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The identification of patients with aggressive cancer who require immediate therapy is a health 

challenge in low-income and middle-income countries. Limited pathology resources, high 

healthcare costs and large-case loads call for the development of advanced standalone diagnostics. 

Here, we report and validate an automated, low-cost point-of-care device for the molecular 

diagnosis of aggressive lymphomas. The device uses contrast-enhanced microholography and a 

deep-learning algorithm to directly analyse percutaneously obtained fine-needle aspirates. We 

show the feasibility and high accuracy of the device in cells, as well as the prospective validation 

of the results in 40 patients clinically referred for image-guided aspiration of nodal mass lesions 

suspicious for lymphoma. Automated analysis of human samples with the portable device should 

allow for the accurate classification of patients with benign and malignant adenopathy.
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Modern oncology requires tissue-specific diagnoses prior to initiating appropriate therapies. 

This is commonly done by image-guided tumor biopsy, fine-needle aspirates (FNAs) or 

liquid biopsies where samples are processed by conventional immunohistochemistry, flow 

cytometry and/or genetic analysis. These procedures can be costly and time-consuming but 

nevertheless are essential in enabling precision medicine. In most developed countries, there 

are sufficient numbers of pathologists (typically >30 per million inhabitants) and related 

support structures so that sample processing, analysis and interpretation rarely encounter 

bottlenecks1. This picture is very different in low- and middle-income countries (LMICs) in 

Asia1 and Africa; for example, several African countries report only 1 pathologist per 

million inhabitants2. Meanwhile, the global cancer burden is rising.

One of the specific health challenges in sub-Saharan Africa is the high prevalence of AIDS-

related cancers (the “second wave of AIDS”)3–5. Some such cancers include very aggressive 

ones such as diffuse large B-cell lymphoma (DLBCL) and Burkitt’s lymphoma6,7. Due to 

limited resources, a considerable proportion of these cases evade comprehensive evaluation 

or are not appropriately classified. Diagnosis and care are hampered by lack of proper tissue 

specimens and diagnostic reagents, limited availability of trained pathologists/specialists and 

lack of access to care in rural settings. Although a good proportion of these cases are curable 

even in LMIC, windows of therapeutic opportunity are often missed6,8. As a result, there is a 

need for low-cost, fast, accurate detection technologies to expedite the diagnosis of 

lymphomas (and other prevalent cancers) in these environments.

Recent advances in digital image sensors and mobile platforms (e.g. smartphones, wearable 

electronics, microcomputers) have led to the development of digital point-of-care (POC) 

imaging systems that may address the lack or bottleneck of pathology specialists9–20. The 

diagnostic potential of these systems has been demonstrated by successful detection of 

various biological objects (e.g., tissues, cancer cells, sperm, parasites). Most of these targets, 

however, were identified via morphological features or a few defined markers. Detecting 

lymphoid cancers with portable imagers poses more technical challenges: i) clonal 

neoplastic lymphoid cells exist on a background of normal lymphocytes in blood; ii) target 
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cells are generally small, similar to the size of blood cells and iii) a diverse set of different 

surface markers need to be tested for disease classification. To address these challenges, 

clinical laboratories increasingly use flow cytometry despite its inherent limitations, such as 

high cost and under-diagnosing aggressive lymphomas due to lack of accurate size 

measurements and fragility of large cells21–23. Portable fluorescence microscopes could be 

used to profile molecular markers, but their limited field-of-view and need for expert 

interpretation make this approach less feasible13,19,24.

Digital holography enables microscopic bright-field imaging with a large field-of-view over 

mm2 and a high spatial resolution for single-cell analysis10,12,25–27. In prior research, we 

showed that molecular specificity can be obtained by labeling large epithelial cells with 

micrometer-sized beads that change the cells’ holographic patterns11,28. For lymphoma 

diagnosis28, however, the number of beads per cell is limited due to much smaller lymphoma 

cells, and the approach is incompatible with analyzing intracellular markers. To circumvent 

these drawbacks and to enable detection of intracellular proteins (e.g. Ki67), we 

hypothesized that small molecule chromogens would have to be used to modulate 

holographic patterns. Irrespective of the approach, there is currently no POC device for 

automated lymphoma diagnostics in LMIC.

Here, we developed an automated digital cellular analysis tool that enables analyses of 

specimens obtained from palpable mass lesions. Starting from microholography principles, 

we developed a contrast-enhanced micrography (CEM) that is simple, portable, robust, 

integrated and relatively low-cost for molecular diagnosis of lymphoma. The underpinning 

technology uses a high-resolution complementary metal-oxide-semiconductor (CMOS) 

image sensor to resolve target cells captured in a fluidic cartridge. Importantly, unlike digital 

microscopy, molecular specificity is obtained by staining cells with chromogen-labeled 

antibodies that generate holographic signatures rather than visual interpretation of cellular 

morphology. The assay occurs within disposable cassettes in which target cells are 

specifically captured and stained, thus minimizing the risk of exposure to healthcare 

providers or artifactual readouts from contaminants. Images containing up to 10,000 cells 

per field of view are detected by custom-developed deep learning (DL) algorithms and then 

reconstructed using either a cloud-based server within seconds or a local device within 

minutes. The end results include quantitative readouts of malignant cell number, cell size 

and differentiation between high- and low-grade subtypes based on specific marker 

expressions. We hypothesize that this approach would allow detection and triaging of 

lymphomas into aggressive and indolent subtypes, each with vastly different therapeutic 

approaches and urgency. To test this paradigm, we performed a prospective clinical trial with 

40 patients referred for aspiration and biopsy of enlarged lymph nodes (lymphadenopathy) 

detected by whole-body imaging. This trial was designed as a validation study and 

conducted prior to future role-out to LMIC settings.

