately, these bacteria
were also resistant to all of our molecules. The results indicated that the first subseries
of the AQQs (AQQ1–5) containing EWG exhibited a low activity against Gram-positive
bacterial strains with a MIC of more than 39.06 µg/mL. In contrast, the second subseries of
the AQQs (AQQ8–16) containing EDG displayed a strong activity against Gram-positive
bacterial strains, especially S. aureus with a MIC value of 1.22 µg/mL (close to that of
Ciprofloxacin) and E. faecalis with a MIC value of 9.76 µg/mL (AAQ9) (the best value to
that of Ciprofloxacin). Furthermore, AQQ8 and AQQ10 showed strong inhibitory potency
against E. faecalis with a MIC value of 19.53 µg/mL. Especially, the MIC values of the AQQs
(AQQ8–10 and AQQ12–14) for S. aureus were close to that of Ciprofloxacin. Analyzing
the antifungal activity revealed that AQQ4 had the best inhibitory activity with a MIC
value of 1.22 µg/mL (4-fold superior to that of Clotrimazole) against C. albicans. AQQ4 and
AQQ9 exhibited the strongest antifungal profile among the AQQs against C. parapsilosis
with MIC values of 2.44 and 9.76 µg/mL, respectively (Table 3). The antimicrobial activity
of the AQQs is significantly affected by the electron density of the substituent(s). While
the first subseries of the AQQs (AQQ1–5) containing EWG did not show any significant
antibacterial activity against the tested bacteria, one from this subseries (AQQ4) displayed
the highest antifungal activity against C. albicans and C. parapsilosis. In contrast, most
compounds of the second subseries of the AQQs (AQQ6–16) containing EDG exhibited
significant antibacterial activity against S. aureus.

Based on the MIC results for standard American Type Culture Collection (ATCC)
isolates, we also purposed to examine the potential antimicrobial activities of selected
active molecules AQQ4 and AQQ9 against clinically obtained C. albicans (and also non-
albicans) and methicillin-resistant strains of S. aureus, respectively. The in vitro activities
of the AQQ4 against 24 clinical isolates of C. albicans, and non-albicans are summarized in
Figure 5a, and the in vitro activities of the AQQ9 against 20 clinically methicillin-resistant
S. aureus (MRSA) isolates are summarized in Figure 5b. While the in vitro activity to AQQ4
was not effective as the MIC results of standard ATCC isolates, the in vitro antibacterial
activity of AQQ9 seemed to be good with MIC90 of 39.06 µg/mL.
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Table 2. The minimal inhibitory concentration (MIC) values of the AQQs (AQQ1–16) for antibacterial activity a.

AQQs
Subseries (X) Substituent(s)

Gram-Negative Bacteria
(MIC, µg/mL)

Gram-Positive Bacteria
(MIC, µg/mL)

General Formula ID P. aeruginosa E. coli K. pneumoniae P. mirabilis S. aureus S. epidermidis E. faecalis
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AQQ1

EWG

2-CF3 - - - - 1250 1250 -

AQQ2 3-CF3 - - - - 625 78.12 312.50

AQQ3 4-CF3 - 312.50 - 625 625 312.50 625

AQQ4 4-CN - - 625 - 625 312.50 625

AQQ5 3,5-diCF3 - - - - 1250 39.06 -

AQQ6

EDG

3-CH3 - - - - 1250 78.12 625

AQQ7 4-CH3 - 312.50 - - 625 78.12 625

AQQ8 2-CH(CH3)2 - - - - 1.22 - 19.53

AQQ9 3-CH(CH3)2 - - - - 1.22 - 9.76

AQQ10 4-CH(CH3)2 - - - - 1.22 - 19.53

AQQ11 4-N(CH2CH3)2 - - - - 19.53 - 312.50

AQQ12 2,3-diCH3 - - - - 1.22 - 625

AQQ13 2,4-diCH3 - - - - 1.22 - 625

AQQ14 2,5-diCH3 - - - - 1.22 - 39.06

AQQ15 3,4-diCH3 - - - - 625 - 156.25
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Table 3. The minimal inhibitory concentration (MIC) values of the AQQs (AQQ1–16) for antifungal
activity a.

AQQs
Subseries (X) Substituent(s)

Fungi
(MIC, µg/mL)

General Formula ID C. albicans C. parapsilosis C. tropicalis
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2.2.2. Structure-Activity Relationships (SARs) Study for Biological Evaluation

Herein, initially, 1,4-quinone fused with pyridine moiety containing corresponding
aryl amine was used as a prototype to explore new lead molecules and obtain new an-
tibacterial and/or antifungal agent candidates. Subsequently, the substituent(s) such as
EWG (-CF3 and -CN) and EDG (-R and -NR2) at different positions (2-, 3-, or 4-) attached
to the phenyl moiety within the aryl amine were analyzed. The biological testing results
suggested that we could deduce some valuable insights about the SAR from Tables 2 and 3.
At first, the MIC values of AQQ1–5 containing EWG against Gram-positive bacterial strains
compared to the AQQ6–16 containing EDG indicates that the EDG is essential for biological
potency. The effect of the position of the substituent at the phenyl moiety was then investi-
gated. However, when EDG, such as alkyl or substituted amino group(s), were inserted in
the phenyl moiety of aryl amine at different positions, the activity increased significantly,
particularly against S. aureus. We observed the best antibacterial potency against S. aureus
when the AQQ analogs were substituted with the alkyl group(s) (weak EDG). As expected,
the nature of the alkyl chain in aryl amine dramatically affected the activity. We noticed a
significant increase in inhibitory activity when the length of the alkyl chain in aryl amine
was changed from methyl to isopropyl group. However, the biological potency against
S. aureus increased again after inserting the additional weak EDG (-diCH3) in aryl amine.
We also concluded that strong EDG (-NR2) insertion did not significantly affect biological
activity since the biological potency dramatically decreased with strong EDG. Concerning
the antifungal activity, the AQQs containing EWG are more active than the AQQs contain-
ing EDG. Obviously, there is a simple correlation between antibacterial/antifungal activity
and electron density in the phenyl moiety of the aryl amine.
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2.2.3. Time-Kill Kinetic Study

The two most active AQQs (AQQ4 and AQQ9) were selected from the library after
analyzing in vitro antimicrobial activity for further investigation of the mode of the action.
Time-kill kinetic studies (TKS) for AQQ4 and AQQ9 were performed on one (1) clinically ob-
tained MRSA and one (1) C. albicans isolates, and the results are given in Figure 6, respectively.

The results of the time kill curve studies did not reveal bactericidal activity (with a
3-log10 kill determined) for the studied strains at 1× and 4× MIC concentrations within
24 h, as shown in Figure 6. When AQQ4 and AQQ9 were used at 4× MIC concentrations,
there was only about 1 log10 reduction in the viable microorganism cell count within 24 h.

