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Abstract: Macrophages and related tissue macrophage populations use the classical NADPH oxidase
(NOX2) for the regulated production of superoxide and derived oxidants for pathogen combat
and redox signaling. With an emphasis on macrophages, we discuss how sorting into secretory
storage vesicles, agonist-responsive membrane trafficking, and segregation into sphingolipid and
cholesterol-enriched microdomains (lipid rafts) determine the subcellular distribution and spatial
organization of NOX2 and superoxide dismutase-3 (SOD3). We discuss how inflammatory activation
of macrophages, in part through small GTPase Rab27A/B regulation of the secretory compartments,
mediates the coalescence of these two proteins on the cell surface to deliver a focalized hydrogen
peroxide output. In interplay with membrane-embedded oxidant transporters and redox sensitive
target proteins, this arrangement allows for the autocrine and paracrine signaling, which govern
macrophage activation states and transcriptional programs. By discussing examples of autocrine
and paracrine redox signaling, we highlight why formation of spatiotemporal microenvironments
where produced superoxide is rapidly converted to hydrogen peroxide and conveyed immediately
to reach redox targets in proximal vicinity is required for efficient redox signaling. Finally, we discuss
the recent discovery of macrophage-derived exosomes as vehicles of NOX2 holoenzyme export to
other cells.

Keywords: NOX2; SOD3; Rab27; membrane trafficking; cellular sorting; redox signaling; macrophages;
hydrogen peroxide; superoxide

1. Introduction

Once thought upon merely as a facet of the microbicidal defense mechanisms of
phagocytes, oxidants are now recognized as primary messengers in an intricate and widely
arborized network of redox signaling, where the activity of target proteins is regulated
by reversible oxidation and reduction cycles of low pKa thiols [1,2]. The cyclic nature of
these modifications requires that oxidants are counteracted by antioxidants that maintain
an essential redox homeostasis for controlled oxidative reactions.

Since the discovery of the expanded NOX family of superoxide-producing NADPH
oxidases in 2000 [3,4], we now know that virtually all cells of our body can produce
superoxide in a regulated manner. Phagocytes such as neutrophils with a short life span
and a high expression of NOX2 (the classical phagocyte NADPH oxidase [5]) use a range
of highly reactive superoxide-derived oxidants to eliminate pathogens. In contrast, long-
lived mononuclear phagocytes, such as macrophages and different tissue macrophage
populations, express NOX2 at much lower levels; while NOX2-derived oxidants certainly
help macrophages combat certain pathogens [6], it is also clear that macrophages and their
related tissue macrophage populations use oxidants for both intracellular and intercellular
redox signaling purposes [7,8]. Here, hydrogen peroxide, derived from superoxide by
dismutation, takes center stage because of its particular chemical properties [9] as we
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will explain. Dismutation can be spontaneous, but more often, at low concentrations of
superoxide, is mediated by superoxide dismutase-3 (SOD3), also known as extracellular
SOD (EC-SOD).

In this review, we correlate the functionality and biology of NOX2 and SOD3 to
delineate that these two enzymes, the oxidant producer and the dismutator, distribute and
traffic in comparable ways to coordinate their activity at spatially confined microdomains
of the cell surface. The result is a highly localized hydrogen peroxide production, which
controls the activity of target proteins subject to redox control in the cytosol [10], at the cell
surface [11], or even in neighboring cells [12].

2. Superoxide—The Initiator of Oxidative Capacity

The one-electron reduction of molecular oxygen generates superoxide (O2
•−), which

is a radical and an anion. This process is catalyzed by the NOX family of proteins, which
includes NOX2 (Figure 1). As a redox-active species, superoxide may act as an oxidant,
producing hydrogen peroxide or a reductant supporting the formation of molecular oxy-
gen. Despite the connotation of being “super”, the radical is relatively unreactive [13].
Protonation of superoxide to form the perhydroxyl radical (HO2

•) increases the reduc-
tion potential and hence reactivity, however, at physiological pH the pKa-value of the
perhydroxyl radical (4.8) dictates that less than 1% of superoxide exists in this protonated
form [14] (Figure 1). Nonetheless, it can be argued that despite the relative low levels,
the perhydroxyl radical may represent the oxidizing capacity of superoxide [15]. Hence,
HO2

• has been suggested to support the oxidation of polyunsaturated fatty acids [16] or
enzymes encompassing Fe-S clusters [17,18]. Based on the relatively limited number of
biological macromolecules subject to superoxide-mediated oxidation, it may be argued
that the key role of superoxide in a biological context is to fuel the formation of other
oxidants. Indeed, superoxide has the capacity of spontaneous dismutation to produce
molecular oxygen and hydrogen peroxide. The spontaneous dismutation is supported
by the formation of the perhydroxyl radical and hence fastest at low pH but presents a
relatively high rate constant at physiological pH (k ~6 × 105 M−1 s−1) [19]. Dismutation of
superoxide is also catalyzed by superoxide dismutase enzymes, including SOD3 (Figure 1).
Since the reaction of spontaneous dismutation is of second order, it is most prominent
at relative high levels of superoxide, whereas at lower levels, the catalyzed first order
reaction is likely to dominate [19]. In addition, superoxide reacts very fast and diffusion
controlled with nitric oxide (NO•) to generate peroxynitrite (ONOO−). The rate constant of
the reaction is at the top level of biological reactions (k ~1010 M−1 s−1) [20] and is 10.000×
faster than the spontaneous dismutation, implying that superoxide will react with any NO•