Results

Contrast-enhanced microholography for point-of-care diagnosis

We designed the CEM device as a portable, stand-alone digital microholography system 

(Fig. 1a, Fig. S1). The device is equipped with: 1) a CMOS image sensor with a light-
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emitting diode for imaging; 2) a Raspberry Pi 3 module for cost-effective computing and 

image processing; 3) a wireless/Bluetooth unit for networking and 4) a touchpad screen for 

user-friendly operation. The CEM device is powered by either a corded power supply 

adapter or a lithium-ion battery pack for portable operation. Overall dimensions are 205 mm 

(L) x 120 mm (W) x 175 mm (H) and 1.4 kg in weight. The CEM assay for lymphoma 

diagnostics relies on immunostaining B-cells captured inside a disposable microfluidic 

cartridge (Fig. 1b). The cartridge’s bottom glass surface is pre-functionalized with 

neutravidin to specifically capture B-cells — labeled with biotinylated CD19/CD20 

antibodies — in a given sample (Fig. S2). This specific initial selection process measures 

captured B-cell counts and sizes. Enriched B-cells are then immunostained on-chip against 

kappa/lambda light chains or Ki67. While it is possible to interrogate many more molecular 

markers, we purposely limit them to the most relevant panel that still identifies B-cell 

lymphoma and distinguishes between aggressive and indolent lymphoma types (Fig. S3). To 

simplify analyses, we adapted deep learning technology using a convolutional neural 

network (Fig. 1c) trained on >5,000 holographic cellular lymphoma images (Fig. S4). The 

algorithm automatically detects captured B-cells directly from holograms without 

computationally intensive image reconstruction. Cell size and degree of staining are then 

calculated for each captured cell and displayed with colored circles.

Deep learning algorithm for cell detection

Fig. 2a shows a hologram image overlaid with pseudo-color circles showing the location, 

size and marker expression of each single cell. The images’ field-of-view is about 5.7 mm x 

4.3 mm, about 100 times larger than conventional microscope images using a 20x objective 

(N.A. = 0.4) yet image resolutions and sensitivities remain comparable (Figs. 2a and 2b). 

The deep learning algorithm identifies B-cells based on their holographic signatures while 

excluding non-cell objects (e.g. dust, debris, artifacts, noise, Fig. S5). The algorithm’s 

detection accuracy matched conventional image reconstruction (Fig. 2c). After 250 epoch, 

the training accuracy reached 99% (Fig. 2d). With the deep learning algorithm, the 

computational time was five times faster than image reconstruction of the entire field-of-

view. Using a cloud-connected central GPU server allowed reconstruction and analysis in 

less than 12 seconds for an average 10 MB PNG image; even when the local Raspberry Pi 

computer is used without GPU, analysis of 1,000 cells can be completed in 5 minutes (Fig. 

2e). The computational time can be as short as 60 seconds for smaller cell counts (in the 

range of 200 cells). This is particularly important while operating the assay in rural areas 

where wireless internet connection is often slow or unavailable. Irrespective of the 

reconstruction method, both modes are enabled in the device, which switches between them 

automatically depending on internet availability.

Assay validation

We first validated the CEM assay using well-established lymphoma cell lines. Specifically, 

we used B-cell (Daudi and DB) and T-cell (Jurkat) cell lines to determine capture efficiency, 

size measurements, staining, sensitivity, specificity and reproducibility. B-cell lymphoma 

cells (Daudi and DB) exhibited a high capture efficiency of over 90% while the non-specific 

binding of Jurkat cells (T-cell) was below 5% (Fig. 3a). We observed a good correlation 

between expected and measured captured cell counts for mixtures of Daudi and Jurkat cells 
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with varying cell proportions (Pearson r = 0.97, P = 0.0013, Fig. 3b). We performed size 

calibration using different sizes of microspheres (3, 6, 8 and 16 μm) and again observed 

excellent correlation (Pearson r = 0.99, P = 0.0020, Fig. 3c). In order to enable 

immunostaining without the need for fluorescence, we tested different chromogenic 

substrates and identified one (ImmPACT VIP) that enabled the highest CEM contrast (Fig. 

4a); it was used for all subsequent experiments. To validate CEM-based cellular profiling, 

we quantified expression of three target markers (kappa light chain, lambda light chain and 

Ki67) on three different cell lines. In the case of Daudi, kappa and Ki67 signals were high, 

while lambda and Ki67 signals were dominant in DB. As expected, the T cell line (Jurkat) 

only showed positive signal for Ki67 expression; these results are consistent with 

conventional flow cytometry analyses (Fig. 4b). To test the assay under more stringent 

environmental conditions, like those found in many LMIC, we lyophilized antibodies and 

tested different storage conditions (-20, 4, 25 and 37 °C). As is summarized in Fig. 4c, 

lyophilization showed good reproducibility with CEM variability being < 5%.

Clinical studies

Following the preclinical validation studies, we proceeded to patient-oriented testing. We 

designed a prospective trial with 40 patients referred for clinically indicated image-guided 

aspiration and biopsy of mass lesions suspicious for lymphoma. All patients gave informed 

consent for extra FNA passes. All pre-procedural images were reviewed, and co-axial 

needles were placed under computed tomography or ultrasound guidance (Fig. S6). Samples 

for routine clinical testing included multiple (n = 4 to 8) 21G passes for flow cytometry and 

cytopathology followed by 19G tissue cores for histopathology (all processed by the 

Pathology Department, Massachusetts General Hospital). Of the 4–8 FNA passes, one was 

processed for CEM analyses. For each CEM sample, total cell counts, B-cell counts, B-cell 

size and kappa, lambda or Ki67 positive B-cell counts were determined for integrated 

diagnoses (Figs. 5, S7, S8). The final automated CEM results were compared with clinical 

pathology and cytology data (Table S1).

