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Abstract: Microfabricated systems provide an excellent platform for the culture of cells, 
and are an extremely useful tool for the investigation of cellular responses to various 
stimuli. Advantages offered over traditional methods include cost-effectiveness, 
controllability, low volume, high resolution, and sensitivity. Both biocompatible and bio-
incompatible materials have been developed for use in these applications. Biocompatible 
materials such as PMMA or PLGA can be used directly for cell culture. However, for bio-
incompatible materials such as silicon or PDMS, additional steps need to be taken to render 
these materials more suitable for cell adhesion and maintenance. This review describes 
multiple surface modification strategies to improve the biocompatibility of MEMS 
materials. Basic concepts of cell-biomaterial interactions, such as protein adsorption and 
cell adhesion are covered. Finally, the applications of these MEMS materials in Tissue 
Engineering are presented. 
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1. Introduction  

The development of Micro-Electro-Mechanical Systems (MEMS) technology and its integration 
into complex systems for biological applications has generated a new field of study, called 
“BioMEMS” [1–4]. MEMS technology offers the advantage of building two dimensional (2D) or three 
dimensional (3D) structures, with micrometer-scale precision, incorporating different materials with 
differing chemical or physical properties such as polymers, metals, and dielectric materials. The 
complexity of solutions that can be generated by MEMS technology correlates with the requirements 
from biomedical applications, resulting in a large range of BioMEMS applications, from micro total 
analysis systems (μTAS) [5], implants for drug delivery [6], biosensors [7], stents [8], 
immunoisolation devices [9], microneedles [10] or injectable micromodules [11], up to pacemakers 
and cardiology devices [12].  

Due to the increasing ease by which such powerful tools are available, life scientists and 
bioengineers have started to use MEMS as a platform for cell culture in order to better answer some 
fundamental biological questions [13]. For instance, researchers at the University of Washington are 
studying single cells using MEMS tools because conventional cell culture systems provide only an 
average from a population of cells [14]. Skelley et al. [15] recently demonstrated an efficient method 
for cell pairing and fusion in a microfluidic device, a very important aspect in somatic cells 
reprogramming research. This review covers MEMS applications in Tissue Engineering. The first part 
is dedicated to materials biocompatibility while in the second part, various applications are presented. 

2. Protein Adsorption for Cell Attachment 

Culture of adherent cells involves attachment of these cells onto a surface. This phenomenon 
involves an adhesive interaction between the cell and substrate. In order to facilitate this interaction, a 
layer of protein is usually adsorbed onto the surface of the substrate. Various measurements have been 
used to demonstrate the process of protein adsorption onto culture surfaces. Mahmood et al. [16] used 
X-ray photoelectron spectroscopy (XPS), a surface analysis tool, to show that the nitrogen signal, an 
indicator of the amine bonds of organic molecules, was significantly higher on bioactive glass after 
immersion in a cell culture medium than in a phosphate buffered solution (PBS). This demonstrates the 
adsorption of proteins from the culture medium onto the glass surface. Steele et al. [17] measured the 
amounts of vitronectin (Vn) and fibronectin (Fn) which adsorbed from the fetal bovine serum (FBS) 
component of the culture medium onto PrimariaTM (the material used for cell culture flasks) and tissue 
culture polystyrene (TCPS, the material used for cell culture plates). It was found that Primaria 
adsorbed two- to three-fold more Fn than TCPS, but adsorbed similar amounts of Vn from medium 
containing FBS. The difference of protein adsorption onto different materials subsequently affects the 
number of cells adhered to these materials, and the strength of adhesion.  

As protein adsorption is a very important factor when studying the interaction between the cells and 
biomaterials, various methods have been developed to quantify the amount of adsorbed protein, 
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including radio-labeling [18–20] and fluorescence-labeling [21,22] of proteins. Other surface analysis 
techniques used for this purpose include surface plasmon resonance (SPR) [19,22–24], secondary-ion 
mass spectroscopy (SIMS) [19,25–27], and XPS [27].  