generated in the immediate vicinity. Peroxynitrite is a strong oxidant and will support lipid
peroxidation and protein nitrosylation, and therefore, may represent some of the oxidative
damage induced by superoxide generation. In addition to supporting the formation of
ONOO−, this fast reaction also removes bioactive NO•, which is well described to play a
central role in vasodilation as well as in bone homeostasis [21]. Due to the charged state of
superoxide it remains within topological barriers defined by biological membranes; the
physiological relevance of channel-mediated superoxide transport (at high concentrations)
across the plasma membrane is unclear [22].
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logical systems at a physiological pH, superoxide is in equilibrium with the perhydroxyl radical, representing the proto-
nated form of superoxide. Although the perhydroxyl radical only represents below 1% of superoxide at neutral pH, it is 
likely that this radical mediates some of the damaging impact of superoxide, indicated to include oxidation of polyun-
saturated fatty acids (PUFA) and Fe-S clusters in proteins. Superoxide also participates in a very fast reaction with nitric 
oxide (NO•), which is also a radical. The reaction generates peroxynitrite (ONOO−), which supports oxidative reactions 
including lipid peroxidation and protein nitration. Hydrogen peroxide (H2O2) is generated by the univalent reduction of 
superoxide, a process that may proceed spontaneously or catalyzed by superoxide dismutase enzymes, including SOD3. 
Hydrogen peroxide is not a radical and express in general a low propensity to react with biomolecules. The oxidant may 
be removed by peroxiredoxins (PRX) and glutathione peroxidases (GPX), both expressed as distinct isoforms in cellular 
compartments. Moreover, catalase (CAT) present in peroxisomes is also capable of removing hydrogen peroxide. Specific 
redox-sensitive proteins display highly reactive cysteine residues (Prot-Cys) that may be oxidized by H2O2 to regulate 
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removal of hydrogen peroxide to maintain a low concentration in cells and tissues [24]. 

Figure 1. Biological impact of superoxide and hydrogen peroxide. The univalent reduction of molecular oxygen (O2)
generates the superoxide radical (O2

•−) and is enzymatically catalyzed by the NOX protein family, including NOX2. In
biological systems at a physiological pH, superoxide is in equilibrium with the perhydroxyl radical, representing the
protonated form of superoxide. Although the perhydroxyl radical only represents below 1% of superoxide at neutral
pH, it is likely that this radical mediates some of the damaging impact of superoxide, indicated to include oxidation of
polyunsaturated fatty acids (PUFA) and Fe-S clusters in proteins. Superoxide also participates in a very fast reaction with
nitric oxide (NO•), which is also a radical. The reaction generates peroxynitrite (ONOO−), which supports oxidative
reactions including lipid peroxidation and protein nitration. Hydrogen peroxide (H2O2) is generated by the univalent
reduction of superoxide, a process that may proceed spontaneously or catalyzed by superoxide dismutase enzymes,
including SOD3. Hydrogen peroxide is not a radical and express in general a low propensity to react with biomolecules. The
oxidant may be removed by peroxiredoxins (PRX) and glutathione peroxidases (GPX), both expressed as distinct isoforms
in cellular compartments. Moreover, catalase (CAT) present in peroxisomes is also capable of removing hydrogen peroxide.
Specific redox-sensitive proteins display highly reactive cysteine residues (Prot-Cys) that may be oxidized by H2O2 to
regulate biological activity (Prot-Cysox), a process referred to as redox regulation. Hydrogen peroxide may also fuel the
formation of other oxidants established by chemical or enzymatic conversion. See main text for further details.

3. Hydrogen Peroxide—The Messenger

Although superoxide has the capacity to generate hydrogen peroxide by spontaneous
dismutation, a significant number of enzymes distributed in distinct subcellular compart-
ments are known to produce hydrogen peroxide, including SOD3 [2]. At physiological
conditions, the level of hydrogen peroxide in the intracellular space is regulated to ascertain
a concentration of 1–100 nM, hundreds of times lower than extracellular concentration.
Under these conditions of oxidative eustress, hydrogen peroxide acts as a first messenger to
support the targeted oxidation of central cysteine residues of specific redox target proteins
to regulate their biological function and activity, including cysteine residues of transcription
factors and protein tyrosine phosphatases [2,10,23,24]. In light of this capacity, hydrogen
peroxide is positioned as a key regulator of cellular responses. At persisting intracellular
concentrations of hydrogen peroxide well above the baseline, redox signaling is severely
hampered and hydrogen peroxide mediates the uncontrolled oxidation of biomolecules
and disrupts biological activity, and consequently supports the development of oxida-
tive distress [2]. In addition to oxidation-mediated effects, hydrogen peroxide fuels the
generation of other oxidants by serving as a substrate for other enzymes [2,23].