2.2.4. Evaluation of the In Vitro Antibiofilm Activity

Besides the development of antimicrobial resistance through the evolution of internal
machinery, bacteria and fungi also develop biofilm to evade antibiotics. Biofilms are clusters
of microorganisms embedded in an extracellular polymeric matrix that is self-produced,
and they are commonly attached to living or nonliving surfaces and may be widespread in
nature, hospital settings, and industry [73,74]. Biofilm formation contributes significantly
to the morbidity and mortality associated with infectious diseases because of the persistent
nature of infection and the evolution of antibiotic resistance [74].



Molecules 2022, 27, 2923 11 of 26

When the 1/10× MICs of tested molecules were examined for 1, 2, or 4 h at 37 ◦C for
MRSA’s and for 2, 4, or 6 h at 37 ◦C for C. albicans’s, adherence to the wells of tissue culture
microtiter plates, the tested agents did not inhibit biofilm attachment processes. Inhibition
adhesion rates showed a time-dependent effect only for C. albicans with AQQ4. Upon
evaluating the % biofilm formation of the studied strains, the rates of biofilm formation
inhibition were found to be dependent on concentration; the highest inhibition rates were
shown at 1× MICs for the tested molecules, as expected (Figure 7).
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time, and the y-axis represents the logarithmic C. albicans and MRSA survival, respectively. 

Figure 6. Time-kill determinations for clinically resistant (a) C. albicans and (b) MRSA isolates after
treatment with AQQ4 and AQQ9 at 1× and 4× MIC, respectively. The x-axis represents the killing
time, and the y-axis represents the logarithmic C. albicans and MRSA survival, respectively.
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Figure 7. Inhibition of C. albicans and MRSA, respectively; (a) biofilm formation in each well contained
1×, 1/10×, or 1/100× MIC of molecules and an inoculum of 1 × 106–1 × 107 CFU/200 µL, incubated
for 24 h at 37 ◦C for C. albicans and MRSA. (b,c) surface attachment to the wells contained 1/10× MIC
of molecules and an inoculum of 1 × 106 CFU/200 µL, incubated for 2, 4, or 6 h at 37 ◦C for C. albicans
and incubated for 1, 2, or 4 h at 37 ◦C for MRSA. Control bars indicate microorganisms without
molecules accepted as 100%. Six wells were used for the tested molecules. Each experiment is
representative of two independent tests. All differences between the control and molecules treated
biofilms were statistically significant (* not significant, *** p < 0.0001).

2.2.5. In Silico Molecular Interaction Studies

A summary of key results from the docking study is provided in Table 4. We selected
the top two ligands, AQQ4 and AQQ9, and performed molecular docking against the three
target proteins.

AQQ4 showed one hydrogen bonding interaction and 11 hydrophobic interactions
in the active site of 3CW0. It appeared to occupy the proposed binding pocket with
a relatively good binding energy of −5.36 Kcal/mol and an inhibition constant (Ki) of
117.62 µM; these results were relatively inferior to AQQ9 (Table 4). AQQ9 was predicted to
form one hydrogen bond and 10 hydrophobic interactions with the pocket residues with an
inhibition constant of 70.88 µM. In these redox enzyme maturation proteins, the conserved
sequence motifs Asp126 and His127 have been shown to be crucial for function. We did
not find a direct interaction between these motifs and our ligand (Figure 8).
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Table 4. A summary of molecular docking studies for AQQ4 and AQQ9 against the three protein
targets.

Protein Compound Binding Energy
(Kcal/mol)

Inhibition Constant
(Ki) (in µM) No. of H-Bonds Amino Acids Interactions

3CW0
AQQ4 −5.36 117.62 1 (LEU82)

11 (ARG204, VAL97, PRO85,
ALA81, VAL77, PHE76, LEU98,
SER96, GLU95, TRP87, VAL90)

AQQ9 −5.66 70.88 1 (LEU82)
10 (VAL90, PRO85, PRO83,
ARG204, LEU98, ALA81,

TRP87, VAL77, TRP80, LEU82)

3EAN
AQQ4 −7.88 1.69 2 (GLU477,

TRP407)

13 (HIS472, ILE478, PHE406,
GLN494, GLY496, SER495,
ASN418, GLU410, PRO408,

VAL474, PRO473,
LEU409, CYS475)

AQQ9 −8.43 0.664 1 (TRP407)

14 (HIS472, PRO408, LEU409,
GLU477, PRO473, CYS475,
GLU410, VAL474, PHE406,
CYS497, SER495, GLY496,

GLN494, THR412)

5XEX
AQQ4 −8.06 1.24 2 (PRO101,

PHE103)

11 (ILE513, LYS105, ASP55,
LYS108, GLY106, TYR107,
PHE57, PRO104, ARG100,

LYS514, ILE513)

AQQ9 −7.93 1.53 1 (PHE103)

12 (PRO104, TYR107, GLY106,
ARG100, PHE57, LEU102,
PRO101, GLN146, ASP516,
ILE515, LYS514, LYS105)
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DmsD (PDB: 3CW0) binding pocket with (A) AQQ4 (left side) and (B) AQQ9 (right side).

Both AQQ4 and AQQ9 appeared to form stronger binding interactions with the
active pocket of 3EAN with binding energies superior to those in 3CW0 (−7.88 and −8.43,
respectively), suggesting the possibility of a better binding profile (Table 4). Additionally,
the predicted inhibition constant for these compounds against 3EAN was in the sub-
micromolar range (Ki = −1.69 and 0.664 µM, respectively), with AQQ9 showing a stronger
profile. Our ligand appeared to form a favorable anion-π interaction with GLU477 and
hydrophobic interaction with HIS472, which are among the three key amino acids from the
catalytic triad of TrxR1 (Figure 9).
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Figure 9. Schematic 2-D representation of protein–ligand interactions between the key residues of
Thioredoxin reductase 1 (PDB: 3EAN) binding pocket with (A) AQQ4 and (B) AQQ9.

The activity profiles of AQQ4 and AQQ9 against 5XEX were similar to those observed
in 3CW0, with low binding energies (−8.06 and −7.93 Kcal/mol, respectively) and sub-
micromolar inhibition constants (1.24 and 1.53 µM, respectively) (Table 4). Although the
binding energy and inhibition constant were the lowest for AQQ9 among these compounds,
AQQ4 formed two hydrogen bonds and appeared to form a π-π stacking interaction with
the LYS514 group through the quinoline (Figure 10).
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Figure 10. Schematic 2-D representation of protein–ligand interactions between the key residues of
Polynucleotide phosphorylase (PNPase) (PDB: 5XEX) binding pocket with (A) AQQ4 (left side) and
(B) AQQ9 (right side).