Fig. 6a shows the decision tree for CEM-derived diagnoses of B-cell lymphoma and benign 

adenopathy. The decision tree reflects a simplified algorithm for lymphoma diagnosis in 

LMICs based on published literature29, WHO guidelines30,31 and our own practical 

experience in pathology at MGH. We first determined whether the collected samples had 

sufficient cell counts for CEM analyses. If fewer than 100 cells per marker were present, we 

deemed the sample non-diagnostic, which occurred in only 1 of the 40 specimens. It should 

be noted that this number was higher for clinical flow cytometry, which was non-diagnostic 

in 10/40 cases despite the higher number of FNA passes. Additionally, we set a secondary 

criterion that more than 10% cells are positive for at least one of three markers (kappa, 

lambda light chains and Ki67) to ensure the adequacy of a given test (Fig. S3).

A second sub-algorithm was used to determine if a given patient had malignant lymphoma 

or benign adenopathy. This was deciphered by B-cell population prevalence (> 20%) and 

clonality (kappa and lambda light chain expression, Fig. 6b). Based on prior work and 

historical controls, we defined lymphoid clonality as (κ-λ)/(κ+λ) and characterized it as 

lymphoma when the ratio was greater than +0.5 ± 0.05 (kappa dominant) or less than −0.5 
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± 0.05 (lambda dominant). For the 40 samples analyzed, CEM showed an accuracy of 95% 

(37/39, 1 non-diagnostic) in detecting malignant lymphoma (Fig. 6c and Table 1). The non-

diagnostic case (#5) offered too few B-cell counts to accurately determine clonality. In 

comparison, review of official flow cytometry results, as interpreted by clinical 

hematopathologists, showed an accuracy of 87% (26/30, 10 non-diagnostic) with 3 false 

negatives and 1 false positive.

Furthermore, we used a combination of Ki67 staining and nuclear cell size measurements to 

determine whether each lymphoma case was aggressive/low grade. Among 24 lymphoma 

samples tested, CEM correctly identified 21 cases (2 false negative and 1 non-diagnostic). 

For the 21 lymphoma cases (Figs. 7a and b), aggressive lymphomas were defined as having 

> 45% Ki67+ cells (Fig. 7c) and/or having large fractions of large cell nuclei (> 15 μm; Fig. 

7d). Using the above criteria, CEM correctly established the diagnosis of aggressive DLBCL 

in 6 of the 6 pathology-proven cases (Table 1). It should be noted that clinical flow 

cytometry was insensitive in detecting DLBCL, a finding also reported by others, likely due 

to the fragile nature of large lymphoma cells32.

The low-grade lymphoma group (n = 15) comprised a mixture of follicular lymphoma (FL, n 
= 9), small B cell lymphoma (SBCL, n = 4) and mantle cell lymphoma (MCL, n = 2). CEM 

analyses determined two cases (#10 and #12, Table S1) to be aggressive based on high Ki67 

levels alone. After incorporating clinical information (size of mass lesions, adenopathy or 

clinical history), all cases were correctly diagnosed (Table S2). CEM accurately diagnosed 

16/16 cases of benign adenopathy while flow cytometry showed 1 false positive and 4 non-

diagnostic cases.

Discussion

AIDS-related cancers, particularly lymphoma, are on the rise in subsaharan Africa due to 

improved survival via AIDS therapies3–5. Yet due to limited resources, lymphoma and other 

cancer diagnoses are often restricted to a few central hospitals and health centers. To enable 

clinical management-altering molecular diagnostics in the field, our efforts have focused on 

developing simple but effective tools that decentralize care. In the present project, we 

iteratively developed a stand-alone microholographic device and optimized it to analyze B-

cell lymphoma. We integrated an advanced CMOS sensor, micro-computer, new on-chip 

staining techniques and an automated deep learning algorithm to establish a diagnosis that 

could be successfully rendered by a variety of health workers and not rely on highly 

sophisticated analytic techniques. A set of different biomarkers (CD19/20, Ki67, kappa and 

lambda light chains) were tested for lymphoma detection and classification. We show that 

the automated CEM method is surprisingly accurate and fast. Specifically, we obtained 91% 

sensitivity (21/23), 100% specificity (16/16) and 95% accuracy (37/39) for diagnosing 

lymphoma and 86% accuracy (18/21) in triaging lymphomas into aggressive and indolent 

types. No false positives were found for benign or disease-free samples, and only one 

sample was non-diagnostic due to low B-cell counts. In comparison, clinical flow cytometry 

showed 10 non-diagnostic cases with an accuracy of 87% (26/30) for diagnosing lymphoma. 

More importantly, flow cytometry was insensitive to distinguishing aggressive from indolent 

types. Given the limited number of molecular markers used here (CD19/20, Ki67, kappa and 
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lambda light chains; Fig. 5) compared to advanced work-up (CD19, CD20, CD3, CD5, 

CD10, CD15, CD30, kappa and lambda light chains, Ki67, Pax5, Alk1, cyclin D1), the 

diagnostic accuracy of CEM could also be improved. However, we decided not to pursue 

this at this time, as our primary objective was to validate the CEM method for deployment in 

sub-Saharan Africa, which is disproportionately impacted by aggressive lymphomas due to 

higher HIV incidence than in resource-rich regions such as North America6,7. This approach 

could triage lymphomas into those that require prompt chemotherapy and those that do not.

The current research was designed as a feasibility study to develop and validate point-of-

care technology for lymphoma diagnosis. For robust field testing in a resource-limited 

setting, we expect improvement in the following areas prior to rolling out to LMIC testing: i) 

fewer steps for labeling and washing; ii) simplified assembly and maintenance of devices; 

iii) more secure data transmission and storage; iv) protection against potential contamination 

and v) prospective validation or adjustments of the current decision tree algorithm in larger 

patient datasets. We used well-established antibody conjugates coupled to peroxidases/

phosphatases and chromogenic substrates such as ImmPACT VIP33. To simplify the various 

labeling and wash steps, we developed a disposable cartridge system to specifically capture 

and stain B-cells. Using these cartridges, antibodies can be lyophilized and stored at 

preferred temperatures for weeks without degradation; this is an important factor for field 

testing. Once rehydrated, cell samples can be introduced into the system. A new self-

contained cartridge that can process a 1.5 ml reservoir and limit fluid handling and 

contamination is under development for field testing (Fig. S9). Safe handling is critical when 

dealing with specimens in HIV-endemic areas. Modular hardwares (imaging parts, 

microcomputers, power supplies) and open-source softwares reduce costs and maintenance.