The capacity of hydrogen peroxide to oxidize biological macromolecules is relatively
low. However, the reactions with glutathione peroxidases (GPX) and peroxiredoxins (PRX)
presents high rate constants [18], indicating that these enzymes are important in the re-
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moval of hydrogen peroxide to maintain a low concentration in cells and tissues [24].
As the reaction rates of hydrogen peroxide with these scavengers by far supersedes the
reaction rates with most relevant redox-regulated target proteins, specific conditions must
be met in order for biological redox-regulated events to occur [25,26]. Such conditions are
established by the floodgate model, where the scavenging capacity of PRX is superseded
and consequently allows hydrogen peroxide to mediate target-specific oxidation [27]. Reac-
tion diffusion models of hydrogen peroxide signaling in human cells predict that hydrogen
peroxide generated at the plasma membrane (as a bolus) achieves penetration distances
and time scales of a few µm and 1 ms, respectively, before extinction by peroxiredoxin [28].
Although peroxiredoxins directly opposes hydrogen peroxide by consumption and thereby
limits its penetration range into cytosol dramatically, the reductive capacity of cytosol is in
fact required for the rapid return of hydrogen peroxide concentrations to baseline values in
order to receive further signals [10]. Importantly, within the penetration distance a suffi-
cient fraction of the redox protein population is oxidized to elicit a molecular signal, and it
follows that any redistribution of redox target and oxidant source that will bring them in
close proximity greatly increases efficiency of relay. If the redox target is localized outside
of the effective penetration range (e.g., in the nucleus) the redox equivalents provided by
hydrogen peroxide can also be transferred via a redox relay involving sensor proteins as,
e.g., thioredoxin or protein disulfide isomerase [25]. Collectively, these arguments imply
that autocrine redox signaling generally requires physical proximity between oxidant
source and protein targets, and in the following we will discuss how sorting and membrane
trafficking serves to bring together both the oxidant source as well as the oxidant modulator
in order to mediate a biological signal.

4. NOX2 Is Contained in a Class of Agonist-Regulated Secretory Vesicles in Macrophages

In general, NOX family members constitute the most important source of oxidants in
cells [2]. Macrophages express both NOX1, and NOX2 [29,30], but we will concentrate here
on NOX2 (the classical phagocyte NADPH Oxidase), which is by far the best described.
NOX2 is composed of a membrane-bound flavocytochrome b558 complex, consisting of
gp91phox and p22phox, and cytosolic subunits p40, p47, and p47phox in addition to
Rac1/2. Only in response to cell stimulation will the cytosolic subunits traffic to cyt
b558 in the membrane to assemble the holoenzyme and commence regulated superoxide
production [31].

In neutrophils, the majority of NOX2 is contained within granules that are formed
directly from the biosynthetic pathway. However, a population of NOX2 is also present
in so-called secretory vesicles, which are formed by way of endocytosis (they also con-
tain albumin) [32]. Human monocytes harbor a similar compartment containing comple-
ment receptor-3 (CR3) and NOX2 [33], but its origin or fate as monocytes differentiate
to macrophages is unclear. In mature rodent bone marrow-derived macrophages and
microglia, NOX2 is contained in an intracellular agonist-regulated storage compartment
composed of numerous small (<100 nm) vesicles scattered in the cytosol [34]. The same
compartment also seems present in human macrophages. As established by ultrastructural
analysis and dynamic experimentation this NOX2-containing secretory compartment is
clearly distinct from both biosynthetic and endocytic organelles, and presumably arises
after endosomal sorting following clathrin-coated pit endocytosis of NOX2 [34]. Although
interaction and retention factors for NOX2 on the cell surface are known [35], no sorting
receptors for any NOX enzyme has been identified despite the presence of a hierarchy of
undefined sorting signals [36,37]. More experimentation is clearly needed to understand
the trafficking of NOX2 in mononuclear phagocytes. We speculate that NOX2 is contained
in a bona fide agonist-regulated secretory compartment, and can undergo multiple cycles
of exocytosis, endocytosis, and sorting akin to other known membrane proteins that con-
tribute function to the cell surface for instance the GLUT4 transporter in adipocytes or
aquaporin-2 in kidney duct cells [38]. Similar to these proteins, a minor proportion of the
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NOX2 population will constantly be in transit in early and recycling endosomes [39,40],
but the final resting destination is the secretory vesicle compartment.

The NOX2-containing vesicles are mobilized upon different inflammatory stimuli, e.g.,
tumor necrosis factor-α (TNFα) or CD40 ligand (CD40L), to enrich the cell surface in oxidant
production, or they may be mobilized to phagosomes [34] often following homotypic
fusion or fusion with endosomes as in neutrophils [34,41]. The small GTPases Rab27A/B
is known to regulate mobility and exocytosis of so-called lysosome-related organelles in
many cell types including hematopoietic cells [42–44]. It turns out that Rab27A/B are also
crucial regulators of the trafficking and exocytosis of NOX2-containing compartments in
neutrophils [42] and mononuclear phagocytes [34,45]. Both Rab27B [46] and Rab27A [44]
interact directly with Munc13-4 to mediate SNAP/SNARE assembly for granule fusion
with the plasma membrane. However, in neutrophils at least, Munc13-4 is not required
for exocytosis of secretory vesicles [47]. An interesting study by Singh et al., indicates
that in mast cells Rab27A may control mobility of granules by organization of the F-actin
cytoskeleton and the association with myosin motor proteins, while Rab27B is the factor
that mediates SNARE assembly and fusion [46]. The regulatory function of Rab27 in other
cell types is likewise related to regulation of vesicular mobility through association with
actin cytoskeleton [43,48].