Cellular behavior is affected not only by the amount of adsorbed protein, but also the orientation 
and conformation of the protein. For example, Fn, a 440-kD glycoprotein, is well known to be 
involved in cell adhesion [28]. The argininie-glycine-asparagine (RGD) sequence is essential for Fn 
binding to the transmembrane integrin receptor. Iuliano et al. [21] showed that surface hydrophobicity 
of a biomaterial has an effect on the conformation of this cell binding domain of Fn and consequently, 
Fn conformation change influenced bovine aortic endothelial cell (BAEC) adhesion. Antia et al. [29] 
have used fluorescence resonance energy transfer (FRET) to reveal the conformational changes of Fn 
molecules. Alternatively, Cheng et al. [30] used another tool, Fourier Transform Infrared Spectroscopy 
Attenuated Total Reflectance (FTIR/ATR), to study the conformational change of Fn on self-
assembled monolayers.  

3. Cell Adhesion 

Adhesion of cells onto the culture surface precedes cell spreading, cell migration, and cell 
differentiation. Methods of quantifying the number of attached cells include direct microscope 
visualization and cell counting, colorimetric assays such as using toluidine blue dye [31], measuring 
the concentration of an intracellular enzyme (e.g., lactate dehydrogenase (LDH) assay [32]), and using 
PicoGreen assay, a DNA based analysis method [33]. Besides measuring the number of attached cells, 
it is sometimes necessary to find out the attachment strength of the adhered cells. Typically, 
centrifugation or fluid flow is used to measure the force. Garcia et al. [34] used a spinning disc device 
to measure cell detachment while Qin et al. [35] used a micropipette technique to measure the force of 
cell-surface adhesion. Further parameters that influence cell adhesion on MEMS materials are 
described below. 

4. Biocompatibility of MEMS Materials 

The chemical structure and surface property of the MEMS materials determine their 
biocompatibility through protein adsorption and cell adhesion. Meanwhile, the surface chemistry 
(functional group, surface charge, hydrophilicity/hydrophobicity), surface roughness, and surface 
topography may first affect protein adsorption, and sequentially affect the cell’s adhesion onto the 
materials. 

4.1. Surface Chemistry 

4.1.1. Surface Functional Groups 

Over a decade ago, Mrksich and Whitesides [36] wrote a review on the use of self-assembled 
monolayers (SAMs) as a model to understand the interactions of man-made surfaces with proteins and 
cells. SAMs provide model surfaces with different surface functional groups, such as hydroxyl (OH), 
carboxyl (COOH), amine (NH2), and methyl (CH3) groups. In particular, Keselowsky et al. [37] have 
used such model surfaces to investigate the effects of surface chemistry on Fn adsorption, integrin 
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binding, and cell adhesion. Cell adhesion strength to Fn-coated SAMs was found to be in the following 
order: 

OH > COOH = NH2 > CH3 

However, so far there is no conclusion on which specific functional group is able to render 
biomaterials more biocompatible. 

4.1.2. Surface Charge 

The effect of surface charge on IgG antibody orientation was investigated using NH2 (positively 
charged) and COOH (negatively charged) terminated SAMs as model surfaces [38]. The authors 
showed that better antibody orientation was achieved on the positively charged surface. Additionally, 
surface charge can be determined by Zeta-potential measurements. 

4.1.3. Surface Hydrophilicity and Hydrophobicity 

Allen et al. [14] manufactured a homologous series of copolymer films that subtly vary in terms of 
surface hydrophobicity. Using cell-lines such as HeLa (epithelial) and MRC-5 (fibroblast), they found 
that cell number increased with increasing hydrophilicity. Surface hydrophilicity and hydrophobicity 
can be determined by contact angle measurements.  

4.2. Surface Roughness 

Although most of the cell adhesion enhancements conducted in MEMS is done by chemical surface 
modification, the role of microtopography in controlling cell adhesion is gaining importance. Early 
work in this area was conducted by randomly roughening fabricated surfaces using sandblasting, 
grinding, and electropolishing. It has been shown that when the surface is randomly modified, 
submicron-scale roughness significantly affects cells adhesion [39–42]. 