The molecular docking results align with the results obtained from experimental
studies where the first subseries with electron-withdrawing groups were relatively less
potent than the series with electron-donating groups. Furthermore, the compounds showed
good binding affinities to both 3CW0 and 5XEX, which are key to the survival of S. aureus,
which was also noted in the in vitro assays. The molecular docking results also align well
with the SAR evaluation, wherein the EDG groups were proposed to enhance the potency.
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The good activity in vitro of the compounds is also rationalized by the in silico findings as
the tested compounds interacted with key amino acids in the binding site.

3. Experimental
3.1. Chemicals and Apparatus

All commercially available starting materials, reagents, and solvents were purchased
from various commercial sources with a minimum purity of 95% and used without further
purification. All reactions were monitored for completion by thin-layer chromatography
(TLC) using Merck DC-plates (aluminum-based, silica gel 60 F254) purchased from Merck
KGaA and visualized by UV light (254 nm). Column chromatography was performed with
a silica gel 60 (63–200 µm particle size) purchased from Merck with the appropriate solvent
system as eluents. Melting points (mp) were measured in a capillary tube in an electrical
melting point (B-540, Büchi) and are uncorrected. FTIR spectra were recorded with Alpha
T FTIR spectrometer with a single reflection diamond ATR module. 1H NMR spectra were
recorded on Bruker NMR spectrometers at 500 MHz frequency, and 13C NMR were recorded
on Bruker NMR spectrometers at 125 MHz frequency in the specified deuterated solvent,
respectively. Chemical shifts were signified in parts per million (ppm) in CDCl3 or DMSO-
d6 and coupling constants (J) are in hertz (Hz). High-resolution mass spectra electrospray
ionization (HRMS-ESI) was obtained on a Waters SYNAPT G1 MS. The HPLC analyses were
accomplished with Shimadzu/DGU-20A5 HPLC apparatus fitted with a 25-cm Chiralpac
AD-H chiral column. The precursor, 6,7-dichloro-2-methyl-5,8-quinolinequinone, QQ, was
synthesized using the reported method in the literature [67].

3.2. X-ray Diffraction Analysis

Data for the single crystal compounds were obtained with Bruker APEX II QUAZAR
three-circle diffractometer. Indexing was performed using APEX2 [75]. Data integration
and reduction were carried out with SAINT [76]. Absorption correction was performed by
the multi-scan method implemented in SADABS [77]. The Bruker SHELXTL [78] software
package was used for structures solution and structures refinement. Aromatic C-bound
and N-bound hydrogen atoms were positioned geometrically and refined using a riding
mode. Crystal structure validations and geometrical calculations were performed using
the Platon software [79]. Mercury software [80] was used for the visualization of the
.cif files. The crystallographic and structure refinement data are summarized in Table 1.
The selected bond lengths, bond angles, torsion angles, hydrogen bond distances, and
angles are given in the Supplementary Material. The crystallographic data have been
deposited at the Cambridge Crystallographic Data Center, and CCDC reference numbers
are 2132358 and 2132362 for AQQ7 and AQQ10. The data can be obtained available free of
charge from http://www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge
Crystallographic Data Center (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; Fax:
+44-(0)1223336033; email: deposit@ccdc.cam.ac.uk.

3.3. Procedure for the Synthesis of the Methyl Quinolinequinone (QQ)
6,7-Dichloro-2-methyl-5,8-quinolinequinone (QQ)

6,7-Dichloro-2-methyl-5,8-quinolinequinone (QQ) [67] was prepared according to the
literature from 8-hydroxy-2-methyl-quinoline and sodium chlorate in concentrated HCl
in 12% yield. Mp 179–180 ◦C (Lit. 180–181 ◦C). 1H NMR (500 MHz, CDCl3) δ (ppm): 8.31
(d, J = 8.30 Hz, 1H, CHaromatic), 7.53 (d, J = 8.30 Hz, 1H, CHaromatic), 2.73 (s, 3H, CH3).
13C NMR (125 MHz, CDCl3) δ (ppm): 174.6, 173.5 (>C=O), 165.1, 145.3, 142.9, 141.8, 134.6,
127.2, 125.2 (Caromatic and Cq), 24.3 (CH3). MS (+ESI) m/z (%): 242 (100, [M + H]+), 240 (11,
[M − H]+). Anal. Calcd. for C10H5Cl2NO2 (240.97).

3.4. General Procedure for the Synthesis of the Aminated Quinolinequinones (AQQ1–16)

A suspension of the QQ (0.250 g, 1.03 mmol) and CeCl3·7H2O (0.421 g, 1.13 mmol,
1.1 equiv) in ethanol was stirred at room temperature for 1 h. Then, to that solution of

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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the QQ and CeCl3·7H2O was successively added the corresponding amines (1.13 mmol,
1.1 equiv) in ethanol and stirred for 3–16 h until consumption of the QQ. After evaporation
of the solvent, the residue was dissolved with CH2Cl2 (50 mL), and the solution was
washed sequentially with water (3 × 30 mL). The organic layer was dried over CaCl2,
filtered, and concentrated under reduced pressure. The reaction crude was purified on a
silica gel column chromatography using the eluent system to give the corresponding AQQ.

3.4.1. 7-Chloro-2-methyl-6-((2-(trifluoromethyl)phenyl)amino)-5,8-quinolinequinone
(AQQ1)

Obtained from the mixture (QQ and CeCl3·7H2O) and 2-(trifluoromethyl)aniline
(0.182 g, 1.13 mmol) according to the general procedure, the title compound (AQQ1) was
purified by column chromatography as an orange solid. Yield: 7%, 192–195 ◦C. Purity: 100%
(Retention time: 3.66 min). FTIR (ATR) υ (cm−1): 3359 (NH), 3070, 3040 (CHaromatic), 1667
(>C=O), 1603, 1575, 1507, 1476, 1457, 1374, 1316, 1280, 1224, 1204, 1180, 1169, 1145, 1126,
1112, 1058, 1036. 1H NMR (500 MHz, CDCl3) δ (ppm): 8.33 (d, J = 8.0 Hz, 1H, CHaromatic),
7.71 (d, J = 7.6 Hz, 1H, CHaromatic), 7.64 (br s, 1H, NH), 7.56 (t, J = 7.7 Hz, 1H, CHaromatic),
7.52 (d, J = 8.0 Hz, 1H, CHaromatic), 7.37 (t, J = 7.7 Hz, 1H, CHaromatic), 7.14 (d, J = 8.0 Hz, 1H,
CHaromatic), 2.81 (s, 3H, CH3). 13C NMR (125 MHz, CDCl3) δ (ppm): 179.5, 176.1 (>C=O),
166.2, 147.7, 140.9, 135.5, 135.0, 131.8, 127.5, 127.0, 126.5 (q, 3JC-F = 5.1 Hz), 126.2, 124.7 (q,
2JC-F = 30.1 Hz), 123.7 (q, 1JC-F = 273.0 Hz), 122.6, 116.9, 110.0 (Caromatic and Cq), 25.5 (CH3).
HRMS(+ESI) m/z calcd for C17H11ClF3N2O2 [M + H]+: 367.0461; found: 367.0460.