In microglia, Rab27A and B expression seems to negatively regulate cell surface
exposition of NOX2, in as much as Rab27A or B knock-down redistributes NOX2 from cell
surface to the intracellular storage vesicles [34]. Rab27A similarly in mast cells negatively
regulates granule exocytosis, likely by tethering of the granules to F-actin and regulating
the integrity of the cortical F-actin cytoskeleton network [46], which functions as a barrier
and blocks vesicle fusion with the plasma membrane. Depolymerization of cortical F-actin
has long been known to increase the respiratory burst in different phagocyte cell types
including microglia [49]. The phagosomal recruitment of NOX2 following immunoglobulin-
opsonized prey (but nor complement-opsonized) is decreased as a consequence of either
Rab27A or B knock down, indicating a positive regulatory role of Rab27 in this process [34]
like in neutrophils [50]. In summary, Rab27A/B remains the best described regulator of
NOX2 subcellular distribution in mononuclear phagocytes, but unknown sorting proteins
and sorting mechanisms are bound to be operating in concert.

5. SOD3 Is Contained in Agonist-Regulated Vesicles in Macrophages

SOD3 was initially purified from human lung tissue and found to encompass structural
and functional similarities to the intracellular isoenzyme SOD1, including the coordination
of copper and zinc atoms as well as enzymatic activity supporting the dismutation of
superoxide into hydrogen peroxide [51,52]. The protein is characterized by the presence of
a C-terminal region involved in the binding to ligands in the extracellular space, including
cell-surface proteoglycans via heparan sulfate and type I collagen [53–55]. Despite the
presence of a signal peptide directing the protein to the secretory pathway, several studies
have localized SOD3 to intracellular compartments in macrophages and neutrophils [56–58].
Detailed cellular characterization has shown, which SOD3 localizes to secretory vesicles of
neutrophils [57], which also encompasses NOX2 [32]. Agonist stimulation of neutrophils
supports the exocytosis of this cellular compartment, increasing the amount of SOD3 in both
the extracellular space and, importantly, on the cell surface [57]. This release is accompanied
by a reduced level of superoxide in the extracellular space and hence modulated redox
conditions [57,59]. Macrophages can internalize recombinant SOD3 for storage, implicating
a sorting step for deviation from the archetypical endosomal traffic to lysosomes [60]. In
contrast to neutrophils that establish secretory vesicles by bulk membrane endocytosis,
the uptake of SOD3 in macrophages appears to be mediated by the specific interaction
with the cell surface receptor, low-density lipoprotein receptor-related protein 1 (LRP1),
which is highly expressed in macrophages [60,61]. Agonist-induced release of SOD3 from
macrophages increases both the level of the enzyme in the extracellular environment
and on the cell surface within hours [60]. This release modulates the pro-inflammatory
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response of the macrophage by, e.g., reducing the level of released TNFα [60]. Hence,
both neutrophils and macrophages encompass intracellular vesicles that readily can be
mobilized to increase the level of SOD3 allowing for almost instantaneous and spatial
modulation of the redox environment.

6. SOD3 and NOX2 Interactions at the Macrophage Cell Surface, Redox Signaling

It is an appealing thought that NOX2 and SOD3 storage compartments may traffic to
the macrophage cell surface together to unite function at this location in response to cellular
stimulation. Similarly, trafficking of both vesicle populations to forming phagosomes
might be functionally relevant, as hydrogen peroxide is the basis for bactericidal halide
formation [23]. In that respect, macrophages differ from neutrophils where these two
proteins are present within the same secretory vesicle population [57].

Yet another layer of spatial convergence of SOD3 and NOX2 is likely operating at the
plasma membrane. NOX2 (like other NOX enzymes) is included in glycosphingolipid and
cholesterol-enriched microdomains (lipid rafts) at the cell surface, which results in a focal
oxidant production on the plasma membrane [62]. As mentioned, lipopolysaccharide (LPS)
stimulation of macrophages causes the exocytosis and release of SOD3 [60], but remarkably,
LPS also induces the translocation of cell surface-bound SOD3 from liquid-disordered
membrane (general phospholipid environment) to lipid rafts [63,64]. This would ensure that
both NOX2 and SOD3 are in close physical proximity in microdomains of the cell surface,
which incidentally also serve as a recognized platform for receptor-mediated signaling.