These observations were further refined by investigation of the effects of uniform submicron 
roughness modifications, giving further control over surface geometry. In one study, HepG2 (human 
hepatocellular carcinoma cell line) exhibited a 200% increase in adhesion after poly(glycolic-co-
lactic)acid (PGLA) copolymer substrates were modified to give a uniform distribution of 3.1 ± 1.5 μm 
micropores [39]. In another study, osteoblasts cultured on 9 to 29 nm nano-pits or nano-islands also 
show enhanced attachment compared to a smooth surface [43]. 

4.3. Surface Topography 

Apart from creating rough surfaces, cell adhesion can also be optimized by fabricating unique 
micro- or nano-patterns targeted to specific cells, or by increasing the surface area on which cells can 
attach. In the work of Deutsch et al. [44], neonatal rat primary cardiac myocytes were cultured on  
5 μm tall micropegs, which allowed a more perpendicular attachment to the membrane. As a result, the 
number of myocytes adhered to pegged membranes was increased 4-fold in comparison with 
untextured membranes. 
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Nevertheless, more systematic studies are still required to convert such knowledge into useful 
applications. Specifically, there is no one common adhesion trend across various cells and cell lines. 
For example, fibroblasts have been reported to show reduced adhesion in nano-pit structures [45] 
while osteoblast-like cells, OCT-1, show an increase in attachment on pit-patterned surfaces [46]. 
Furthermore, the scale of the microtopography needs to be optimized for different types of cell 
adhesion. For instance, human fetal osteoblastic cells show enhanced cell adhesion in lower nano-
island surfaces (11 nm in height) than higher nano-island surfaces (38 nm and 85 nm) [47]. Fibroblast 
adhesion is higher on 13 nm islands but lower on 95 nm islands when compared to smooth  
surfaces [48–50].  

As another example, Zinger et al. [51] prepared titanium disks with cavity diameters of 10, 30 and  
100 µm. They showed that when cultured with MG63 cells (osteoblasts), the cell number, osteoblastic 
differentiation (alkaline phosphatase; osteocalcin) and local factor levels (TGF-β1; PGE-2) varied with 
microarchitecture. 

5. Enhancement of Biocompatibility through Surface Modification 

Several surface modification approaches have been applied to enhance the biocompatibility of 
MEMS materials, including plasma deposition, ultra-violet irradiation, gamma irradiation, ion-beam 
irradiation, chemical vapor deposition (CVD), covalent modification, and protein immobilization.  

5.1. Plasma Deposition 

Plasma is a mixture of electrons, neutral radicals and ions with high energy, in which positive and 
negative charges are present in equal amounts. Sources of plasma include glow discharges, radio 
frequencies, and gas arcs. A brief review of plasma deposition for biomedical applications can be 
found in [52]. Poly(N-isopropylacrylamide) (PNIPAAm), has been widely utilized as surface coating 
for biomaterial and Tissue Engineering applications [53–55]. PNIPAAm exhibits temperature 
responsive surface properties, i.e., the surface is hydrophobic in the cell culture condition at 37 °C and 
changes to hydrophilic below the lower critical solution temperature (LCST) at about 32 °C. Cell 
adhesion and cell detachment on PNIPAAm can be controlled by switching the temperature. One way 
to create a PNIPAAm coating is plasma deposition [56]. Cheng et al. used this approach to pattern 
cells on a photolithographically fabricated microheater array. The plasma deposition approach has 
been applied to polymerization of other polymers, such as hexamethyldisilazane (HDMS) [57], ethyl 
ether, methyl or ethyl acetate, acetaldehyde, acetone and 2-propanol [58]. A new instrument was 
developed that combined electrospray ionization with a radio frequency (RF) plasma [59]. This 
instrument was used successfully to deposit a number of high molecular weight active biomolecules 
including the polysaccharide, sodium hyaluronan (HA).  

