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Abstract

Introduction

The role of Pulmonary and Activation-Regulated Chemokine (PARC) in the physiopathology

of Chronic Obstructive Pulmonary Disease (COPD) is not fully understood. The aim of the

present study is to analyze the expression of PARC in lung tissue and its relationship with

the vascular remodeling of the systemic and pulmonary arteries of COPD subjects.

Methods

To achieve this objective, protein and gene expression experiments, together with ELISA

assays, were performed on the lung tissue, intercostal arteries and serum samples from

COPD patients, non-obstructed smokers (NOS) and never-smokers (NS).

Results

A total of 57 subjects were included in the analysis (23 COPD, 18 NOS and 16 NS). In the

comparisons between groups, a significantly increased lung protein expression of PARC

was observed in the COPD group compared to the NOS group (1.96±0.22 vs. 1.29±0.27,

P-adjusted = 0.038). PARC was located predominantly in the smooth muscle cells of the

remodeled pulmonary muscular arteries and the macrophage-rich area of the alveolar

parenchyma. No differences were detected in PARC gene expression analyses. The protein

content of PARC in the intercostal arteries were similar between groups, though little remod-

eling was observed in these arteries. Circulating levels of PARC were numerically higher in

patients with COPD compared to NOS and NS.

Conclusion

The results of the present study suggest an increased lung protein expression of PARC in

COPD subjects. This protein was mainly localized in the smooth muscle cells of the
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pulmonary muscular arteries and was associated with the severity of intimal thickening, indi-

cating its possible role in this remodeling process.

Introduction

Chronic Obstructive Pulmonary Disease (COPD) is characterized by an abnormal inflamma-

tory response of the lungs to noxious particles or gases, particularly cigarette smoke [1–2].Car-

diovascular disease (CVD) is the most important comorbidity associated with COPD, due to

its impact on patients’ overall prognosis, including mortality [1,3–5].It has been suggested that

this systemic inflammation may be one of the main factors that play a significant role in the

pathogenesis of atherothrombosis in COPD [6–7]. In this setting, chemokines are a group of

chemotactic molecules that appear to regulate the directed movement of leukocytes and may

therefore play important roles in inflammation and immunity [8].Of particular interest is the

Pulmonary and Activation-Regulated Chemokine (PARC), also known as CCL18 or Macro-

phage Inflammatory Protein-4 (MIP-4), which is a new member of the CC chemokine family

[8]. Although early studies described the constitutive lung tissue expression of PARC in humans

[8–9], the role of PARC in the physiopathology of COPD and its relationship with the systemic

vascular involvement described in this chronic condition are currently unknown [10].A small

number of studies suggest that PARC could be a serum biomarker of cardiovascular mortality

in large populations of COPD patients [11–12]. However, to the best of our knowledge, there

are no previous data directly addressing the tissue characterization of PARC in COPD. There-

fore, the current hypothesis was that PARC expression could be modified in COPD. The aim of

the present study was to analyze the expression of PARC at the pulmonary, systemic and circu-

latory levels in the context of this respiratory disease. To achieve this objective, protein and gene

expression experiments, together with ELISA assays, were performed on lung, intercostal (IC)

artery and serum samples from COPD patients, non-obstructed smokers (NOS) and never-

smokers (NS).The correlation between the immunostaining of PARC in both tissues (lung and

systemic arteries) and their intimal thickening were studied.

Materials and methods

Subjects

This was a prospective study, performed in consecutive subjects who underwent lung resection

(lobectomy or pneumonectomy) for the treatment of localized primary lung cancer. In line

with the current definition of COPD in the GOLD guidelines [1],patients were divided into

three groups: 1) COPD subjects (all of them current or former smokers), 2) non-obstructed

smokers (NOS), and 3) never-smokers (NS). All procedures were perform in accordance with

the Declaration of Helsinki, and protocols were approved by the local ethics committee

“Comitè Ètic d’ Investigació Clı́nica del Hospital de Bellvitge, N˚ PR006/11”, An informed

consent form was obtained from all participants.

Sample collection

Lung specimens, sections of the 5th posterior IC artery and venous blood samples, were col-

lected from all subjects. All lung tissue samples were obtained at a minimum distance of 5 cm

from the tumor localization. Tissues samples were fixed overnight in 4% paraformaldehyde

and embedded in paraffin. A microscopic evaluation was performed on the lung tissue to
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confirm the absence of neoplastic cells before it was included in the analysis. Venous blood

samples were collected prior to surgery. Serum was extracted and stored at -80˚C until it was

used.