6.1. Autocrine Redox Signaling

In terms of autocrine cell signaling, hydrogen peroxide produced at high amplitude
by the concerted action of NOX2 and SOD3 at the cell surface may either cross the plasma
membrane to oxidize cytosolic target proteins [2,10] or directly react with cell surface resi-
dent receptors and other membrane proteins placed in the immediate vicinity to modulate
their function and activity. This type of regulation is exemplified by integrins on the cell sur-
face, which have been shown to interconvert between structures presenting high and low
affinity. This interconversion is based on hydrogen peroxide-mediated oxidation of central
cysteine residues [65,66]. In addition, several studies have suggested that ADAM17, which
is responsible for shedding of a significant number of cell surface substrates, is subject to
redox regulation [67,68]. The redox equivalents may not be provided directly by hydrogen
peroxide but may be transferred by the action of cell-surface associated protein disulfide
isomerase. These examples clearly show that there is a strong potential for regulating cell
surface biology by utilizing redox regulation. Specifically, this allows for an immediate
response to cellular stimulation (e.g., shedding of TNFα by ADAM17), potentiated by a
plausible collaboration between NOX2 and SOD3.

In macrophages, a battery of sensing innate immune cell receptors are all coupled to
NOX2 activation [69]. Receptor occupancy induces proximal signaling, which activates
the cytosolic phox subunits to translocate to cyt b558 in the membrane and commence
superoxide production. Superoxide produced at the cell surface is then dismutated via
SOD3 activity to hydrogen peroxide, which is able to enter cells either through diffusion
through the membrane, or through select aquaporins (called peroxiporins [70]) that allow
hydrogen peroxide to travel down its concentration gradient into the cortical cytosol where
is reacts with protein targets (Figure 2; left). Redox signaling may then reinforce or diversify
signaling from the cell surface receptor or directly activate signaling pathways or gene
transcription programs [8,10]. Intriguingly, peroxiporins themselves may also be lipid
raft-resident proteins [71–73], and colocalization with NOX2 in the same class of lipid raft is
probable given the co-immunoprecipitation of NOX2 with peroxiporins [74]. Therefore, the
entire ensemble of signaling receptor, oxidant producer, oxidant modulator, and transporter
may be confined within lipid rafts for optimal signaling [26].
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surface NOX2 is organized in lipid rafts, and the agonist-induced planar inclusion of also SOD3 into this ensemble drives 
a rapid dismutation of superoxide to establish a steep gradient of hydrogen peroxide (blue sphere) for autocrine and 
paracrine signaling. Peroxiporin channels are likely also included in lipid rafts, which facilitates redox signaling by allow-
ing hydrogen peroxide easier access to redox targets in the cytosol of the producing cell (autocrine) or in nearby cells 
(paracrine mode). Certain cell surface receptors signal directly or indirectly through redox circuits (B). Proximal signaling 
from the receptor causes activation of various NOX2 activators, and in the presence of SOD3 the ensuing hydrogen per-
oxide production amplifies, sustains and diversifies receptor signaling. NOX2-derived oxidants may also directly target a 
growing number of intracellular redox sensors e.g., nuclear factor kappa-light-chain-enhancer of activated B cells (Nf-kB) 
to induce altered signaling and transcription. Both NOX2 and SOD3 are internalized from the cell surface through clathrin-
coated pits, and reach their respective storage compartments by unknown endosomal sorting mechanisms (C). A minor 
fraction of NOX2 will continuously be present in endosomal compartments and on the cell surface, but immune cell acti-
vation increases cell surface exposition of NOX2 and SOD3 several-fold by mobilization of secretory vesicles. The fraction 
of NOX2 in the endosomal pool is functionally important because NOX2, in an assembled and active format, can be sorted 
into intraluminal vesicles of multivesicular bodies/late endosomes, which are then discharged into the surroundings by 
exocytosis as exosomes (D). Exosomes can now confer novel oxidant production capacity to neighboring target cells, after 
fusion with their plasma or endosomal membranes to insert the NOX2 complex. 

Monocytes depend on NOX-derived oxidants for differentiation into macrophages 
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to a large extent also under redox control [7,75]. Macrophages may polarize to either an 
M1 phenotype (proinflammatory, pathogen elimination, oxidant production including 

Figure 2. Membrane trafficking and Redox signaling of NOX2 and SOD3. In blood-derived macrophages and tissue
macrophages, NOX2 and SOD3 are contained in separate agonist-responsive secretory vesicle populations distinct from,
but communicating with, the endosomal compartment (A). Inflammatory activation (e.g., LPS) of macrophages causes
mobilization and exocytosis of the vesicles to enrich the cell surface in superoxide production capacity (red sphere). On the
cell surface NOX2 is organized in lipid rafts, and the agonist-induced planar inclusion of also SOD3 into this ensemble
drives a rapid dismutation of superoxide to establish a steep gradient of hydrogen peroxide (blue sphere) for autocrine
and paracrine signaling. Peroxiporin channels are likely also included in lipid rafts, which facilitates redox signaling by
allowing hydrogen peroxide easier access to redox targets in the cytosol of the producing cell (autocrine) or in nearby cells
(paracrine mode). Certain cell surface receptors signal directly or indirectly through redox circuits (B). Proximal signaling
from the receptor causes activation of various NOX2 activators, and in the presence of SOD3 the ensuing hydrogen peroxide
production amplifies, sustains and diversifies receptor signaling. NOX2-derived oxidants may also directly target a growing
number of intracellular redox sensors e.g., nuclear factor kappa-light-chain-enhancer of activated B cells (Nf-kB) to induce
altered signaling and transcription. Both NOX2 and SOD3 are internalized from the cell surface through clathrin-coated
pits, and reach their respective storage compartments by unknown endosomal sorting mechanisms (C). A minor fraction
of NOX2 will continuously be present in endosomal compartments and on the cell surface, but immune cell activation
increases cell surface exposition of NOX2 and SOD3 several-fold by mobilization of secretory vesicles. The fraction of
NOX2 in the endosomal pool is functionally important because NOX2, in an assembled and active format, can be sorted
into intraluminal vesicles of multivesicular bodies/late endosomes, which are then discharged into the surroundings by
exocytosis as exosomes (D). Exosomes can now confer novel oxidant production capacity to neighboring target cells, after
fusion with their plasma or endosomal membranes to insert the NOX2 complex.