The CEM technology is based on a free-standing platform for data acquisition, 

communication and result display(Fig. 1). We built the system from inexpensive components 

that add up to a fraction of the cost of the smartphone used in a previous system11,28 while 

also containing a high-resolution CMOS image sensor. The current system components 

include the CMOS ($40), a touchpad screen display ($40), a Raspberry Pi computer with 

Bluetooth and WiFi ($40) and various small parts($30). Costs total ~ $180 per imaging 

system, one of the lowest-cost molecular diagnostic systems available even before 

economies of scale. While it is possible to perform holographic reconstruction directly on 

the Raspberry Pi computer, we opted for dual cloud-based integration to enable deep 

learning, speed up reconstruction and allow centralized input into the diagnostic output. The 

system allows diagnosis in < 1 minute through the cloud and < 10 minutes without internet 

access. By comparison, diagnostic turnaround times for various cancers can take months 

(median 160 days) in resource-constrained regions34. For the type of aggressive lymphoma 

for which CEM was designed, the Botswana Prospective Cancer Cohort identified a median 

time of four months (95% CI 2.1 to 11 months) between clinic visit and finalized diagnosis 

(unpublished data).

The current system is a first-generation platform that we intend to improve. Possible/planned 

upgrades/enhancements include implementing higher resolutions (or fields of view), 

multiplexing capabilities and adapting reagents to enable diagnosis of other malignancies 

such as Hodgkin’s lymphoma35 or carcinomas. These changes should improve detection 
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accuracies and allow for identifying sub-phenotypes. We also intend to extend the use of 

deep learning for rapid and accurate image analysis and diagnosis as we obtain more clinical 

data for training. In sum/Put simply, we expect our CEM technology will be highly 

beneficial in LMICs: at minimum, it will enable broad-based, decentralized patient triage 

(malignant vs. benign adenopathy; high-grade vs. low-grade lymphoma), and at best, CEM 

will provide detailed molecular analyses of lymphomas and other highly prevalent LMIC 

malignancies. Compared to flow cytometry and immunohistochemistry, the molecular 

diagnostics system reported here is significantly more cost-effective, operable by less-skilled 

health workers and well-suited for point-of-care settings, health clinics and rural areas.

Methods

CEM device

The integrated CEM imaging unit is equipped with a 1.4 A high-power 625-nm LED 

(Thorlabs) heat-sinked by a metal printed circuit board (PCB) and a custom machined 

aluminum holder. A 220-grit optical diffuser (DGUV10, Thorlabs) is positioned between the 

LED and a 50 μm pinhole (Thorlabs). Optical components are aligned by machined 

acrylonitrile butadiene styrene (ABS) mounts. Images are captured using a monochromatic 

10 megapixel complementary-metal-oxide-semiconductor (CMOS) image sensor (On-

Semiconductor) mounted on a USB 3.0 interface board (The Imaging Source). The pixel 

size is 2.2 μm and the field of view is 5.7 × 4.3 mm2. Image data are transferred from the 

camera to a Raspberry Pi 3.0 (Broadcom BCM2837 SoC) running Debian Linux. An 

integrated 7″ display (Raspberry PI Foundation) provides a real-time view of holographic 

data, and a touch-screen user interface captures and saves data. The touch-screen interface is 

written with the Kivy framework v1.10 running on a Python 2.7.9 interpreter. Images can be 

directly transferred via WiFi to a cloud-based GPU server for analysis. The unit is powered 

by a regulated 18 V, 60 W adapter (Meanwell) and runs continuously for approximately 2.5 

hours when powered by an 3-cell, 4.2 V / 6.6 Ah Li+ battery pack. The device housing is 3d-

printed (Formlabs), and the machined-aluminum door is fastened with 1/8 inch neodymium 

disc magnets (Grainger). The diffraction chamber is fabricated using opaque 1/8 inch acrylic 

sheets (laser ablation) and is light-proofed using flocking papers (Edmund Optics). The 

dimensions of the hardware unit are 205 mm (L) x 120 mm (W) x 175 mm (H) and the 

overall weight is 1.4 kg.

Cloud computing

A central server (GPX XS8-2460V3-4GPU) is equipped with two six-core Intel Xeon 

processors (E5-2609 v3 1.90GHz 15MB Cache), eight 16GB PC4-17000 2133MHz DDR4 

and a graphic processing unit (GPU, NVIDIA Kepler K80). The K80 GPU has 4992 

compute unified device architecture (CUDA) cores and 24 GB of GDDR5 memory. The 

operating system is based on Ubuntu Linux 14.04 LTS Server Edition 64-bit. The code is 

written in C++ and used vendor-provided modules (CUDA extensions, CUDA driver 7.0, 

CUFFT library). The imaging server periodically checks a dedicated folder in a cloud 

storage (Dropbox). When new image and image information is found, the server runs an 

image reconstruction. It then counts cells on the reconstructed frames. The reconstructed 

images and counting statistics are saved in a subfolder on Dropbox. When a Dropbox client 
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is synchronized, the image and data files can be accessed. All collected information is 

organized and stored in a secure web-based system (CSB Trials, Fig. S10) that supports 

multi-modal images in raw format. The developed in-house system is a multi-tier application 

that utilizes Ruby on Rails framework. All software is built using open-source modules. 

Data are stored in MySQL database; image conversions utilize dicomlib and ImageMagick.

Software architecture and deep learning

For detecting B-cells using deep learning, we implemented three modules that operate on a 

hologram image: maximally stable extremal regions (MSER) blob detection algorithm, 

faster non-maximum suppression algorithm and convolutional neural network (CNN). The 

MSER blob detection algorithm finds cell-like regions based on six parameters including 

region size, shape and intensities.