Western blot assays

The PARC protein expression of lung and IC artery was examined by western blot analysis. Pro-

tein concentrations were measured using the Lowry method. In short, 40μg of lung and 50μg of

IC artery protein homogenates were loaded to pre-cast 4–20% polyacrylamide-SDS gradient gel

for electrophoresis and then transferred onto nitrocellulose membranes (Bio-Rad, Hercules,

CA, USA). The membranes were blocked in tris buffer saline containing 0.1% Tween1 20

(TBS-T) and 5% bovine serum albumin (pH 7.4) for 1.5 hours (h) at room temperature (RT).

The primary antibody against PARC was incubated at RT for 1hour (1/1000, AB104867,

Abcam, Cambridge, UK). After 3 washes with TBS-T, membranes were incubated for 1h with

polyclonal goat anti-rabbit horseradish peroxidase-conjugated secondary antibody (1/2000;

Dako, Carpinteria, CA, USA). The Clarity Western ECL System (Bio-Rad) was used to detect

the protein signal. Results were digitized using the Image Reader LAS-3000 (Fujifilm, Tokyo,

Japan). Band density was quantified by densitometry using Multi-gauge v1.3 software and nor-

malized to β-actin levels (AB8226, Abcam).

Immunolabeling experiments

Immunohistochemistry and immunofluorescence experiments were carried out in order to

study the expression and the exact localization of PARC in both tissues (lung and systemic

arteries). Briefly, paraformaldehyde fixed paraffin embedded tissue sections of 4 μm were

deparaffinised, rehydrated and rinsed in phosphate buffer saline (PBS). Antigen retrieval was

for 1 minute at 100˚C using a citrate buffer, pH 6. After 3 rinses in PBS, tissue sections were

pre-incubated for 2 hours at RT in 20% normal goat serum (Gibco, Paisley, UK), 0.2% gelatin

(Merck, Darmstadt, Germany) and 0.1% triton1 X-100 (Sigma-Aldrich, Sant Louis, Missouri,

MO, USA). Slices were then incubated overnight at 4˚C with the following primary antibodies:

rabbit anti-human MIP-4 (1/400, Peprotech, Rocky Hill, New Jersey, NJ, USA), and in fluores-

cence experiments, rabbit anti-human MIP-4 (1/250, Abcam) or mouse anti-human alpha

smooth muscle actin (αSMA) clone 1A4 as a smooth muscle cells (SMC) marker (1/400, A

5228, Sigma). After three washes in PBS-triton, samples were incubated with the avidin-biotin

complex/peroxidase (Vectastain Elite ABC kit, Vector Laboratories, Burlingame, CA, USA) or,

in fluorescent assays, with Alexa Fluor 488- or 555-goat anti-mouse or anti-rabbit (Life tech-

nologies, Paisley, UK) for 1 h at RT. Nuclei were counterstained with haematoxylin or, alterna-

tively, in fluorescent assays, To-Pro1-3 (Life technologies) were used to visualize the nuclei.

The results were observed and photographed under Leica DMD 108 light microscope (Leica

Microsystems, Wetzlar, Germany) or, in fluorescence assays, under a Leica TCS-SL spectral

confocal microscope (Leica).

Immunohistochemistry evaluation was performed in all samples and was used to semi-quantify

the PARC expression in both tissues. Two blind observers performed the analysis of the following

structures: 1) muscular pulmonary arteries (external diameter between 100 and 500 micrometers),

2) alveolar parenchyma, 3) bronchus and 4) IC arteries. In both pulmonary muscular and IC arter-

ies, the labeling of the intima, medial and adventitia layers was assessed. The bronchial evaluation

included epithelial cell layer, sub-epithelial baseline membrane (SEBM), and airway SMCs. Label

intensity was scored as negative (0), mild (1), moderate (2), or strongly positive (3). The percentage

of positive structures and the average score were computed for pulmonary muscular arteries and

bronchial structures in each subject. Immunofluorescence experiments were performed to confirm

Systemic and pulmonary expression of PARC/CCL18 in COPD subjects
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the exact localization of PARC protein in pulmonary and intercostal arteries with a high PARC

expression previously observed by immunohistochemistry experiments.