3.4.2. 7-Chloro-2-methyl-6-((3-(trifluoromethyl)phenyl)amino)-5,8-quinolinequinone
(AQQ2)

Obtained from the mixture (QQ and CeCl3·7H2O) and 3-(trifluoromethyl)aniline
(0.182 g, 1.13 mmol) according to the general procedure, the title compound (AQQ2) was
purified by column chromatography as a red solid. Yield: 71%, 246–248 ◦C. Purity: 98%
(Retention time: 3.67 min). FTIR (ATR) υ (cm−1): 3211 (NH), 3030 (CHaromatic), 1676 (>C=O),
1573, 1515, 1474, 1454, 1332, 1307, 1290, 1224, 1198, 1158, 1114, 1101, 1068, 1036. 1H NMR
(500 MHz, CDCl3) δ (ppm): 8.34 (d, J = 8.0 Hz, 1H, CHaromatic), 7.67 (br s, 1H, NH), 7.56–7.45
(m, 3H, CHaromatic), 7.35 (s, 1H, CHaromatic), 7.30–7.22 (m, 1H, CHaromatic), 2.82 (s, 3H, CH3).
13C NMR (125 MHz, CDCl3) δ (ppm): 179.8, 176.1 (>C=O), 166.3, 147.8, 140.4, 137.7, 135.0,
129.0, 127.1, 124.7, 122.3, 120.7, 117.1, 110.0 (Caromatic and Cq), 25.5 (CH3). HRMS(+ESI) m/z
calcd for C17H10ClF3N2O2 [M]+: 366.0383; found: 366.0386.

3.4.3. 7-Chloro-2-methyl-6-((4-(trifluoromethyl)phenyl)amino)-5,8-quinolinequinone
(AQQ3)

Obtained from the mixture (QQ and CeCl3·7H2O) and 4-(trifluoromethyl)aniline
(0.182 g, 1.13 mmol) according to the general procedure, the title compound (AQQ3) was
purified by column chromatography as a red solid. Yield: 74%, 249–251 ◦C. Purity: 100%
(Retention time: 3.66 min). FTIR (ATR) υ (cm−1): 3208 (NH), 1672 (>C=O), 1651, 1571,
1520, 1494, 1409, 1370, 1320, 1289, 1224, 1162, 1107, 1064. 1H NMR (500 MHz, DMSO-d6)
δ (ppm): 9.54 (br s, 1H, NH), 8.29 (d, J = 8.0 Hz, 1H, CHaromatic), 7.68 (d, J = 8.1 Hz, 1H,
CHaromatic), 7.65 (d, J = 8.5 Hz, 2H, CHaromatic), 7.27 (d, J = 8.5 Hz, 2H, CHaromatic), 2.67
(s, 3H, CH3). 13C NMR (125 MHz, DMSO-d6) δ (ppm): 180.2, 176.2 (>C=O), 164.7, 147.6,
143.4, 142.6, 135.2, 127.5, 126.1, 125.6 (q, 3JC-F = 3.5 Hz), 124.9 (q, 1JC-F = 271.4 Hz), 123.8
(q, 2JC-F = 31.8 Hz), 123.1, 119.5 (Caromatic and Cq), 25.1 (CH3). HRMS(+ESI) m/z calcd for
C17H10ClF3N2O2 [M]+: 366.0383; found: 366.0386.

3.4.4. 7-Chloro-6-((4-(cyano)phenyl)amino)-2-methyl-5,8-quinolinequinone (AQQ4)

Obtained from the mixture (QQ and CeCl3·7H2O) and 4-cyanoaniline (0.133 g,
1.13 mmol) according to the general procedure, the title compound (AQQ4) was puri-
fied by column chromatography as a red solid. Yield: 63%, 283–284 ◦C. Purity: 97%
(Retention time: 3.66 min). FTIR (ATR) υ (cm−1): 3185 (NH), 3081 (CHaromatic), 2227 (CN),
1673 (>C=O), 1655, 1572, 1512, 1493, 1411, 1367, 1307, 1293, 1258, 1226, 1206, 1171, 1145,
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1108, 1036. 1H NMR (500 MHz, CDCl3) δ (ppm): 8.35 (d, J = 8.0 Hz, 1H, CHaromatic), 7.67
(d, J = 8.3 Hz, 2H, CHaromatic), 7.64 (br s, 1H, NH), 7.55 (d, J = 8.0 Hz, 1H, CHaromatic), 7.11
(d, J = 8.4 Hz, 2H, CHaromatic), 2.83 (s, 3H, CH3). 13C NMR (125 MHz, CDCl3) δ (ppm):
179.7, 176.0 (>C=O), 166.5, 147.6, 141.2, 139.9, 135.1, 132.6, 127.3, 124.8, 123.1, 119.2, 118.5,
110.4, 108.2 (Caromatic and Cq), 25.5 (CH3). HRMS(+ESI) m/z calcd for C17H10ClN3O2 [M]+:
323.0462; found: 323.0465.

3.4.5. 6-((3,5-Bis(trifluoromethyl)phenyl)amino)-7-chloro-2-methyl-5,8-quinolinequinone
(AQQ5)

Obtained from the mixture (QQ and CeCl3·7H2O) and 3,5-bis(trifluoromethyl)aniline
(0.259 g, 1.13 mmol) according to the general procedure, the title compound (AQQ5) was
purified by column chromatography as an orange solid. Yield: 19%, 197–198 ◦C. Purity:
97% (Retention time: 3.66 min). FTIR (ATR) υ (cm−1): 3227 (NH), 3033 (CHaromatic), 2959
(CHaliphatic), 1675 (>C=O), 1575, 1523, 1470, 1448, 1379, 1309, 1283, 1217, 1187, 1167, 1114,
1036. 1H NMR (500 MHz, CDCl3) δ (ppm): 8.27 (d, J = 8.0 Hz, 1H, CHaromatic), 7.65 (br s,
1H, NH), 7.63 (s, 1H, CHaromatic), 7.46 (d, J = 8.0 Hz, 1H, CHaromatic), 7.40 (s, 2H, CHaromatic),
2.73 (s, 3H, CH3). 13C NMR (125 MHz, CDCl3) δ (ppm): 179.6, 175.9 (>C=O), 166.5, 147.6,
139.9, 138.7, 135.1, 132.0 (q, 2JC-F = 33.9 Hz), 127.3, 124.8, 123.1, 122.9 (q, 1JC-F = 273.1 Hz),
118.6, 110.0 (Caromatic and Cq), 25.5 (CH3). HRMS(+ESI) m/z calcd for C18H10ClF6N2O2
[M + H]+: 435.0335; found: 435.0335.