5.2. Irradiation for Grafting Polymerization 

Irradiation can generate free radicals, which act as sites for graft polymerization. Ultraviolet and 
gamma irradiation are two commonly used methods. To enhance cell adhesion, Ebara et al. [60] 
reported surface coating PNIPAAm on poly(dimethylsiloxane) (PDMS) by UV mediated graft 
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polymerization. Other polymers, such as acrylic acid (AA), acrylamide (AM), dimethylacrylamide 
(DMA), 2-hydroxyethylacrylate (HEA), and poly(ethylene glycol)monomethoxyl acrylate (PEG) were 
also grafted on PDMS using UV radiation [61]. Photopolymerizable biomaterials provide us another 
type of useful template material for MEMS. Recently, Kloxin et al. [62] reported a novel 
photodegradable poly(ethylene glycol)-based hydrogel. This material is cytocompatible and can gel 
rapidly. Living cells can be encapsulated into the hydrogel. When shone with light, microchannels 
made by this hydrogel can be degraded, allowing the migration of encapsulated cells.  

5.3. Covalent Modification for Protein Immobilization 

Covalent bonding has been used to enhance cell adhesion. Leong et al. [63] sputtered a thin layer of 
gold on PDMS, functionally engineered the gold surface with a SAM, and bound collagen covalently 
to the SAM using Schiff based chemistry. After surface modification, cells were found to be attracted 
and adherent to the chemically modified PDMS. Immobilization of cell-adhesive proteins or 
oligopeptides, such as RGD, on the surface can also enhance cell adhesion. In another study, 
osteopontin was immobilized onto poly(2-hydroxyethyl methacrylate) (pHEMA) using a CDI  
(1,1-carbonyldiimidazole) chemistry [64]. Osteopontin is an extracellular matrix molecule involved in 
wound-healing processes. It also contains an RGD moiety. Cell adhesion studies showed that the 
number of BAECs attaching on pHEMA increased after the immobilization of osteopontin. Chen et al. 
[65] created patterned substrates with different shapes using micro-contact printing. Different 
extracellular matrix (ECM) proteins were coated onto the substrates. They found that cell shape 
governs the growth or death of individual cells regardless of the type of matrix protein or antibody to 
integrin used to mediate adhesion. Flaim et al. [66] developed an ECM microarray platform. Five 
ECM molecules (collagen I, collagen III, collagen IV, laminin, fibronectin) were mixed to achieve 32 
combinations. The effects of these combinations on cell differentiation were studied. With this type of 
mircoarray platform, the synergic effects of ECM molecules on cell differentiation can be studied. 

5.4. Chemical Vapor Deposition 

Chemical vapor deposition (CVD) is a process which transforms gaseous molecules into a solid 
material which can form a thin film on the surface of a substrate. It is well-known that silicon nitride 
(Si3N4) deposited through plasma enhanced chemical vapor deposition (PECVD) or low pressure 
chemical vapor deposition (LPCVD) is a good material for cell attachment. The PECVD method has 
the advantage of a low deposition temperature and relatively fast process while the LPCVD technique 
is a high throughput technology. Si3N4 is the main material deposited using these processes, due to its 
suitability for cell culture [67]. The main reason for enhanced cell attachment is the presentation of 
NH2 groups on the thin film surface. Behind this, the gas precursors for the deposition of Si3N4 on 
PECVD and LPCVD are SiH4/NH3/N2 and DCS/NH3/N2 which explains the increased quantity of 
hydrogen presented in the film. Work by Neumann et al. [68] has shown however, that there still exist 
cytotoxic effects of Si3N4 ceramic samples (L929-cell culture model).  



Int. J. Mol. Sci. 2009, 10            
 

 

5417

6. MEMS Materials  

The many materials currently being used for MEMS devices generally fall into three categories, 
silicon and silicon-based materials, polymers, and metals.  