Vascular morphometry

The histological and morphometric characteristics of both pulmonary muscular arteries and

intercostal arteries were analyzed as described in detailed previously [10], following stereologi-

cal methods for sampling and fixation for vascular structure evaluation [13]. In brief, tissue

was stained with haematoxylin & eosin and orcein to differentiate the internal elastic lamina

(IEL) and external elastic lamina (EEL). Vessel cross-sections of intercostals arteries and only

pulmonary muscular arteries with an external diameter of 100 to 500 micras were considered

in the analysis. Using a computerized image analyzer, the areas occupied by the lumen, the

intima and the muscular layer were expressed as a percentage of the total area encompassed by

the EEL. The degree of intimal thickening was defined by the percentage of intimal area (%

IA = 100X intimal area/ measured total area or area encompassed by the EEL).

Quantitative real-time-PCR

Quantitative real-time-PCR (qRT-PCR) was performed to determine the gene expression of

PARC in lung and IC artery tissue samples. Total RNA was isolated using trizol reagent (Life

technologies). Genomic DNA digestion and RNA purification was performed with the DNasa

I amplification grade kit (Life technologies). Total purified RNA (1 μg) was reversely tran-

scribed into complementary DNA (cDNA) using the High capacity cDNA kit with RNAse

inhibitor (Applied Biosystems, Foster City, CA, USA). Onemicroliter of cDNA was used to

perform qRT-PCR using commercial inventoried Taqman assays for PARC (Applied Biosys-

tems Taqman Assay, Hs00268113_m1).qRT-PCR reactions were carried out using the ABI

Prism 7900HT Real Time PCR System (Applied Biosystems). Data were collected using SDS

software v2.4 (Applied Biosystems) and analyzed by the comparative Ct (ΔΔCt) quantification

method using Expression Suite v1.0.3 software (Applied Biosystems). The relative expression

of PARC was determined using 18S mRNA (Taqman Assay, Hs03928985_g, Applied Biosys-

tems) as an endogenous control. A common calibrator for each plate was used. Data are

reported as a fold change ratio (RQ) of mRNA of PARC from each tissue sample.

Enzyme-linked immunosorbent assay

To determine circulating levels of PARC in all subjects; an ELISA kit was employed (AB100620-

MIP4, Abcam) following the manufacturer’s instructions. Samples were assayed in duplicate.

A400 fold serum dilution was used for all samples. The sensitivity of the test was 2pg/ml.

Study endpoints and sample size calculation

The primary endpoint of this study was the difference in the lung protein content of PARC in

patients in the COPD group compared to those in the NOS group. Assuming a standard devia-

tion of 0.22 in band density, a sample size of 16 subjects per group was needed to detect a mini-

mal difference of 0.20 between groups; with 80% power and a two-tailed p-value less than 0.05.

Considering an approximate 20% dropout rate (e.g. inadequate samples for measurements),

the inclusion of 20 subjects per group was allowed to ensure that data from 16 patients was

available for analysis. Secondary endpoints included between-groups comparisons for mRNA

expression and immunoreactions for PARC in pulmonary and systemic arteries and their cir-

culating levels of PARC.

Systemic and pulmonary expression of PARC/CCL18 in COPD subjects
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Statistical analysis

For baseline characteristics, continuous variables were expressed as mean ± SD or median and

interquartile range whether a normal distribution was assumed or not (Kolmogorov-Smirnov

test), respectively. Comparisons of continuous variables were performed with the analysis of

variance (ANOVA) method or Kruskal-Wallis test as appropriate, while qualitative variables

were compared with the chi-square test or Fisher’s exact test (any expected value <5). An

ANOVA method with a general linear model was used to evaluate the primary endpoint and

all other between-group comparisons. Adjusted analyses were performed with an ANCOVA

method, using unbalanced demographic variables as covariate (gender, pack-years and the

presence of diabetes mellitus, P <0.05). Spearman’s correlation coefficients were used to assess

the relationship between the percentage of intimal area and PARC immunostaning (labeling

intensity score) in pulmonary and IC arteries. A two-tailed P value of<0.05 was considered to

indicate a statistically significant difference. Results are reported as least squares mean (LSM)

± standard error of the mean (SEM) for the above detailed analyses. Statistical analysis was per-

formed using PASW Statistics v18.0 software (SPSS Inc., Chicago, IL, USA).