3.4.6. 7-Chloro-2-methyl-6-(m-tolylamino)-5,8-quinolinequinone (AQQ6)

Obtained from the mixture (QQ and CeCl3·7H2O) and m-toluidine (0.121 g, 1.13 mmol)
according to the general procedure, the title compound (AQQ6) was purified by column
chromatography as a purple solid. Yield: 63%, mp 192–194 ◦C. Purity: 100% (Retention
time: 3.77 min). FTIR (ATR) υ (cm−1): 3187 (NH), 3022 (CHaromatic), 2917, 2856 (CHaliphatic),
1678 (>C=O), 1644, 1570, 1557, 1517, 1485, 1463, 1368, 1319, 1287, 1225, 1160, 1141, 1101,
1041. 1H NMR (500 MHz, CDCl3) δ (ppm): 8.23 (d, J = 8.0 Hz, 1H, CHaromatic), 7.56 (br s,
1H, NH), 7.41 (d, J = 8.0 Hz, 1H, CHaromatic), 7.17 (t, J = 7.9 Hz, 1H, CHaromatic), 6.97 (d,
J = 7.6 Hz, 1H, CHaromatic), 6.82 (d, J = 7.3 Hz, 2H, CHaromatic), 2.72 (s, 3H, CH3), 2.30 (s, 3H,
CH3). 13C NMR (125 MHz, CDCl3) δ (ppm): 180.1, 176.2 (>C=O), 166.1, 148.1, 140.9, 138.5,
137.0, 134.9, 128.3, 126.7, 124.9, 124.7, 121.4, 115.6, 110.0 (Caromatic and Cq), 25.5, 21.4 (CH3).
HRMS(+ESI) m/z calcd for C17H13ClN2O2 [M]+: 312.0666; found: 312.0670.

3.4.7. 7-Chloro-2-methyl-6-(p-tolylamino)-5,8-quinolinequinone (AQQ7)

Obtained from the mixture (QQ and CeCl3·7H2O) and p-toluidine (0.121 g, 1.13 mmol)
according to the general procedure, the title compound (AQQ7) was purified by column
chromatography as a purple solid. Yield: 47%, mp 213–215 ◦C. Purity: 100% (Retention
time: 3.66 min). FTIR (ATR) υ (cm−1): 3187 (NH), 3026 (CHaromatic), 2919 (CHaliphatic), 1675
(>C=O), 1645, 1571, 1518, 1498, 1405, 1367, 1303, 1288, 1226, 1206, 1143, 1102, 1038. 1H NMR
(500 MHz, CDCl3) δ (ppm): 8.21 (d, J = 8.0 Hz, 1H, CHaromatic), 7.57 (br s, 1H, NH), 7.39
(d, J = 8.0 Hz, 1H, CHaromatic), 7.08 (d, J = 7.9 Hz, 2H, CHaromatic), 6.91 (d, J = 7.9 Hz, 2H,
CHaromatic), 2.70 (s, 3H, CH3), 2.29 (s, 3H, CH3). 13C NMR (125 MHz, CDCl3) δ (ppm): 180.1,
176.1 (>C=O), 166.0, 148.1, 141.0, 135.9, 134.9, 134.5, 129.1, 126.7, 124.4, 115.0, 110.0 (Caromatic
and Cq), 25.5, 21.1 (CH3). HRMS(+ESI) m/z calcd for C17H13ClN2O2 [M]+: 312.0666; found:
312.0667.

3.4.8. 7-Chloro-6-((2-isopropylphenyl)amino)-2-methyl-5,8-quinolinequinone (AQQ8)

Obtained from the mixture (QQ and CeCl3·7H2O) and 2-isopropylaniline (0.153 g,
1.13 mmol) according to the general procedure, the title compound (AQQ8) was purified
by column chromatography as a dark red oil. Yield: 62%. Purity: 96% (Retention time:
3.65 min). FTIR (ATR) υ (cm−1): 3326 (NH), 3070 (CHaromatic), 2964, 2930, 2885 (CHaliphatic),
1664 (>C=O), 1571, 1498, 1469, 1450, 1313, 1286, 1258, 1220, 1144, 1101, 1080, 1038. 1H NMR
(500 MHz, CDCl3) δ (ppm): 8.29 (d, J = 5.2 Hz, 1H, CHaromatic), 7.49 (br s, 1H, NH), 7.54–7.43



Molecules 2022, 27, 2923 18 of 26

(m, 1H, CHaromatic), 7.36–7.24 (m, 2H, CHaromatic), 7.17 (s, 1H, CHaromatic), 7.02 (d, J = 6.5 Hz,
1H, CHaromatic), 3.10–3.27 (m, 1H, CH(CH3)2), 2.78 (s, 3H, CH3), 1.25 (s, 6H, CH3). 13C NMR
(125 MHz, CDCl3) δ (ppm): 180.0, 176.0 (>C=O), 166.0, 148.1, 143.9, 141.8, 134.9, 134.8,
127.6, 127.0, 126.7, 125.9, 125.6, 124.6, 114.2 (Caromatic and Cq), 28.6 (CH), 25.5, 22.9 (CH3).
HRMS(+ESI) m/z calcd for C19H18ClN2O2 [M + H]+: 341.1057; found: 341.1057.

3.4.9. 7-Chloro-6-((3-isopropylphenyl)amino)-2-methyl-5,8-quinolinequinone (AQQ9)

Obtained from the mixture (QQ and CeCl3·7H2O) and 3-isopropylaniline (0.153 g,
1.13 mmol) according to the general procedure, the title compound (AQQ9) was purified by
column chromatography as a purple solid. Yield: 51%, 114–116 ◦C. Purity: 100% (Retention
time: 3.74 min). FTIR (ATR) υ (cm−1): 3297 (NH), 3059 (CHaromatic), 2959, 2922, 2867
(CHaliphatic), 1672 (>C=O), 1568, 1513, 1479, 1440, 1370, 1310, 1282, 1217, 1143, 1102, 1036.
1H NMR (500 MHz, CDCl3) δ (ppm): 8.27 (d, J = 7.7 Hz, 1H, CHaromatic), 7.75 (br s, 1H, NH),
7.47 (d, J = 7.8 Hz, 1H, CHaromatic), 7.25 (t, J = 7.3 Hz, 1H, CHaromatic), 7.07 (d, J = 7.2 Hz,
1H, CHaromatic), 6.91 (s, 2H, CHaromatic), 2.97–2.83 (m, 1H, CH(CH3)2), 2.76 (s, 3H, CH3),
1.32–1.17 (m, 6H, CH3). 13C NMR (125 MHz, CDCl3) δ (ppm): 180.1, 176.1 (>C=O), 166.0,
149.3, 148.0, 140.8, 136.9, 134.9, 128.3, 126.8, 124.7, 124.1, 122.5, 121.7, 115.2 (Caromatic and
Cq), 33.9 (CH), 25.4, 23.8 (CH3). HRMS(+ESI) m/z calcd for C19H18ClN2O2 [M + H]+:
341.1057; found: 341.1056.