6.1. Silicon and Silicon-Based Materials  

Silicon is the basic material for microfabrication. For this reason its biocompatibility and the 
biocompatibility of related materials is of great interest to researchers. A complex study was carried 
out to investigate the biocompatibility of MEMS materials such as single crystal silicon, 
polycrystalline silicon, silicon dioxide, silicon nitride, single-crystal silicon carbide, titanium, and the 
photo epoxy SU-8 substrates [69]. The study shows that the above mentioned materials are not 
cytotoxic when tested in vitro using mouse fibroblasts. These materials are classified as non-irritants 
based on 1- and 12-week rabbit muscle implantations. The study also revealed that Si3N4 and SU-8 
leached detectable nonvolatile residues in aqueous physiochemical tests. It can be concluded that there 
are few concerns regarding the use of these materials for in vivo or in vitro testing. 

Amorphous silicon-membrane is considered a new type of membrane for use in hemodialysis [70]. 
Silicon chips bearing 1 × 1 mm arrays of approximately 104 slit pores were fabricated via sacrificial 
layer techniques [71–73]. The pore structure is defined by deposition and patterning of a polysilicon 
film onto the silicon wafer. The critical submicron pore dimension is defined by the thickness of a 
sacrificial SiO2 layer, which can be grown with unprecedented control to within ±1 nm. The oxide 
layer is etched away in the final processing step to create the porous polysilicon membrane. Besides 
being used for ultrafiltration, this silicon-based membrane can also be used as a scaffold for renal 
proximal tubule cells. Renal tubule cells were observed to attach to single-crystal silicon and 
polysilicon chips when pretreated with ECM proteins. These cells retained surface markers 
characteristic of renal proximal tubule cells, including tight junction proteins like ZO-1. Trans-
epithelial resistance (TER), a metric of tight junction formation necessary for proximal tubule 
function, was similar between monolayers grown on tissue culture plastic [74]. 

Porous silicon, fabricated from single crystal silicon by an anodization process, is a very interesting 
biomaterial. Its use in drug delivery is reviewed in [75] and [76] while the first report regarding its 
biocompatibility was performed in 1995 [77]. There are a significant number of studies regarding cell 
adhesion and culture [78–81], and protein adsorption [82–84] on porous silicon. A very interesting 
aspect is the biodegradability of porous silicon [85]. High-porosity mesoporous films made of porous 
silicon exhibited substantial dissolution in vitro, while the single crystal material is inert [86,87]. On 
the other hand, porous silicon made, low-porosity microporous films can induce hydroxyapatite 
growth in vitro. Hydroxyapatite is well known as the bone bonding material. In vivo studies regarding 
the tissue compatibility of porous silicon have also been attempted [88,89]. 

Silicon nitride [67,90–92] and silicon carbide deposited using CVD techniques are other materials 
that can be used for cell culture. Cytotoxic evaluation of the Si3N4 ceramics are evaluated in [93]. 
Silicon carbide deposited using PECVD can be used as an alternative of Si3N4 layers [94]. Cell 
adhesion on silicon carbide surfaces can be sensitively improved by dipping the samples in NH4F. It is 
also important to note that classical cleaning process of the silicon nitride/carbide layer in piranha 
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(H2SO4/H2O2), or the exposure of the surface to different etching solutions used for definition of the 
MEMS structure, can have a strong influence on cell adhesion due to the chemical modification of  
the surface.  

6.2. Polymers 

Polymers used as MEMS materials include poly(methylmethacrylate) (PMMA), polyvinylchloride 
(PVC), polycarbonate (PC), polystyrene, polyurethane, and poly(dimethylsiloxane) (PDMS), though 
the bulk of use comes from PDMS devices.  