Results

Consecutive samples from 63 patients undergoing lung resection surgery were included in the

study, though six were discarded due to the poor quality or insufficiency of the sample

obtained. Therefore, 57 patients were included in the present analysis, 23 COPD subjects, 18

NOS and 16 NS. There were no significant differences in baseline characteristics (Table 1)

between groups, except for gender, tobacco exposure and the presence of diabetes; these were

therefore included as covariables in all adjusted analyses.

Table 1. Baseline characteristics.

Parameters COPD

(N = 23)

NOS

(N = 18)

NS

(N = 16)

Overall

P-value

Male gender, n (%) 21 (91.3) 17 (94.4) 6 (37.5) <0.001

Age, years 64.4 [60.8–68.8] 61.0 [51.8–68.9] 65.7 [48.0–68.8] 0.75

BMI, kg/m2 25.4 [21.8–28.3] 27.1 [24.9–29.9] 26.9 [23.6–30.1] 0.483

Pack-years 42 [35–60] 38 [20–41] 0 <0.001

Systemic hypertension, n (%) 10 (43.5) 8 (44.4) 4 (25) 0.346

Current smokers, n (%) 17 (73.9) 8 (44.4) 0 0.055

Diabetes Mellitus, n (%) 7 (30.4) 8 (44.4) 1 (6.3) 0.044

FEV1 Post-BD, % predicted 62.7 [56.1–76.9] 96.7 [85.3–103.6] 103.2 [88.5–118.8] <0.001

FEV1/FVC Post-BD, % 59 [48.4–67] 74.9 [71.4–81.2] 78.2 [74.1–81.9] <0.001

DLCO, % predicted 70.9 [56.8–79.6] 81 [71.5–102.3] 92.2 [76.7–102.3] 0.002

LABA or LAMA, n (%) 13 (56.5) 0 (0) 0 (0) <0.001

Inhaled CS, n (%) 7 (30.4) 0 (0) 0 (0) 0.003

Leukocytes count, x10E9/L 8.6 [7.6–10] 8.1 [6.9–9.1] 6.4 [5.6–8.3] 0.004

C-reactive protein, mg/L 3.5 [1.4–9.5] 2.4 [1.0–10.1] 1.2 [1.0–2.7] 0.240

Fibrinogen, g/L 3.2 [2.7–3.4] 3.1 [2.6–3.8] 2.8 [2.3–3.7] 0.696

Data are presented as median [25th-75th percentile]. The reported p-value comes from the overall comparison with ANOVA method or Kruskal-Wallis test

as appropriate, while qualitative variables were compared with chi-square test or Fisher’s exact test (any expected value <5). COPD: Chronic Obstructive

Pulmonary Disease, NOS: non-obstructed smokers, NS: never-smokers, BMI: body mass index, FEV1: forced expiratory volume in one second, BD:

bronchodilator, FVC: forced vital capacity, DLCO: diffusing capacity of the lungs for carbon monoxide, LABA: long acting β-agonists, CS: corticosteroids.

https://doi.org/10.1371/journal.pone.0177218.t001
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Protein expression analysis by western blot

Total PARC content in lung and IC artery was measured by western blot. In the lung, protein

band density was significantly increased in the COPD group compared to NOS (1.96 ± 0.22 vs.

1.29 ± 0.27, P-adjusted = 0.038). No differences were observed in other between-group com-

parisons (Fig 1). In the case of IC arteries, PARC content was similar in all groups as shown by

the densitometric analysis of the bands (Fig 1).

Protein expression and cellular localization of PARC

In order to further characterize the protein expression of PARC in lung and IC artery tissue

samples, we carried out immunohistochemistry experiments (the results of which are summa-

rized in Table 2). In the lung, PARC was predominantly immunolocalized in the SMC layer of

the pulmonary muscular arteries and in the alveolar parenchyma (mostly in macrophage-rich

areas), with a mild expression in bronchial structures (Fig 2). In the comparisons between

groups, the percentage of positive pulmonary arteries with strong immunostaining at the mus-

cular layer was higher in the COPD group compared to other groups (Table 2). In IC arteries,

PARC was also found to be expressed predominantly in SMC, thoughno labeling differences

were observed between groups (Fig 2). Notably, inflammatory cells were not observed in any

Fig 1. Western blot analysis for PARC. Upper panel: representative membranes of the Western blotting in homogenized lung

tissue (A) and intercostal arteries (B). Bands at 37kD and 10kD are consistent with the size of β-actin and PARC respectively. Lower

panel: (A) Band density analysis of 33 lung samples (12 COPD, 11 NOS and 10 NS). Of note, protein content was significantly

increased in the COPD group compared to NOS. (B) Band density analysis of 28 intercostal artery samples (12 COPD, 8 NOS and 8