3.4.10. 7-Chloro-6-((4-isopropylphenyl)amino)-2-methyl-5,8-quinolinequinone (AQQ10)

Obtained from the mixture (QQ and CeCl3·7H2O) and 4-isopropylaniline (0.153 g,
1.13 mmol) according to the general procedure, the title compound (AQQ10) was purified
by column chromatography as a dark red oil. Yield: 71%. Purity: 100% (Retention time:
3.61 min). FTIR (ATR) υ (cm−1): 3321 (NH), 3048 (CHaromatic), 2959, 2870 (CHaliphatic), 1674
(>C=O), 1651, 1571, 1518, 1420, 1304, 1283, 1223, 1198, 1139, 1099, 1034. 1H NMR (500 MHz,
CDCl3) δ (ppm): 8.35–8.20 (m, 1H, CHaromatic), 7.55–7.41 (m, 2H, NH and CHaromatic),
7.35–7.22 (m, 2H, CHaromatic), 7.17 (s, 1H, CHaromatic), 7.02 (d, J = 6.6 Hz, 1H, CHaromatic),
3.26–3.12 (m, 1H, CH(CH3)2), 2.77 (s, 3H, CH3), 1.25 (s, 6H, CH3). 13C NMR (125 MHz,
CDCl3) δ (ppm): 180.1, 176.1 (>C=O), 166.0, 148.0, 146.9, 141.0, 134.9, 134.8, 126.7, 126.4,
124.7, 124.4, 115.1 (Caromatic and Cq), 33.6 (CH), 25.4, 24.0 (CH3). HRMS(+ESI) m/z calcd for
C19H17ClN2O2 [M]+: 340.0979; found: 340.0981.

3.4.11. 7-Chloro-6-((4-(diethylamino)phenyl)amino)-2-methyl-5,8-quinolinequinone
(AQQ11)

Obtained from the mixture (QQ and CeCl3·7H2O) and N,N-diethyl-p-phenylenediamine
(0.186 g, 1.13 mmol) according to the general procedure, the title compound (AQQ11) was
purified by column chromatography as a dark red oil. Yield: 68%. Purity: 95% (Retention
time: 3.66 min). FTIR (ATR) υ (cm−1): 3317 (NH), 3074 (CHaromatic), 2972, 2930 (CHaliphatic),
1667 (>C=O), 1608, 1574, 1520, 1505, 1450, 1355, 1306, 1262, 1223, 1143, 1038. 1H NMR
(500 MHz, CDCl3) δ (ppm): 8.27 (d, J = 7.9 Hz, 1H, CHaromatic), 7.68 (br s, 1H, NH), 7.45 (d,
J = 7.9 Hz, 1H, CHaromatic), 7.04–6.89 (m, 2H, CHaromatic), 6.61 (s, 2H, CHaromatic), 3.47–3.27
(m, 4H, NCH2), 2.77 (s, 3H, CH3), 1.18 (t, J = 6.7 Hz, 6H, CH3). 13C NMR (125 MHz, CDCl3)
δ (ppm): 180.2, 175.9 (>C=O), 165.9, 148.3, 146.3, 141.1, 134.8, 126.5, 126.2, 125.0, 124.6, 111.0
(Caromatic and Cq), 44.5 (NCH2), 25.4, 12.5 (CH3). HRMS(+ESI) m/z calcd for C20H21ClN3O2
[M + H]+: 370.1322; found: 370.1320.

3.4.12. 7-Chloro-6-((2,3-dimethylphenyl)amino)-2-methyl-5,8-quinolinequinone (AQQ12)

Obtained from the mixture (QQ and CeCl3·7H2O) and 2,3-dimethylaniline (0.137 g,
1.13 mmol) according to the general procedure, the title compound (AQQ12) was purified
by column chromatography as an orange solid. Yield: 67%, 195.8–197.2 ◦C. Purity: 97%
(Retention time: 3.70 min). FTIR (ATR) υ (cm−1): 3328 (NH), 3089 (CHaromatic), 2974, 2915
(CHaliphatic), 1665 (>C=O), 1611, 1578, 1496, 1464, 1378, 1313, 1276, 1221, 1144, 1104, 1071.
1H NMR (500 MHz, CDCl3) δ (ppm): 8.25 (d, J = 7.9 Hz, 1H, CHaromatic), 7.57–7.39 (m,
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2H, NH and CHaromatic), 7.16–6.98 (m, 2H, CHaromatic), 6.89 (d, J = 6.3 Hz, 1H, CHaromatic),
2.75 (s, 3H, CH3), 2.29 (s, 3H, CH3), 2.17 (s, 3H, CH3). 13C NMR (125 MHz, CDCl3) δ
(ppm): 179.9, 176.0 (>C=O), 166.0, 148.0, 141.8, 137.6, 136.0, 134.8, 132.7, 128.6, 126.7, 125.1,
124.6, 124.3, 114.1 (Caromatic and Cq), 25.4, 20.4, 14.4 (CH3). HRMS(+ESI) m/z calcd for
C18H15ClN2O2 [M]+: 326.0822; found: 326.0827.

3.4.13. 7-Chloro-6-((2,4-dimethylphenyl)amino)-2-methyl-5,8-quinolinequinone (AQQ13)

Obtained from the mixture (QQ and CeCl3·7H2O) and 2,4-dimethylaniline (0.137 g,
1.13 mmol) according to the general procedure, the title compound (AQQ13) was purified
by column chromatography as an orange solid. Yield: 50%, 185.5–187.4 ◦C. Purity: 98%
(Retention time: 3.70 min). FTIR (ATR) υ (cm−1): 3328 (NH), 3085 (CHaromatic), 2918, 2848
(CHaliphatic), 1663 (>C=O), 1607, 1583, 1506, 1481, 1376, 1313, 1285, 1218, 1202, 1144, 1125,
1036. 1H NMR (500 MHz, CDCl3) δ (ppm): 8.23 (d, J = 7.9 Hz, 1H, CHaromatic), 7.49–7.38 (m,
2H, NH and CHaromatic), 6.99 (s, 1H, CHaromatic), 6.92 (dd, J = 21.8, 7.9 Hz, 2H, CHaromatic),
2.73 (s, 3H, CH3), 2.29 (s, 3H, CH3), 2.20 (s, 3H, CH3). 13C NMR (125 MHz, CDCl3) δ
(ppm): 179.9, 175.9 (>C=O), 165.9, 148.0, 141.7, 136.9, 134.8, 133.7, 133.5, 131.0, 126.7, 126.5,
126.3, 124.6, 113.9 (Caromatic and Cq), 25.4, 21.0, 18.1 (CH3). HRMS(+ESI) m/z calcd for
C18H15ClN2O2 [M]+: 326.0822; found: 326.0829.