6.2.1. PDMS 

One of the most widely used polymeric materials for MEMS is PDMS. Soft lithography, novelty 
adapted by the Whitesides group [95–97], is the most commonly used technique for the fabrication of 
PDMS chips. PDMS presents some important advantages such as rapid prototyping, cost-effectiveness, 
ease of visualization (transparent), good gas-permeability, excellent adhesion to glass and many 
substrates, and high fidelity of feature production when cast on microfabricated masters [52]. 
However, PDMS is very hydrophobic, which makes the micro-fluidic channel difficult to fill with 
aqueous solutions. Due to its high hydrophobicity, PDMS absorbs some organic solvents and some 
hydrophobic analytes, causing fouling of the material. Also, the aspect ratio of the features that can be 
generated in PDMS (depth of the trench/width of the trench) is 2:1, which is significantly lower than 
that of silicon (usually 20:1).  

Some strategies have been applied to enhance the biocompatibility of PDMS [97,98]. For example, 
Mirzadeh et al. prepared PDMS samples with different crosslink density in order to track differences 
in molecular mobilities. Their results suggest that molecular mobility causes changes in cell behavior, 
with the optimum cell attachment and proliferation being dependent on the number and surface area of 
cells. In a review paper, Makamba et al. summarized seven major approaches for surface modification 
of PDMS: 

(1) Modification by exposure to energy.  
(2) Dynamic modification using charged surfactants.  
(3) Modification using polyelectrolyte multilayers. 
(4) Covalent modification.  
(5) Chemical vapor deposition.  
(6) Phospholipid bilayer modification. 
(7) Protein modification. 

Various types of bioreactors composed of microstructured PDMS have recently been fabricated for 
perfusion culture of mammalian cells. Leclerc et al. [99] demonstrated the cultivation of fetal human 
hepatocytes (FHHs) in such a PDMS bioreactor. During a one-week perfusion culture in the PDMS 
bioreactors, cells showed good attachment and spreading, and reached confluence across the channels. 
Perfusion culture demonstrated better performance in comparison with static culture, in terms of 
albumin production, an important function of hepatocytes. This was significantly enhanced during 
FHH perfusion culture within the PDMS bioreactors by up to about four times compared with dish-
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level static culture. Similar results were seen when using the HepG2 cell line. Under perfusion 
conditions, HepG2 cell activity was doubled compared to static conditions.  

Another type of PDMS bioreactor was used for cultivation of liver cells [100]. A PDMS membrane 
less than 20 μm thick, with 5 × 5 μm pores served as a scaffold for the attachment of cells. During the 
fifteen days of perfusion in these bioreactors, good cell attachment and subsequently cell 
reorganization was observed. Moreover compared to static cultures in tissue-culture-treated dishes, 
perfusion culture of primary rat adult hepatocyte showed enhanced albumin secretion and ammonium 
removal.  

These new microbioreactors, which attempt to more closely mimic the in vivo liver architecture, 
appear to be very promising tools towards future applications in drug screening or liver Tissue 
Engineering. 

Besides liver Tissue Engineering, PDMS-based microfluidic channels have been applied to other 
systems such as bone [101], blood vessel [102], nerve [103], and kidney [104] Tissue Engineering.  

Mouse calvarial osteoblastic cells, MC3T3-E1, were seeded at 2 × 106 cells/ml and cultured in 
microdevices under flow rates of 0, 5, and 35 ml/min [101]. These PDMS microdevices were 
fabricated with a 3D microstructured channel network for bone Tissue Engineering. Cells attached and 
proliferated well within the designed microdevices. Cell viability was around 85% up to 1 to 2 weeks 
for shear stress values under 5 mPa. The alkaline phosphatase (ALP) activity was enhanced under 
dynamic flow as compared to static cultures in PDMS coated Petri dishes. 

Micro- to nanogrooved PDMS channels were used as substrates on which to culture BAECs in 
order to mimic the uniformly elongated endothelium in natural linear vessels [102]. The channel depth 
ranged from 200 nm, 500 nm, 1 μm, to 5 μm. Smooth surfaces served as control. They found that cell 
alignment was strongest for substrates with 1 μm deep channels at all culture times, namely 1, 4, 24, 
and 48 h. PDMS substrates engraved with micro- and nanochannels serve as a useful tool for 
investigating the topography-cell/cytoskeletal alignment interplay. 