Monocytes depend on NOX-derived oxidants for differentiation into macrophages [30],
and the acquisition of specific macrophage activation states or metabolic profiles is to a
large extent also under redox control [7,75]. Macrophages may polarize to either an M1
phenotype (proinflammatory, pathogen elimination, oxidant production including NO) or
an M2 phenotype (chemokine expression, increased phagolysosomal capacity, resolution
of inflammation) that is instilled in response to local cues in tissues. The term polarization
indicates that a spectrum of phenotypes exists in between the M1 and M2 states [76].
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Stimuli that induce the M1 phenotype increase NOX2 activity and concomitant oxidant
production, while the M2 state is correlated with a dramatically reduced transcription
of NOX genes and lower oxidant output (see refs. in [7]). The phenotype assumed has
important pathological corollaries in chronic diseases such as neurodegeneration or cancer.
For example, the tumor environment-induced transition to an M2 phenotype of tumor-
associated macrophages is beneficial for tumor growth and metastasis, and experimental
therapeutic regimes that would inhibit acquisition of the M2, or convert it to an M1 pheno-
type, are currently being investigated [77]. While, it is clear that NOX-derived oxidants
govern macrophage differentiation and polarization the specifics have not been hammered
out yet. In vivo, both microglia and macrophages have been reported to depend on NOX2
activation for acquisition of the M1 phenotype following inflammatory stimuli [78,79]. In
fact, in p47phox-deficient mice, microglia exposed to stimuli that normally induce M1
polarization, instead assume an M2 phenotype [79]. However, reports since then have
indicated that also acquisition of the M2 activation state involves NOX2 and/or NOX1
derived oxidants in murine macrophages in vitro or in vivo [30,80]. The former study also
calls into question the role of NOX1/NOX2 in shaping the M1 phenotype. This is worth
keeping in mind, as there is a growing consensus that NOX2 is required for the limitation
of the inflammatory response by several mechanisms [81]; genetic or experimental defi-
ciency of NOX2 in man and rodents, respectively, causes hyperinflammatory conditions
and autoimmunity [7,82]. It is interesting to note that in microglia, interleukin-1β (IL-1β)
secretion following LPS stimulation is a result of NOX1-mediated signaling, which localizes
to late endolysosomal compartments [29]. Because of the very limited penetration ranges
of hydrogen peroxide it is entirely conceivable that more than one redox signaling pathway
can be in operation at the same time, as long as the distance between oxidant sources
exceeds the penetration distance.

To what extent SOD3 is necessary for autocrine redox signaling has not been addressed
in detail, but in macrophages the increased presence of SOD3 on the cell surface following
exocytosis of intracellular storage vesicles decreases release of TNFα when compared to
cells lacking SOD3 [60]. The capacity to regulate the inflammatory response correlates with
the known function of NOX2 to limit excess production of inflammatory mediators [7,82].
Looking to other cell types, the association of SOD3 with lipid rafts has been reported in
endothelial cells to regulate the hydrogen peroxide-mediated activity of protein tyrosine
phosphatases (PTPs) in the proximate microenvironment and thereby increase vascular
endothelial growth factor (VEGFR) signaling exclusively in the lipid rafts [63]. In a sep-
arate study investigating the impact of SOD3 on receptor tyrosine kinase-signaling, the
positive impact of SOD3 in cellular proliferation, was found to be mediated by an increased
activation of the RAS protein involved in the Ras-Erk signaling cascade [83]. Interestingly,
the SOD3-induced activation of RAS was abrogated by the presence of the NOX inhibitor
DPI, indicating that the effect of SOD3 on RAS signaling is supported by NOX activity.
Notably, the level of SOD3 expression may have opposite effects indicating that cellular
proliferation is indeed regulated by a delicate redox balance in part supported by NOX
and SOD3 activities [84] (and references therein).

6.2. Paracrine Redox Communication

Interestingly, the low reactivity of hydrogen peroxide towards biological macro-
molecules in general, allows the molecule to diffuse on the scale of several hundred
micrometers up to perhaps one mm in the extracellular space where reductive capacity is
low [18,85]. While the omnipresent antioxidant defense precludes intercellular commu-
nication over longer distances, e.g., between tissues and organs [2], there are recognized
instances where hydrogen peroxide acts as a direct intercellular first messenger within
tissues (Figure 2; right) [12].