3.4.14. 7-Chloro-6-((2,5-dimethylphenyl)amino)-2-methyl-5,8-quinolinequinone (AQQ14)

Obtained from the mixture (QQ and CeCl3·7H2O) and 2,5-dimethylaniline (0.137 g,
1.13 mmol) according to the general procedure, the title compound (AQQ14) was purified
by column chromatography as an orange solid. Yield: 39%, 160.1–161.7 ◦C. Purity: 100%
(Retention time: 3.76 min). FTIR (ATR) υ (cm−1): 3286 (NH), 3081 (CHaromatic), 2919
(CHaliphatic), 1679 (>C=O), 1573, 1518, 1483, 1374, 1314, 1285, 1219, 1147, 1121, 1036. 1H NMR
(500 MHz, CDCl3) δ (ppm): 8.26 (d, J = 7.9 Hz, 1H, CHaromatic), 7.51–7.38 (m, 2H, NH and
CHaromatic), 7.07 (d, J = 7.3 Hz, 1H, CHaromatic), 6.98 (d, J = 7.2 Hz, 1H, CHaromatic), 6.83 (s,
1H, CHaromatic), 2.76 (s, 3H, CH3), 2.28 (s, 3H, CH3), 2.21 (s, 3H, CH3). 13C NMR (125 MHz,
CDCl3) δ (ppm): 179.9, 176.0 (>C=O), 166.0, 148.1, 141.5, 135.8, 135.6, 134.8, 130.6, 130.1,
127.7, 126.7, 126.7, 124.6, 114.3 (Caromatic and Cq), 25.4, 20.9, 17.7 (CH3). HRMS(+ESI) m/z
calcd for C18H15ClN2O2 [M]+: 326.0822; found: 326.0826.

3.4.15. 7-Chloro-6-((3,4-dimethylphenyl)amino)-2-methyl-5,8-quinolinequinone (AQQ15)

Obtained from the mixture (QQ and CeCl3·7H2O) and 3,4-dimethylaniline (0.137 g,
1.13 mmol) according to the general procedure, the title compound (AQQ15) was purified
by column chromatography as a purple solid. Yield: 68%, 224–225 ◦C. Purity: 100%
(Retention time: 3.78 min). FTIR (ATR) υ (cm−1): 3182 (NH), 3015 (CHaromatic), 2918
(CHaliphatic), 1678 (>C=O), 1641, 1570, 1556, 1518, 1501, 1319, 1293, 1227, 1141, 1042. 1H NMR
(500 MHz, CDCl3) δ (ppm): 8.29 (d, J = 8.0 Hz, 1H, CHaromatic), 7.64 (br s, 1H, NH), 7.48
(d, J = 7.9 Hz, 1H, CHaromatic), 7.11 (d, J = 7.9 Hz, 1H, CHaromatic), 6.89 (s, 1H, CHaromatic),
6.84 (d, J = 5.9 Hz, 1H, CHaromatic), 2.79 (s, 3H, CH3), 2.28 (s, 3H, CH3), 2.27 (s, 3H, CH3).
13C NMR (125 MHz, CDCl3) δ (ppm): 180.1, 176.1 (>C=O), 166.0, 148.1, 140.9, 136.9, 134.9,
134.7, 134.6, 129.5, 126.7, 125.5, 124.7, 121.8, 115.0 (Caromatic and Cq), 25.5, 19.8, 19.4 (CH3).
HRMS(+ESI) m/z calcd for C18H16ClN2O2 [M + H]+: 327.0900; found: 327.0900.

3.4.16. 7-Chloro-6-((3,5-dimethylphenyl)amino)-2-methyl-5,8-quinolinequinone (AQQ16)

Obtained from the mixture (QQ and CeCl3·7H2O) and 3,5-dimethylaniline (0.137 g,
1.13 mmol) according to the general procedure, the title compound (AQQ16) was purified
by column chromatography as a purple solid. Yield: 77%, 212–213 ◦C. Purity: 100%
(Retention time: 3.83 min). FTIR (ATR) υ (cm−1): 3185 (NH), 3019 (CHaromatic), 2912, 2863
(CHaliphatic), 1676 (>C=O), 1645, 1570, 1555, 1511, 1464, 1370, 1305, 1288, 1225, 1158, 1142,
1101, 1047. 1H NMR (500 MHz, CDCl3) δ (ppm): 8.27 (d, J = 7.9 Hz, 1H, CHaromatic), 7.64
(br s, 1H, NH), 7.47 (d, J = 7.9 Hz, 1H, CHaromatic), 6.84 (s, 1H, CHaromatic), 6.69 (s, 2H,
CHaromatic), 2.77 (s, 3H, CH3), 2.30 (s, 6H, CH3). 13C NMR (125 MHz, CDCl3) δ (ppm): 180.1,
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176.1 (>C=O), 166.0, 148.0, 140.9, 138.1, 136.8, 134.9, 127.6, 126.7, 124.7, 122.0, 115.4 (Caromatic
and Cq), 25.4, 21.3, 21.3 (CH3). HRMS(+ESI) m/z calcd for C18H16ClN2O2 [M + H]+:
327.0900; found: 327.0900.

3.5. Biological Evaluation
3.5.1. MIC Determinations

MICs of the AQQs were determined by the broth microdilution technique that con-
formed with the Clinical and Laboratory Institute (CLSI) [81,82] against a panel of standard
ATCC microorganisms. Serial two-fold dilutions ranging from 1250 to 0.6 mg/L were
prepared in Mueller Hinton Broth for the tested bacteria and RPMI-1640 medium for the
yeast, respectively. The stock solutions of molecules were also prepared in DMSO. Samples
were allowed to incubate at 37 ◦C for 18–20 h. Each experiment was performed in duplicate.

According to the antimicrobial activity results, we aimed to identify in vitro activities
of the AQQ4 and AQQ9 against clinically obtained strains by the broth microdilution
dilution technique as described by the CLSI recommendations [81,82]. For this assay,
20 nonduplicates, nosocomially acquired MRSA isolated from blood specimens between
April and September 2017 were obtained from the Department of Infectious Diseases
and Clinical Microbiology, Faculty of Medicine, Istanbul Medipol University. All strains
were identified using API STAPH (bioM’erieux). Then, all the tested S. aureus isolates
were chosen by using oxacillin susceptibility to determine the methicillin-resistant isolates
approved by CLSI (MIC ≥ 4 µg/mL) [81]. Moreover, for 24 clinically obtained C. albicans
and non-albicans isolates from patients diagnosed with vulvovaginal candidiasis in January
and December 2016 at the Clinical Microbiology Laboratories of Group Florence Nightingale
Hospitals in Turkey. The yeasts were differentiated by CHROMagar and verified by API
20C AUX (BioMerieux, France) systems.