Li et al. [103] developed a PDMS microchip for monitoring the amount of catecholamines released 
from rat pheochromocytoma (PC 12) cells. By varying the concentration of PC 12 cells immobilized in 
microchannels, the authors were able to achieve a catecholamine release ranging from 20 to 160 mM. 
Catecholamine has a stimulus effect on neurotransmitter release. 

6.2.2. PMMA and Other Polymers 

PMMA is another type of polymer used for MEMS applications. This material is transparent and 
commonly known as Plexiglass. PMMA films can be directly patterned using electron-beam 
lithography [104,105] or laser ablation [106]. PMMA can be surface modified by aminolysis reaction 
to introduce amine groups on PMMA for DNA purification [107]. PC and PS are also transparent, and 
their thin films can also be patterned with laser ablation [108]. PMMA, PC, and PS are all 
biocompatible materials frequently used as substrates for mammalian cell culture.  

6.3. Metals 

BioMEMS devices require electrodes which, in the case of implantable devices, can be in contact 
with the tissue. As a result the biocompatibility of these materials is an important aspect. The main 
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materials typically used as electrodes in implantable BioMEMS devices are gold, platinum, or 
titanium. Gold and platinum have been used for a long time in dentistry, while titanium is known for 
its successful application in orthopedic implants. The biocompatibility of titanium is addressed in 
[109] and [69], which also discusses biocompatibility of other MEMS materials. Gold and activated 
carbon electrodes used for electrochemical sensors are biocompatible. Evidence showed that these 
electrodes maintain their properties even after four years of implantation in animals [110]. 

7. On-Chip Cell Culture 

The culture of cells, whether at the macro-scale as in wells and plates, or at the micro-scale as in 
MEMS platforms, necessitate considerations of the dynamic nature of culture conditions. These 
include effects of diffusion and delivery of soluble biochemical molecules, waste removal, nutrient 
depletion, mechanical forces, and extracellular matrix remodeling. The beauty of MEMS platforms is 
the ability to control these parameters through engineering of specialized devices. Kim et al. [111] 
have written a comprehensive practical guide on the use of microfluidic perfusion culture as one 
example of addressing these issues. These and other systems that demonstrate successful cell-handling 
solutions are presented below. 

7.1. Microfluidics-Based Chips  

It is known that cells respond to spatial and temporal cues in their microenvironment. MEMS 
technology can be used to develop microfluidics interfaces that can mimic physiological conditions  
[112–114]. Microfluidic channel-based systems for cell culture have been developed where the cells 
have been successfully shown to grow on glass and PDMS, both rigid 2D substrates [112,115–117]. 
Researchers have also been able to successfully culture and elucidate the development of mammalian 
embryos in microfluidics chips [118–121]. However, 2D culture does not accurately represent in vivo 
conditions as it is lacking in terms of cell-ECM interaction, cell-cell interaction, soluble factors and 
mechanical forces in 3D [122,123]. Therefore, various methods have been developed to generate 3D 
environments including the use of scaffolds [124–126], bioreactors [127], and microstructured 
channels [101]. Toh et al. [128] have developed a 3D microfluidic channel-based cell culture system 
(3D-mFCCS) that facilitates the formation of cell-cell and cell-matrix interactions on the chip. A 
perfusion based culture can help in controlling the microenvironment of cells, through controlled 
delivery of biochemical factors, removal of waste and shear stress application through fluid flow [111]. 
An example of such a perfusion system used in our group is shown in Figure 1. In an effort towards 
realizing the ambition of human-on-chip, Zhang et al. [129] cultured multiple cell types in a fludically 
linked fashion. Compartmentalized microenvironments were achieved on the chip by control release of 
different growth factors, for example TGF-β1, by means of gelatin microspheres. Apart from 
mammalian cell lines and primary cells [130], microbes have also been grown in microfabricated 
platforms [130–133].  
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Figure 1. Schematic diagram of a perfusion system. 