NS). There were no differences in PARC content between groups. Data are presented as LSM ± SEM. The reported p-value comes

from the pair wise comparison with a general linear model using as covariables: gender, pack-years and the presence of diabetes

mellitus. COPD: Chronic Obstructive Pulmonary Disease; NOS: non-obstructed smokers; NS: never-smokers.

https://doi.org/10.1371/journal.pone.0177218.g001

Systemic and pulmonary expression of PARC/CCL18 in COPD subjects

PLOS ONE | https://doi.org/10.1371/journal.pone.0177218 May 18, 2017 6 / 15

https://doi.org/10.1371/journal.pone.0177218.g001
https://doi.org/10.1371/journal.pone.0177218


layer of the IC arteries evaluated by immunohistochemistry. Additionally, the presence of

PARC in the SMC layer of both pulmonary and IC arteries was confirmed by double immu-

nostaining performed with anti-MIP-4 and anti-αSMA antibodies. A partial tissue colocaliza-

tion between PARC and α-SMA is shown in Fig 3.

Relationship between the vascular morphometry and the immunohisto-

chemical expression of PARC

According to morphometric analysis, the percentage of the intimal area of pulmonary mus-

cular arteries was significantly increased in the COPD group compared with the NOS and

NS groups. However, in the case of the IC arteries, this intimal thickening shows a numeri-

cally increasing trend in the COPD group compared to the NOS and NS groups, though it

did not attain statistical significance. In both types of arteries, there were no differences in

the thickness of the muscular layer between groups. Data relating to morphometric mea-

surements are shown in Table 3. In addition, representative microphotographies of pulmo-

nary and intercostal intimal thickening are shown in Fig 4. In the pulmonary arteries, a

significant correlation between the percentage of intimal area and PARC expression in the

muscular layer was found (Spearman’s rho = 0.39, p = 0.032) but not in the intimal layer. In

the IC arteries no correlations between intimal thickening and the protein expression of

PARC were detected (data not shown).

Table 2. Protein expression of PARC in lung tissue and intercostal arteries, according to groups.

Tissue Parameters COPD NOS NS Overall

P-value

Lung

Number of arteries measured in each subject 10.2±1.6 12.4±1.6 9.9±1.9 0.365

% Positive immunoreaction 72.3 ± 8.1 57.6 ± 8.1 42.9 ± 9 0.063

Endothelial layer * 0.02 ± 0.03 0.07 ± 0.03 0.08 ± 0.03 0.443

Intimal thickening * 0.20 ± 0.07 0.13 ± 0.07 0.16 ± 0.08 0.772

Muscular layer * 1.23 ± 0.15 0.86 ± 0.15 0.61 ± 0.16 0.023

Adventitial layer* 0.15 ± 0.08 0.1 ± 0.08 0.05 ± 0.09 0.68

Alveolar parenchyma* 1.33 ± 0.13 1.13 ± 0.13 0.83 ± 0.15 0.059

Bronchial structures

% Positive immunoreaction 79.9 ± 9 59.9 ± 8.7 68.7 ± 9.4 0.293

Bronchial epithelium* 0.59 ± 0.12 0.41 ± 0.12 0.6 ± 0.12 0.441

SEBM* 0.1 ± 0.06 0.05 ± 0.06 0.03 ± 0.06 0.7

Connective tissue* 0.49 ± 0.14 0.53 ± 0.14 0.3 ± 0.15 0.511

ASM* 0.1 ± 0.08 0.21 ± 0.08 0.03 ± 0.08 0.242

Intercostal artery

Endothelial layer* 0.38 ± 0.2 0.31 ± 0.23 0.33 ± 0.24 0.975

Intimal thickening* 0.31 ± 0.16 0.15 ± 0.18 0.42 ± 0.19 0.597

Muscular layer* 1.19 ± 0.23 1.08 ± 0.26 1.58 ± 0.27 0.362

Adventitial layer* 0.56 ± 0.17 0.54 ± 0.19 0.75 ± 0.2 0.694

Data are presented as LSM ± SEM. The reported p-value comes from the overall comparison with ANCOVA method with a general linear model using as

covariables: gender, pack-years and the presence of diabetes mellitus.