3.5.2. Determination of Time-Kill Curves

In order to observe the dynamic profile of the activity of tested molecules (AQQ4
and AQQ9), the time-kill curve (TKC) method was performed at one and four times the
MIC against one (1) C. albicans and one (1) MRSA clinical strains. Molecules-free controls
were included for each strain. Inocula were quantified spectrophotometrically and added
to the flasks to yield a final concentration of 1 × 106 CFU/mL. The test tubes containing
MHB for the MRSA strain and RPMI-1640 medium for the C. albicans isolate with and
without (growth control) molecules in a final volume of 10 mL were incubated in a 37 ◦C
calibrated shaking water bath, and viable counts were determined at 0, 2, 4, 6, and 24-h
intervals after inoculation, by subculturing 0.1 mL serial dilutions onto TSA plates. All
tests were performed in duplicate. The lower limit of detection for the time-kill assay was
1 log10 CFU/mL. Bactericidal activity was defined as a ≥3 log10 CFU/mL decrease from
the initial inoculum.

3.5.3. Biofilm Attachment and Inhibition of Biofilm Formation Assays

Biofilm attachment and inhibition of biofilm formation assays were performed as
previously described method with some modifications [58]. For biofilm attachment, an
overnight culture of strong, biofilm-producing clinically MRSA and C. albicans strains was
diluted 1/50 to obtain 1 × 106–1 × 107 CFU/200 mL for bacteria in TSB supplement with
1% glucose for yeast in RPMI-1640 medium. Then, all strains were added to each well of
96-well tissue culture microtiter plates with 1/10× MIC of tested molecules. The plates
were allowed to incubate for 1, 2, and 4 h for MRSA and 2, 4, and 6h for C. albicans at 37 ◦C.
The positive control was studied strains in the using medium alone. After incubation, each
well was washed with phosphate-buffered saline (PBS) solution three times and measured
at OD 595 nm.

To inhibit biofilm formation, each of the tested strains was incubated in their medium
and molecules at 1× and 1/10× in addition to 1/100× MIC in 37 ◦C for 24 h in microtiter
plates. Six wells were used for each molecule. The positive control was the tested strains
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in their medium without molecules. After incubation, each well was washed with PBS
solution three times and measured at OD 595 nm.

3.5.4. Molecular Docking

All compounds were sketched using PerkinElmer ChemDraw version 21.0 and pre-
pared using Gypsum-DL on Google Colab while applying Durrant lab filters (removes
molecular variants, which though technically possible, were judged improbable). The pro-
teins were prepared using UCSD Chimera version 1.4 [83] with all the default parameters
under the Dock Prep module. The conversion of compounds and protein to .pdbqt format,
grid preparation, and docking parameter file generation were performed using the scripts
available under MGLTools 1.5.7. Grid preparation and molecular docking were performed
using AutoDockTools version 4.2.6 [84] on a Fujitsu High-performance computing (HPC)
Station (64 GB RAM, Intel® Xeon® CPU E5-2630 v3 @ 2.40GHz). The output files were
processed using the scripts available under MGLTools 1.5.7, and data visualization was
performed using BIOVIA Discovery Studio 2021. Further exploration of the protein–ligand
interaction was performed using Protein–Ligand Interaction Profiler (PLIP) 2.2.0 tool [85].

3.5.5. Statistical Analysis

All experiments were performed in two independent assays. Two-way ANOVA-
Tukey’s multiple comparison test was used to compare differences between control and
antimicrobials treated biofilms. p-Value < 0.0001 was considered statistically significant.

4. Conclusions

Two subseries of the AQQs (AQQ1–16) containing EWG or EDG in aryl amine were
successfully synthesized by chlorooxidation of 8-hydroxy-2-methyl-quinoline (HQ) with
sodium chlorate in concentrated HCl solution followed by amination with corresponding
aryl amines in the presence of the Lewis acid as catalyst, respectively. We performed a
detailed study for their in vitro antibacterial activity against both Gram-positive and Gram-
negative bacteria and antifungal activity against fungi. These two subseries of the AQQs
(AQQ1–16) exhibited excellent antimicrobial activity, particularly against S. aureus, E. fae-
calis, and C. albicans, with low micromolar MIC values compared to that of positive control
drugs. The AQQs, AQQ8–10 and AQQ12–14 with an EDG in aryl amine displayed the
strongest antibacterial activity against S. aureus. Moreover, AQQ8–10 and AQQ14 showed
the best activity against E. faecalis. In contrast, AQQ4 with an EWG in the aryl amine
exhibited obvious antifungal activity against C. albicans. Further studies were required to
provide more insights into the antimicrobial action based on the MIC values. Thus, in vitro
studies were performed with the selected QQs (AQQ4 and AQQ9) by evaluating their
antibiofilm activities against both S. aureus and C. albicans and time-kill kinetic study for
better understanding. To the best of our knowledge, our study is the first record to evaluate
the antibiofilm and bactericidal activities of AQQ4 and AQQ9 against clinically resistant
species. In our study, AQQ9 was found to be effective against the tested strains with the
39.06 mg/L MIC90. Moreover, in accordance with the TKC studies results, this molecule
seems to be effective in a dose-dependent manner (over to 1 log10 reduction on viable
cell count at 4× MIC) against MRSA isolates. This promising activity of AQQ9 allows it
to be considered as an option for further studies as a therapy against infections caused
by clinically resistant Staphylococcus spp. While AQQ4 displayed no inhibitory activity
against clinically resistant C. albicans and non-albicans isolates, the results obtained from
antibiofilm activity studies reveal that this molecule can be considered for future studies
on the dispersal of Candida biofilms. During the discovery of new antibacterial and/or
antifungal agents for infectious diseases, we mainly focus on the 1,4-quinone moiety. A
lot of bioactive agents based on quinone chemistry like naphthoquinone, dimethylben-
zoquinone, and quinolinequinone were prepared and investigated for their biological
evaluation. Recent publications have further emphasized the importance of recent study
for new antibiotics to be developed. The quinolinequinones studied in this research possess
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significant antibacterial and antifungal potentials. In conclusion, the antibacterial and anti-
fungal activity of the two subseries of the AQQs (AQQ1–16) affords them great potential
to be developed as novel antibacterial and antifungal drugs.
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ATCC American Type Culture Collection
CCDC Cambridge Crystallographic Data Center
CLSI Clinical and Laboratory Institute
EDG Electron-donating group
EWG Electron-withdrawing group
HPC High-performance computing
HPLC High-performance liquid chromatography
MIC Minimum inhibitory concentration
NMR Nuclear magnetic resonance
PBS Phosphate-buffered saline
SAR Structure-activity relationship
TKC Time-kill curve
TKS Time-kill kinetic studies
TLC Thin-layer chromatography
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