Once regions are proposed by the MSER algorithm, the bounding box coordinates are 

filtered by a non-maximum suppression algorithm with a maximum overlap threshold of 

0.25. The remaining boundary box coordinates are mapped to a hologram input image, and 

each region is passed as input to the trained CNN for classification. The CNN was trained to 

classify a region as either containing one or more cells or containing no cells.

To train the CNN, the Adam optimization algorithm36 was used to iteratively tune the 

weights in each CNN layer by calculating the CNN’s loss at each iteration with respect to 

the ground-truth labels of each training example with the binary cross-entropy loss function. 

The training set was generated by using the MSER algorithm to detect regions from sample 

hologram images of cells, and each region was categorized as either “cell-like” or “non-cell” 

regions. The total size of the training set is 2,661 non-cell hologram regions and 2,509 cell-

like hologram regions. The training set was split into 3,447 training samples and 1,723 

validation samples. We used an Amazon Web Services p2.xlarge server with an Nvidia 

Kepler K80 GPU to run the training process over the entire training set for 250 epochs. All 

code is written using Python 3.6.1.

Diagnostic decision tool

Fig. S3 shows a decision tree used to analyze sample parameters. The B-cell population cut-

off was obtained from a prior pilot study28 while the clonality, Ki67 level, and size were 

defined by consulting literature29–31 and standard operating procedures of flow cytometry at 

our institution. All parameters were then used prospectively in the current study. 

Specifically, the 20% CD19/20-positive B-cell population cut-off was based on a prior 

study28 and this number assures that sufficient numbers of B-cells are present in a given 

sample to determine the clonality; by itself however, the cut-off does not have any 

discriminatory power. The threshold for clonality was set to 0.5 ± 0.05 (for kappa dominant) 

and −0.5 ± 0.05 (for lambda dominant) after reviewing published literature29 and WHO 

guidelines30,31. To be classified as lymphoma, a given sample had to have a B-cell 

population over 20% of total cells and a monoclonal B-cell population (either kappa or 

lambda dominant). To pass quality assurance, we also defined a minimum number of cells 

(100 cells) for a given measurement and at least 10% of total cells had to be positive for 

kappa, lambda, or Ki67.
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Reagents

Table S3 lists antibodies used in the study. For point-of-care operation, we further tested 

lyophilized antibodies. Antibodies (0.7 mg/mL, Ki67) were lyophilized using a freeze-dryer 

(FreezeMobile 25 EL, SP Scientific). The lyophilized antibodies were vacuum-sealed and 

then tested in different storage conditions (20, 4, 25 and 37 °C, Fig. 4c). The functionality of 

the lyophilized antibodies was tested and compared with fresh non-lyophilized antibodies. 

The glass substrates in flow cells were also lyophilized in the same conditions. Following 

rehydration with 60 μL of MilliQ water, cartridges and antibodies can be used without 

additional modifications.

Cell lines

Daudi (Burkitt’s lymphoma), DB (germinal center B-cell like diffuse large B-cell 

lymphoma, DLBCL) and Jurkat (T-cell leukemia) cell lines were purchased from American 

Type Culture Collection (ATCC). All cell lines were maintained in RPMI-1640 medium 

supplemented with 10% heat-inactivated fetal bovine serum, 100 IU penicillin and 100 

μg/mL streptomycin at 37 °C in a humidified atmosphere of 5% CO2. Cell lines were 

routinely tested for mycoplasma contamination using MycoAlertTM Mycoplasma Detection 

Kit (Lonza).

Optimization of staining assay

For assay optimization and validation, we performed a number of experiments in cell lines 

before moving to clinical samples (see below). We specifically tested i) different antibodies, 

ii) different substrates, iii) different staining conditions, iv) environmental influences and 

reagent stability and v) different flow chambers and reproducibility.

Fig. S11 summarizes the assay procedure. In general, harvested cells were fixed with 1x 

Lyse/Fix buffer (BD Biosciences) and incubated with biotinylated anti-human CD19 and 

CD20 antibodies (10 μg/mL). Cells were then permeabilized (0.005% saponin) and labeled 

with anti-human IgG kappa light chain, IgG lambda light chain or Ki67 antibodies (10 

μg/mL) followed by HRP anti-rabbit IgG secondary antibody. Labeled cells were introduced 

into flow cells and incubated for 30 min. B-cells labeled with biotinylated anti-CD19/CD20 

antibodies were captured on the neutravidin-coated surface of flow cells, and unbound cells 

were removed by washing at 40 mL/h for 1 mL. Captured cells were stained with Immpact 

VIP Peroxidase (HRP) substrate (Vector Labs) for 15 min. Three images per sample (pre-

wash, post-wash and stained) were taken using the CEM device. Antibodies used are listed 

in Table S1. Assay buffer consisted of PBS supplemented with 2% BSA and 2% FBS. 

Samples were tested immediately or occasionally stored at −80°C in PBS (2% BSA) for 

future comparative use.

Flow cell cartridge

We designed flow cells using glass cover slips and sticker-type hybridization chambers to 

simplify fluid handling and staining. For field-testing, we developed flow cells with 1.5 ml 

reservoirs. The acrylic top cover was fabricated via laser ablation (Epilog 120W) of a clear 

1.6 mm UV-resistant acrylic sheet. The silicone chamber was fabricated from a 0.8 mm 

high-temperature silicone sheet via laser ablation. The plastic base, including reservoir 
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chamber, was created by stereolithographic (SLA) printing with a clear photopolymer resin 

(Formlabs). A 25 x 25 mm glass coverslip (Gold Seal) is held in place by pressure fit 

between the silicone chamber and plastic base. The glass surface was first treated with 2% 

(3-aminopropyl)triethoxysilane (APTES, Sigma-Aldrich) for 30 min followed by 2.5% (v/v) 

glutaraldehyde in PBS (Sigma-Aldrich) for 2.5 h. A sticker-type hybridization chamber (9 

mm diameter and 0.6 mm depth, Sigma-Aldrich) was used to confine the imaging area and 

the assay volume down to 60 μL. Finally, neutravidin (100 μg/mL) was permanently 

immobilized on the aldehyde-functionalized surface via reductive amination reaction using 

4.5 mM sodium cyanoborohydride. The surface was washed extensively with PBS and then 

blocked with 1% BSA in PBS for 1 h. The flow cell cartridges with neutravidin were also 

lyophilized using the same protocol as antibodies. For CEM measurements, the flow cell 

was aligned and placed on the top of the image sensor. The gap distance between the flow 

cell and image sensor was approximately 0.5 ± 0.03 mm, which was estimated by our 

detection algorithm. For each sample, three flow cells were used for kappa, lambda, and 

Ki67 and were disposed after measurements.