*Label intensity was scored as negative (0), mild (1), moderate (2), and strongly positive (3). The percentage of positive structures and the average score

were computed for pulmonary muscular arteries and bronchial structures in each subject. COPD: Chronic Obstructive Pulmonary Disease; NOS: non-

obstructed smokers; NS: never-smokers.

https://doi.org/10.1371/journal.pone.0177218.t002
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Fig 2. Immunolocalization of MIP-4/PARC. MIP-4/PARC was immunodetected in pulmonary muscular arteries (A-C), bronchus

(D-F), alveolar parenchyma (G-I) and macrophages (J-L) as well in the intercostal arteries (M-O) of all biological groups. In

pulmonary muscular arteries, MIP-4/PARC was mainly expressed in the muscular layer (arrows). Note that MIP-4/PARC expression

is stronger in COPD. In bronchus, MIP-4/PARC was immunolocalized in epithelial cells (filled arrowheads) and its expression was

similarly in all biological groups. The immunoreactivity of MIP-4/PARC was higher in the parenchyma of COPD patients. It is show in

the magnification images of parenchyma (J-L), labeled macrophage rich areas (asterisks). In the intercostal arteries, MIP-4/PARC

expression was mainly localized in the muscular layer (empty arrowheads) but no expression differences between groups were

found. Images are representative histological slides from n = 23 COPD, 18 non-obstructed smokers and 16 never smokers. Scale

bars = 100 μm except for images in (J-L), where they are 50 μm.

https://doi.org/10.1371/journal.pone.0177218.g002
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Gene expression in lung tissue and intercostal artery tissue

No differences in the gene expression for PARC measured by the fold change of mRNA were

observed between groups in lung tissue or in systemic arterial tissue in the analysis. In the

overall population, the mRNA for PARC was constitutively expressed in lung samples (mRNA

fold change of 1.02±0.18). However in the intercostal arteries, the expression was low com-

pared to the endogenous control gene 18S (mRNA fold change of 0.48±0.12). Analysis of gene

expression by groups is shown in Fig 5.

Fig 3. Colocalization of MIP-4/PARC and alpha smooth muscle actin (αSMA) in arterial tissue.

Representative confocal fluorescence images of human pulmonary muscular (A) and intercostal (E) arteries

labeled with antibodies against MIP-4/PARC (red) and αSMA (green). Nuclei were stained in blue. Higher-

magnification (x40 oil lents) of representative images shows that MIP-4/PARC (B and F) and αSMA (C and G)

were predominantly localized in the media layer of pulmonary and intercostal arteries. Overlay images show,

in yellow, a partially colocalization between MIP-4/PARC and αSMA (D and H). Inset in H corresponds to

control experiments performed with secondary antibodies alone. Scale bars = 50 μm except for images A and

E, where they are 100 μm.

https://doi.org/10.1371/journal.pone.0177218.g003

Table 3. Morphometric parameters of pulmonary muscular arteries and intercostal arteries.

COPD

(N = 23)

NOS

(N = 18)

NS

(N = 16)

Overall

P-value

Pulmonary muscular arteries

Total area, mm-2x10-3 64 [49.8–99.1] 82.7 [64.9–117.4] 75 [67.7–83.4] 0.174

Diameter, μm 294.2 [256.2–362.1] 329.1 [305.7–404.1] 330.6 [317.6–356.1] 0.15

Lumen area %* 25.3 [20.6–34.5] 34.8 [27.4–39.9] 40.2 [29–43] 0.045

Intimal area %* 38.8 [32.2–42.8] 30.5 [21.6–35.1] 22.5 [17.7–37] 0.02

Muscular area %* 33.9 [31.7–38.7] 36.5 [29.6–41.6] 38.2 [34.6–42] 0.519

Intercostal arteries

Total area, mm-2x10-3 239.2 [161.7–336.8] 214.6 [145.6–270.2] 200 [142.3–273.5] 0.483

Diameter, μm 556.8 [485.4–668.4] 519.8 [440.1–612.4] 514. [429.6–624.1] 0.515

Lumen area %* 18.7 [15–23.7] 21.3 [12.9–28.3] 26.6 [12.4–34.3] 0.518

Intimal area %* 16.4 [10.6–18.1] 11.9 [11–19.1] 11.8 [8.6–21.2] 0.547

Muscular area %* 65 [59.9–70.7] 64.3 [48.8–68.8] 61 [50–69.3] 0.372

Data are presented as median [25th-75th percentile]. The reported p-value comes from the overall comparison with Kruskal-Wallis test.