B- and T-lymphocytes undergo profound changes in metabolism upon activation, and
both basal and activation-induced metabolism is shaped by redox signaling pathways [75].
Antigen presenting cells or regulatory lymphocyte subsets often form very close cell surface
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associations with either B- or T-cells to regulate their function. The prime example of such
close contact is the immunological synapse between a macrophage and a T-lymphocyte
in the process of antigen presentation. Using rodent models of autoimmune disease, the
group of Rikard Holmdahl has thoroughly documented that deficiency of NOX2 activity
specifically in macrophages causes hyperinflammatory conditions and autoimmunity due
to hyper activation of T-lymphocytes [86,87]. By genetic dissection, it has been possible to
establish that macrophage oxidant production via NOX2 modulates the T-cell surface redox
conditions to induce anergy or tolerance [88,89]. In humans the association between full or
partial NOX2 deficiency and autoimmunity is more complex [23]. The very close proximity
of macrophage and T-cell in the immunological synapse makes the structure an ideal
physical platform for intercellular redox signaling. In that respect, it could be speculated
that SOD3 has a role in this system. The ability of SOD3 to attenuate inflammation has
previously been reported in relation to a range of inflammatory conditions [90]. Adenovi-
ral delivery of SOD3 into arthritic foot pads of rats does indeed decrease inflammation,
however, the effect seems to be independent of the antioxidant function of SOD3 [91], and
the role if any of SOD3 in the immunological synapse is uncertain. It may be that the
distances involved are sufficiently small that rapid dismutation of superoxide to hydrogen
peroxide is not required. Other examples of paracrine redox communication in mammals
have been proposed but not proven [92–94]. The central nervous system potentially poses
an environment where paracrine redox communication would have optimal conditions for
function as the interstitial space is very limited and distances between cells is small. It has
been proposed that microglia via NOX2-derived oxidants induce long term synaptic de-
pression in neurons following hypoxia and LPS stimulation [92], but the source of oxidants
was not verified genetically, and the redox targets remain unknown. Because CR3 ligation
invariably results in superoxide production by NOX2, it will be interesting to see whether
paracrine redox signaling is involved in the microglial stripping of surplus synapses that
takes place through CR3 [95]. The caudal fin lesion model of the Zebrafish has provided
interesting insight into oxidants role in tissue repair [12]. Following a lesion of the caudal
fin, a tissue scale gradient of oxidant production builds up, which attracts leukocytes [96]
and supports the regeneration of sensory axons lesioned simultaneously with the primary
injury or even as a separate axotomy event some distance away [97]. In this scenario,
wounded keratinocytes produce hydrogen peroxide [97], which in turn attracts leuko-
cytes via direct activation of the small tyrosine kinase Lyn [96], to coordinate/promote
axon regeneration [97]. While zebrafish broadly express other NOX enzymes including
NOX2, it is very telling that the oxidant producer in this wound model system is DUOX
expressed by keratinocytes [98]. As DUOX is equipped with a peroxidase-like domain
the oxidant produced is hydrogen peroxide, and there is no need for extracellular SOD
activity (zebrafish SOD3 binds with low affinity to the cell surface; [99]). The identification
in leukocytes of Lyn as a sensor of the extracellular redox environment is an important step
in the delineation of the molecular changes that are instigated in target cells mediated by
an extracellular redox signal [96]. More work along this avenue will likely yield valuable
novel information [100]. The demonstration of paracrine signaling, particularly in living
tissues, is technically very demanding because oxidant source, extracellular diffusion, and
oxidant targets all have to be taken into account. To the extent that these parameters are not
gauged with very stringent measures (cell type-specific genetic control of oxidant source,
scavenging of extracellular oxidants, and determination of redox targets in recipient cells)
many studies have provided good evidence for [12], but not directly proven, paracrine
redox signaling. In many studies, a loop of autocrine redox-stimulated release of paracrine
soluble mediators could equally well account for the observations [101].