Flow cytometry

In order to benchmark CEM measurements, we performed correlative flow cytometry using 

lymphoma cell lines. Half a million cells were prepared per marker using the same 

procedure as for CEM, except Alexa Fluor 488-conjugated secondary antibody was used 

instead of the HRP secondary antibody. Fluorescent signals were measured using BD LSRII 

Flow Cytometer (BD Biosciences) and normalized against isotope controls. Flow cytometry 

of clinical samples was performed by hospital Department of Pathology clinicians (see 

below and Table S2).

Patient study and clinical sample processing

We performed a prospective diagnostic study in which a FNA sample was obtained during 

clinically indicated image-guided FNA/biopsy of nodal mass lesions. This study and related 

materials (such as a consent form) were reviewed and approved by the Dana-Farber/Harvard 

Cancer Center Institutional Review Board. The investigators and other research staff ensured 

full study compliance with all relevant ethical regulations. Patients referred to the Division 

of Interventional Radiology at Massachusetts General Hospital because of clinically 

suspected new or recurrent lymphoma were enrolled following informed consent. Either 

ultrasound or computed tomography guidance was used to confirm correct needle position 

within a suspicious lymph node. Four to eight coaxial FNA passes yielded material for flow 

cytometry, cytopathology and CEM analysis. Additional core biopsies were obtained for 

conventional pathology work-up, which served as the gold standard alongside clinical 

information. For CEM analysis, FNA samples were fixed with 1x BD Phosflow Lyse/Fix 

buffer (BD Biosciences) and then processed as described for cell lines. CEM analyses were 

conducted blinded to conventional pathology and vice versa.

Data availability

The data supporting the findings of this study are available within the paper and its 

Supplementary Information. All data acquired in the course of this study are available from 

Im et al. Page 11

Nat Biomed Eng. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the corresponding author upon reasonable request. Source data for the figures in this study 

are available in figshare with the identifier doi:10.6084/m9.figshare.6356867 (ref. 37).

Code availability

The codes for the detection of lymphoma cells are available at https://csb.mgh.harvard.edu/

bme_software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We would like to thank Jouha Min for assay optimization, Kaley Joyes for editing the manuscript and all members 
of MGH’s Division of Interventional Radiology, Department of Pathology and Cancer Center who contributed to 
patient care. This work was supported in part by 5UH2CA202637 (R.W., B. Chabner), 4R00CA201248 (H.I.) and a 
grant from the V-Foundation for Cancer Research (R.W., C.M.C.). H.L. was supported in part by R21-CA205322, 
R01-HL113156 and MGH scholar fund. A.K. has been supported by the Mac Erlaine Scholarship from the 
Academic Radiology Research Trust, St. Vincents Radiology Group, Dublin, Ireland, and also by the Higher 
Degree Bursary from the Faculty of Radiologists at the Royal College of Surgeons in Ireland.

References and notes

1. Hsu CY, Jung SM, Chuang SS. Physician supply and demand in anatomical pathology in Taiwan. J 
Formos Med Assoc. 2011; 110:78–84. [PubMed: 21377061] 

2. Nelson AM, Milner DA, Rebbeck TR, Iliyasu Y. Oncologic Care and Pathology Resources in 
Africa: Survey and Recommendations. J Clin Oncol. 2016; 34:20–26. [PubMed: 26578619] 

3. Varmus H, Kumar HS. Addressing the growing international challenge of cancer: a multinational 
perspective. Sci Transl Med. 2013; 5:175cm2.

4. Livingston J. Cancer in the shadow of the AIDS epidemic in southern Africa. Oncologist. 2013; 
18:783–786. [PubMed: 23882020] 

5. Chabner B, Dryden-Petersen S, Efstathiou J. Cancer in Botswana: The Second Wave of AIDS in 
Sub-Saharan Africa. The Oncologist. 2013; 18:777–778. [PubMed: 23882018] 

6. Naresh KN, Raphael M, Ayers L, Hurwitz N, Calbi V, Rogena E, Sayed S, Sherman O, Ibrahim 
HAH, Lazzi S, Mourmouras V, Rince P, Githanga J, Byakika B, Moshi E, Durosinmi M, Olasode 
BJ, Oluwasola OA, Akang EE, Akenòva Y, Adde M, Magrath I, Leoncini L. Lymphomas in sub-
Saharan Africa – what can we learn and how can we help in improving diagnosis, managing patients 
and fostering translational research. Br J Haematol. 2011; 154:696–703. [PubMed: 21707579] 

7. Carbone A, et al. Diagnosis and management of lymphomas and other cancers in HIV-infected 
patients. Nat Rev Clin Oncol. 2014; 11:223–238. [PubMed: 24614140] 

8. Mwamba PM, et al. AIDS-Related Non-Hodgkin’s Lymphoma in Sub-Saharan Africa: Current 
Status and Realities of Therapeutic Approach. Lymphoma. 2012; 2012:904367.

9. D’Ambrosio MV, et al. Point-of-care quantification of blood-borne filarial parasites with a mobile 
phone microscope. Sci Transl Med. 2015; 7:286re4.