*The areas occupied by the lumen, the intima and muscular layer were expressed as a percentage of the total area encompassed by the external elastic

lamina. COPD: Chronic Obstructive Pulmonary Disease, NOS: non-obstructed smokers, NS: never-smokers.

https://doi.org/10.1371/journal.pone.0177218.t003
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Circulating levels of PARC and inflammatory parameters

The circulating level of PARC was also measured by ELISA in the serum of all subjects. PARC

concentrations were numerically higher in the COPD group but no statistically significant

Fig 4. Morphometric and histologic studies. (A) Illustration of the methods used in morphometric analyses. The area enclosed by the continuous black

line is the lumen area (LA), the area enclosed by internal elastic lamina (IEL), except for the LA, is the intima area (IA), and the area enclosed by the

external elastic lamina (EEL) and IEL is the media area (MA). (B) Elastin-orcein stain of representative muscular pulmonary artery, scale bar = 20μm.(C)

Elastin-orcein stain of representative intercostal artery, scale bar = 100 μm. The double-headed green arrows shows intimal thickening (IT) measured by

the percentage of intimal area (%IA = 100X intimal area/ measured total area or area encompassed by the EEL). Note the difference between the IT of

pulmonary (more remodeled arteries) and intercostal arteries.

https://doi.org/10.1371/journal.pone.0177218.g004

Fig 5. PARC gene expression in according to groups. Data of the PARC mRNA expression (fold change) in lung tissue and

intercostal arteries according to groups. No significant differences were found between groups. Data are presented as LSM ± SEM. The

reported p-value comes from the pair wise comparison with a general linear model using as covariables: gender, pack-years and the

presence of diabetes mellitus.

https://doi.org/10.1371/journal.pone.0177218.g005
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difference was observed in the comparisons between groups (100.4±19.7 for COPD, 96.6±19.8

for NOS, and 60.8±37.7 pg/ml for NS respectively, P overall = 0.718). In the present study,

serum levels of C-reactive protein (CRP) and fibrinogen (Table 1) was determined as a measure

of systemic inflammation. In order to explore the relationship between systemic inflammation

and PARC expression, correlations analyses were performed between these inflammatory

parameters and gene, protein and serum expressions of PARC. Of note, a weak correlation

between CRP and PARC immuno-staining in alveolar parenchyma and fibrinogen and PARC

gene expression at intercostal tissue was found (Spearman’s Rho = 0.36, p = 0,036 and Spear-

man’s Rho = 0.43, p = 0.022, respectively).

Discussion

The possible role of PARC in the pathophysiology of COPD has not been fully elucidated. In

that sense, the results of the present study contribute to existing knowledge of the protein and

gene expression of PARC in lung tissue and in the systemic vascular compartment in patients

with COPD. The relevance of inflammation in the context of this chronic disease is beyond

doubt [2,11]. This lung inflammation is characterized by both innate immunity (alveolar mac-

rophages, neutrophils, dendritic cells, mast cells, eosinophils, natural killer cells) and adaptive

immunity (T- and B-lymphocytes) [14]. However, alveolar macrophages appear to play a key

role in orchestrating the inflammatory response [14] by secreting chemokines to attract

immune cells, and in the case of PARC, T- lymphocytesin particular, from circulation and to

the lung [8,9,15]. Based on that knowledge, we hypothesized that PARC is involved in the pro-

inflammatory mechanisms of COPD. We report for the first time an increased protein expres-

sion of PARC in the lung tissue of COPD patients compared with non COPD subjects, sug-

gesting a relationship between this chemokine and the development of the disease. These

results are consistent with those of other studies of chronic lung diseases such as pulmonary

fibrosis in relation to inflammation and disease activity [15–19]. However, the results of the

present study do not suggest a higher mRNA PARC expression in both tissues (lung and inter-

costals arteries) in COPD subjects compared to non-COPD subjects. Also, we did not find any

correlationship between gene and protein PARC, suggesting the existence of other possible

mechanisms that dissociate the expression of mRNA into protein: spanning the transcription,

processing and degradation of mRNAs to the translation, localization, modification and pro-

grammed destruction of the proteins themselves [20–21]. Nevertheless, the protein abun-

dances observed reflect a dynamic balance among these processes [21].