NOX2 in Exosomes

Recently, another surprising layer of intercellular redox communication has been
uncovered. Two recent articles demonstrate the transfer of exosomes containing NOX2 and
oxidant production from one cell type to another (Figure 2; center). The observed transfer
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effectuates an altered physiological response in the target cells including suppression of
T-helper lymphocyte proliferation [102] or regeneration of injured axons [103]. Exosomes
are formed when the limiting membrane of multivesicular bodies/late endosomes buds
inwards and pinches off to generate intraluminal vesicles of approximately 50–100 nm in
size. Subsequently, when late endosomes fuse with the plasma membrane in an exocytic
event, the vesicles are released to the surroundings and are now by convention called
exosomes [104]. Normally, regulatory CD8+ T-cells (Tregs) suppress CD4+ T-cell activation
in secondary immune tissues, but this mechanism fails (in part) in aging individuals. In the
work of Wen et al., the authors demonstrate that this deficit is caused by down-regulation
of NOX2 in Tregs, and can be countered by reconstitution of NOX2 expression levels [102].
Remarkably, Tregs exert their suppressive effect on CD4+ T-cells by the exosomal transfer of
preassembled NOX2 to the CD4+ T-cells. A tight interface reminiscent of the immunological
synapse, is formed between the two cell types. Whether, exosomal transfer of NOX2 also
occurs between macrophages and CD4+ T-cells in the process of antigen stimulation [105]
has to our knowledge not been addressed. A second study shows that local macrophages
are instrumental in the regenerative response in the injured sciatic nerve and dorsal root
ganglia [103]. Their effect is mediated by the exosomal transfer of an active NOX2 complex
directly to injured axons. Following exosome endocytosis and fusion with neuron late
endomembranes, NOX2 travels retrogradely to reach the soma area. At this location, NOX2-
produced oxidants inactivates the phosphatase PTEN to activate the PI3K–Akt pathway
and regenerative outgrowth. We recently used cerium chloride (CeCl3)-based cytochemical
techniques to detect oxidant production in living cells at ultrastructural resolution for
the unequivocal determination of oxidant production in the exosomes themselves (See
Figure 3). Exosomal transport of NOX2 is therefore not exclusive to immune cells.

The studies mentioned above are very well performed and together with the observa-
tions illustrated in Figure 3 open up for a delightful black box of molecular uncertainty on
several levels. First of all, NOX2 must be assumed subject to regulated sorting into late
endosomal intraluminal vesicles by an unknown sorting mechanism, which would also
include cytosolic phox proteins and Rac1 (i.e., the ensemble would be activated upon sort-
ing). Curiously, the released exosomes are capable of oxidant production, which is striking
since it is generally accepted that a constant cycling of the phox proteins from the cytosolic
pool to cyt b558 in the membrane is required for sustained superoxide production [106].
Moreover, it is unclear how NADPH is provided in the interior of the exosome.

Additionally, the work of Hervera et al., forwards the possibility that NOX2 trans-
ferred to neuronal endosomes from macrophage exosomes, carries out its redox signaling
from late endosomes in the soma area after retrograde transport [103]. The concept of
endosomal redox signaling is appealing, because it would offer a mechanism for the di-
rected translocation of an oxidant source to its oxidant targets (rather than the other way
around), which in a large and polarized cell type such as a neuron could prove partic-
ularly important. However, as NOX enzymes are electrogenic (electrons from NADPH
are transferred across the membrane), oxidant production would quickly cease in the
absence of a charge neutralizing mechanism. Mechanistic evidence for endosomal redox
signaling has for now only been presented by two different groups [107,108], one of which
proposes the H+/Cl− exchange transporter 3 (ClC-3) as a charge neutralizer in endosomes
of neutrophils [109]. In the intervening roughly ten years since the original publications,
no additional evidence by any group has been put forward to confirm, substantiate, or
further explore this interesting area.

No experimental evidence for the inclusion of SOD3 into exosomes exist, but recent
findings show that mesenchymal stem cells release extracellular vesicles encompassing
SOD3, and importantly that these vesicles have the capacity to modulate the redox con-
ditions of recipient cells [110,111]. Although no direct corporation between NOX2 and
SOD3 has been reported, it is intriguing to speculate that exosomes may encompass both
enzymes to produce hydrogen peroxide at the target cell. This plausible setting will extend
the mode of action for hydrogen peroxide as an intercellular messenger.
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7. Concluding Remarks

The prefix anti- in antioxidant is a word-forming element of Greek origin meaning
“against, opposed to, opposite of, instead”. While antioxidants certainly can make oxidants
go away, it is also clear that they have important accessory roles in shaping distinct cellular
microenvironments where they orchestrate the level and type of oxidants produced and
consequently support redox relays that transmit cellular ques to relevant target proteins.
Specifically, the activity of SOD enzymes may both be referred to as antioxidants in their
capacity to remove superoxide but also as a prooxidant in providing hydrogen peroxide.
Understanding how different cells, including macrophages, dynamically redistribute their
batteries of oxidant producers, modulators, and antioxidants upon cellular stimulation will
require more research into molecular sorting motifs and membrane trafficking pathways
that govern the spatial organization of these elements, including that of NOX2 and SOD3.
Many biological responses are dependent on autocrine redox signaling, and the multitude
of intracellular redox targets now constitute the “redoxome”. With offset in future research,
it will in particular be interesting to realize to what extent cell surface proteins constitute
meaningful targets for rapid hydrogen peroxide-mediated regulation of activity. As better
and more sensitive biologically encoded sensors are continuously developed it will no
doubt spur on the elucidation of direct paracrine redox signaling in living tissues as well.
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The concept of paracrine redox signaling has now been expanded by the revelation of
macrophage exosomes as vehicles of NOX2 oxidant production, a phenomenon that could
prove to be wide-spread in the different tissues of our body. The notion in the present review
is that the expanding appreciation of cellular processes subject to redox regulation dictates
that we must aim to further describe the intricate network of oxidants and antioxidants
that supports the generation of distinct redox microenvironments. Specifically, we argue
that the subcellular distribution of NOX2 and SOD3 in inflammatory cells supports the
formation of such microenvironments.
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