10. Greenbaum A, et al. Wide-field computational imaging of pathology slides using lens-free on-chip 
microscopy. Sci Transl Med. 2014; 6:267ra175.

11. Im H, et al. Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone. 
Proc Natl Acad Sci U S A. 2015; 112:5613–5618. [PubMed: 25870273] 

12. Zheng G, Lee SA, Antebi Y, Elowitz MB, Yang C. The ePetri dish, an on-chip cell imaging 
platform based on subpixel perspective sweeping microscopy (SPSM). Proc Natl Acad Sci U S A. 
2011; 108:16889–16894. [PubMed: 21969539] 

13. Tapley A, et al. Mobile digital fluorescence microscopy for diagnosis of tuberculosis. J Clin 
Microbiol. 2013; 51:1774–1778. [PubMed: 23554191] 

Im et al. Page 12

Nat Biomed Eng. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://csb.mgh.harvard.edu/bme_software
https://csb.mgh.harvard.edu/bme_software


14. Laksanasopin T, et al. A smartphone dongle for diagnosis of infectious diseases at the point of 
care. Sci Transl Med. 2015; 7:273re1.

15. Yeo SJ, et al. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 
Viruses. Theranostics. 2016; 6:231–242. [PubMed: 26877781] 

16. Kanakasabapathy MK, et al. An automated smartphone-based diagnostic assay for point-of-care 
semen analysis. Sci Transl Med. 2017; 9:eaai7863. [PubMed: 28330865] 

17. Priye A, et al. A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, 
and dengue viruses. Sci Rep. 2017; 7:44778. [PubMed: 28317856] 

18. Kanakasabapathy MK, et al. Rapid, label-free CD4 testing using a smartphone compatible device. 
Lab Chip. 2017; 17:2910–2919. [PubMed: 28702612] 

19. Ming K, et al. Integrated quantum dot barcode smartphone optical device for wireless multiplexed 
diagnosis of infected patients. ACS Nano. 2015; 9:3060–3074. [PubMed: 25661584] 

20. Ko J, et al. Smartphone-enabled optofluidic exosome diagnostic for concussion recovery. Sci Rep. 
2016; 6:31215. [PubMed: 27498963] 

21. Meda BA, et al. Diagnosis and subclassification of primary and recurrent lymphoma. The 
usefulness and limitations of combined fine-needle aspiration cytomorphology and flow cytometry. 
Am J Clin Pathol. 2000; 113:688–699. [PubMed: 10800402] 

22. Zeppa P, et al. Fine needle aspiration cytology and flow cytometry immunophenotyping of non-
Hodgkin lymphoma: can we do better. Cytopathology. 2010; 21:300–310. [PubMed: 20132132] 

23. Savage EC, Vanderheyden AD, Bell AM, Syrbu SI, Jensen CS. Independent diagnostic accuracy of 
flow cytometry obtained from fine-needle aspirates: a 10-year experience with 451 cases. Am J 
Clin Pathol. 2011; 135:304–309. [PubMed: 21228371] 

24. Wei Q, et al. Plasmonics Enhanced Smartphone Fluorescence Microscopy. Sci Rep. 2017; 7:2124. 
[PubMed: 28522808] 

25. Xu W, Jericho MH, Meinertzhagen IA, Kreuzer HJ. Digital in-line holography for biological 
applications. Proc Natl Acad Sci U S A. 2001; 98:11301–11305. [PubMed: 11572982] 

26. Gurkan UA, et al. Miniaturized lensless imaging systems for cell and microorganism visualization 
in point-of-care testing. Biotechnol J. 2011; 6:138–149. [PubMed: 21298800] 

27. Greenbaum A, et al. Imaging without lenses: achievements and remaining challenges of wide-field 
on-chip microscopy. Nat Methods. 2012; 9:889–895. [PubMed: 22936170] 

28. Pathania D, et al. Holographic Assessment of Lymphoma Tissue (HALT) for Global Oncology 
Field Applications. Theranostics. 2016; 6:1603–1610. [PubMed: 27446494] 

29. Matasar MJ, et al. Expert second-opinion pathology review of lymphoma in the era of the World 
Health Organization classification. Ann Oncol. 2012; 23:159–166. [PubMed: 21415238] 

30. Swerdllow SH, Campo E, Harris NL. WHO classification of tumours of haematopoietic and 
lymphoid tissues. WHO Press; 2008. 

31. Swerdlow SH, , et al. WHO classification of tumours of haematopoietic and lymphoid tissues 
(Revised 4th edition). Lyon: IARC Press; 2017. 

32. Demurtas A, Stacchini A, Aliberti S, Chiusa L, Chiarle R, Novero D. Tissue flow cytometry 
immunophenotyping in the diagnosis and classification of non-Hodgkin’s lymphomas: a 
retrospective evaluation of 1, 792 cases. Cytometry B Clin Cytom. 2013; 84:82. [PubMed: 
23325563] 

33. van der Loos CM. Chromogens in multiple immunohistochemical staining used for visual 
assessment and spectral imaging: the colorful future. J Histotechnol. 2010; 33:31–40.

34. Brown CA, et al. Predictors of Timely Access of Oncology Services and Advanced-Stage Cancer 
in an HIV-Endemic Setting. Oncologist. 2016; 21:731–738. [PubMed: 27053501] 

35. Eichenauer DA, et al. Hodgkin’s lymphoma: ESMO Clinical Practice Guidelines for diagnosis, 
treatment and follow-up. Ann Oncol. 2014; 25:iii70–75. [PubMed: 25185243] 

36. Kingma Diederik P, Ba J. Adam: A Method for Stochastic Optimization. The International 
Conference on Learning Representations (ICLR); 2015; 

37. Im H, , et al. Dataset for Design and clinical validation of a point-of-care device for the diagnosis 
of lymphoma via contrast-enhanced microholography and machine learning. figshare. 2018. http://
dx.doi.org/10.6084/m9.figshare.6356867

Im et al. Page 13

Nat Biomed Eng. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.6084/m9.figshare.6356867
http://dx.doi.org/10.6084/m9.figshare.6356867


Fig. 1. Stand-alone CEM system
a, A photograph of the CEM device. The CEM device consists of an imaging component (an 

LED and a CMOS image sensor), microcomputer (Raspberry Pi 3 with wireless and 

bluetooth unit), 7-inch touch screen and sample tray. See Figure S1 for inner components. 