Of note, we report through immunohistochemical analyses that this increased lung protein

expression may occur especially in the SMCs of pulmonary muscular arteries and that this

high expression is correlated with the severity of remodeling (intimal thickening). This sug-

gests that the SMCs in the medial layer could be another source of PARC and that chemokine

could be a mediator in these vascular changes. In studies of primary pulmonary hypertension,

a profound pulmonary artery remodeling has been described that includes significant fibro-

proliferative and inflammatory changes to the entire vascular wall [22]. These findings support

the idea that pulmonary hypertension results from a multistep process driven by the repro-

gramming of the gene-expression patterns that govern changes in cell metabolism, inflamma-

tion, and proliferation. Along this line, SMCs phenotypic changes have been described,

specifically in the lung vascular remodeling of COPD [23] and in other primary pulmonary

vascular diseases [22,24].

Previous studies described an increased expression of PARC in the human atherosclerotic

plaques associated with the extent of changes and colocalizing with CD68-macrophages [25–

26], with an approximate 100-fold increase in Types II and V lesions compared to normal
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aortal tissue [25–26]. Therefore, because the COPD population has a clear risk of cardiovascu-

lar events and a higher prevalence of subclinical atherosclerosis [27–29], it was thought that

one relevant aspect would be the evaluation of PARC expression in the intercostal arteries as a

representation of systemic circulation in COPD subjects. However, our results fail to demon-

strate differences between groups in PARC expression (both gene and protein) in IC arteries.

These findings could be explained by the low inflammation and poor remodeling observed in

the IC arteries compared to the pulmonary muscular arteries, where remodeling is more

severe. Moreover, in our study the pattern expression of PARC in the IC arteries was predomi-

nantly observed in SMCs at the medial layer. These results are in agreement with other studies

reporting the presence of chemokines such as MCP-1, MCP-4, and RANTES expressed in the

SMCs of atherosclerotic vessels [30–33]. Although the expression of PARC does not appear to

be enhanced in the initial vascular remodeling changes of IC arteries in patients with COPD,

its possible role in the pathology of advanced vascular disease cannot be discarded, and has

been described previously in the context of atherosclerosis [26].

Regarding the use of serum levels of PARC as a biomarker of activity in COPD, there are

two large cohorts of COPD subjects (Lung Health Study and ECLIPSE with 4,825 and 1,809

subjects, respectively), which found that PARC was associated with mortality [11–12]. Further-

more, in the context of abdominal aortic aneurysms, PARC (both circulating levels in periph-

eral blood and gene expression) was associated with aortic lesions with a potential rupture risk

[34]. In that sense, PARC could be useful as a serum marker of cardiovascular events in

patients with vascular disease [34–35]. These data are in line with the results obtained in the

present study, in which circulating levels of PARC have a numerical tendency to be higher in

COPD subjects compared to other groups, though this trend did not reach statistical signifi-

cance due to the high biological variability between subjects and the limited number of cases

available for analysis.

Several limitations of this study need to be discussed. Firstly, the poor representation of

female gender in the COPD and NOS groups due to the baseline characteristics of our popula-

tion (patients with lung carcinoma and a major smoking habit are mostly male patients). This

gender misbalance makes it difficult to draw conclusions about gender beyond spurious associa-

tions. Secondly, the population of the study has primary, treatable lung cancer; therefore lung

cancer could be a possible introduced bias. However, we are assuming that any bias introduced

because of lung carcinoma would be the same across all the subjects, since all the subjects

included in the study suffer from lung carcinoma. Taking into account this limitation, we are

able to compare PARC expression in order to find differences between COPD subjects and non-

obstructed smokers, assuming that PARC expression in each group could be similarly influenced

by the presence of lung cancer. It is important to consider that it would be impossible to obtain

the demographic data, pulmonary function test and all the tissue specimens required in this

study from subjects if they were not indicated for surgery. Tercially, the negative results found in

circulating levels of PARC expression should be taken with caution, since a possible underpow-

ered analysis due to small sample size and important biological variability could limit our results.

Finally, due to the study’s observational design, causal or strong conclusions cannot be drawn

beyond observing an association between the presence of COPD and the expression of PARC.

Conclusions

In conclusion, the results of the present study suggest that PARC could have a relevant role in

the development of vascular abnormalities in COPD, specifically in the lung, where the remod-

eled pulmonary vessels are present. However, other studies, especially experimental approaches,

are needed to confirm these findings.
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