The case was fabricated by 3D printing. The overall size is 205 mm (L) x 120 mm (W) x 

175 mm (H). b, CEM assay. Cells were labeled by antibodies and introduced into a 

disposable sample cartridge. B-cells were specifically captured on the bottom glass substrate 

and subsequently stained for kappa light chain, lambda light chain or Ki67. Hologram 

patterns of stained and unstained B-cells were imaged by the CEM device. c, A deep 

learning algorithm based on a convolutional neural network identified B-cells directly from 

holograms. Scale bars: 200 μm.
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Fig. 2. B-cell detection using the deep learning algorithm
a, The deep learning algorithm identified B-cells and their locations. The images of found 

cells were further processed to measure the nuclear size and marker expression, depicted 

here by different-sized circles and their colors. The entire field of view (FOV) was ~ 25 

mm2, about 100 times bigger than the FOV of conventional bright-field microscope with a 

20× objective. b, Comparison between bright-field microscope and CEM images. Stained 

color intensity correlated with marker expression. Scale bars: 50 μm. c, CEM signal 

comparison between the original image reconstruction method and the new deep learning 

algorithm. The error bars represent mean ± s.d. obtained from ~800 individual cells. d, The 

deep learning network was trained by >5,000 cellular and non-cellular hologram patterns 

and showed 99% accuracy in an independent test set. e, Using the deep learning algorithm, 

overall calculation time was 5 times shorter, and the entire image processing can be 

completed in 5 minutes. When using a central server with a graphic processing unit, the 

computation time is significantly improved and can be as short as 12 seconds.
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Fig. 3. B-cell capture and size measurement
a, B-cell capture efficiency was tested using two B-cell lymphoma (Daudi and DB) and T-

cell leukemia (Jurkat) cell lines. For Daudi and DB, the device showed > 90% capture 

efficiency, while non-specific T-cell binding was < 5%. The bars represent mean ± s.d. from 

quadruplicate measurements. b, Correlation between expected and measured captured cell 

counts for Daudi and Jurkat cell mixtures with varying cell proportions (Pearson correlation 

coefficient r = 0.97; P = 0.0013). c, Size calibration with size-standard microspheres (3, 6, 8, 

and 16 μm) showing a linear correlation over the range tested (Pearson correlation 

coefficient r = 0.998; P = 0.0020). The dots represent mean ± s.d. from more than 10 

measurements.
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Fig. 4. Assay validation
a, Different chromogenic substrates were tested to reveal Ki67 in lymphoma cell lines. 

Among those tested, the ImmPACT VIP substrate showed the greatest contrast between 

stained and unstained control samples. b, The CEM measured marker expressions of kappa 

light chain, lambda light chain and Ki67 for three different cell lines (Daudi, DB and Jurkat) 

and compared to marker expressions measured by gold-standard flow cytometry. Note the 

congruency. c, Ki67 Antibodies were lyophilized and stored at different temperatures. After 

rehydration, the antibodies and the CEM assay showed good reproducibility with a standard 

variation of < 5%. At least 200 individual cells were analyzed for each condition and the 

data are displayed as mean ± s.d. Dashed lines indicate ± 5% of the mean value.
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Fig. 5. CEM readouts for a single clinical sample (DLBCL example)
Each clinical sample obtained by fine-needle aspirates is tested for a number of parameters 

including total cell count, B-cell count (positive for CD19/20), B-cell counts positive for 

kappa light chain, lambda light chain and Ki67 and nuclear size. a, A representative example 

shows high lambda light chain, and Ki67 counts. b, Corresponding histogram graphs. An 

average of 77 B-cells were analyzed (59 – 98 B-cells) in each channel. Detailed numbers are 

summarized in Table S1. Scale bars: 250 μm.
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Fig. 6. Lymphoma diagnosis for 40 patients enrolled in a prospective trial
a, The CEM diagnostic algorithm for detecting B-cell lymphoma. b, 2D scatter plot of B-

cell population vs clonality for lymphoma detection. Each dot represents a patient. c, 

Comparison of CEM diagnosis and flow cytometry. Green cells indicate correct diagnosis, 

blue cells are false positives, red means false negatives. Grey are non-diagnostic due to 

insufficient number of cells for diagnosis. DLBCL, diffuse large B-cell lymphoma; MCL, 

mantle cell lymphoma; FL, follicular lymphoma; SBCL, small B-cell lymphoma; DF, 

disease free.
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Fig. 7. Identifying high-risk, aggressive cases
a–d, B-cell counts (a), clonality (b), Ki67 level (c) and percentile of large cells (> 15 μm) 

(d) between aggressive (n = 6) and low-grade lymphoma cases (n = 15). The bars represent 

mean ± s.d.
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Table 1
Comparison of detection sensitivity, specificity and accuracy

between CEM and flow cytometry for lymphoma diagnosis (left) and classification (right). TP, true positive; 

TN, true negative; FP, false positive; FN, false negative; ND, non-diagnostic. Sen, sensitivity; Spec, 

specificity; Acc, accuracy.

Lymphoma classification

CEM Flow

TP 6 0

TN 12 11

FP 3 0

FN 0 5

ND 0 5

Total 21 21

Sen 100% 0%

Spec 80% 69%

Acc 86% 69%

Lymphoma diagnosis

CEM Flow

TP 21 15

TN 16 11

FP 0 1

FN 2 3

ND 1 10

Total 40 40

Sen 91% 83%

Spec 100% 92%

Acc 95% 87%
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