 

7.2. Cell Stimulation on Microfluidic Chips 

Cells can be exposed to shear stress, pressure, and stretch and have been shown to be stimulated if 
experiencing fluid flow comparable to physiological blood flow [101,127,134]. Abhyankar et al. [135] 
proposed a system that can create stable chemical gradients without fluid flow. They used this device 
for cell-signaling applications, such as neutrophil chemotaxis. The Kamm group has also developed a 
microfluidic system that sustains concentration gradients and allows single- and multi-cell culture 
under shear stress [136–138]. As another example, an osmosis-driven pump was used to obtain a stable 
and wide concentration gradient profile [139]. They studied the behavior of human mesenchymal stem 
cells (hMSCs) by using this chemical gradient system. Other examples of temperature [140] and 
chemical gradients have also been used to study the embryonic development in Drosophila [141], the 
effect of colchicine on myoblasts [142], organelle movement in cells [143], and cell differentiation 
[144]. Cell stimulation has been achieved by various modalities including dielectrophoretic forces 
[145,146], bi-axial stretching [147], deflection [148], and cyclic mechanical stimulation [149]. 

7.3. Cell Characterization and Single Cell Analysis 

The predominant single cell analysis method to date utilizes fluorescent probes and image-based 
techniques. However single cell analysis with MEMS technology [150,151] has enabled researchers to 
probe their system in a variety of other ways. For single-cell analysis of yeast, mammalian cells, and 
fungal pores in a microfluidic system, Palková et al. developed a pressure-driven chip-based  
method [152].  

BioMEMS devices have been used extract, recover and analyze mRNA [153,154], amino acids 
[153], and proteins [155] from the cell lysis. In the work of Dittami et al., sensory hair cells isolated 
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from the cochlea of the mammalian inner ear were analyzed using electric impedance spectroscopy 
and electrochemical analysis [156]. Poenar et al. developed a microfluidic system for the analysis of 
single cells [157]. They integrated the steps of cell sampling, single cell loading, docking, lysing, and 
capillary electrophoretic (CE) separation with laser induced fluorescence (LIF) detection. Di Carlo et 
al. have designed a microfluidic-based dynamic single cell culture array [158]. This system allows 
arrayed culture of individual adherent cells with dynamic control of the fluid perfusion, creating 
uniform environments for individual cells. Cell membrane permeability can been enhanced by 
electroporation on chip [159–161], facilitating the manipulation of genetic, metabolic, and synthetic 
contents of single targeted cells at specific loci on a chip-based device. Pathogen and disease detection 
is also possible by doing PCR amplification on chips [161–163].  

7.4. Cell Trapping and Sorting 

Various types of cell separation methods have been developed, based on mechanical forces, 
dielectrophoresis (DEP), optical interactions, magnetic interactions and biochemical interactions [164]. 
Different cell types from blood have been shown to be trapped by microfabricated mechanical filters 
[165,166]. Three types of electric fields have been used to stimulate biological entities on chips: (a) a 
DC field for electrophoresis of charged particles, (b) dielectrophoresis, which is a non-uniform ac 
field, and (c) a combination of both of the above [167]. Bacterial, yeast and mammalian cells have 
been successfully separated using the DEP [168,169]. For optical methods, fluorescent sorting in 
microfluidic devices have been demonstrated, and a microfabricated fluorescence-activated cell sorter 
(mFACS) has been developed [170], which provides higher sensitivity and no cross-contamination at a 
lower cost. Other microfluidic cell sorting technologies developed include devices for high content cell 
analysis and sorting, impedance spectroscopy for cell sorting, magnetic cell sorting (MACS) [171], 
and selective cell lysis to biochemically separate the blood cell types [172,173]. 

7.5. Biosensors (Diagnostics) 

A biosensor is a device used for the detection of specific cellular biochemical outputs mediated by 
isolated enzymes, organelles, whole cells, tissues, or immunosystems. Detection is usually achieved 
through electrical, thermal or optical signals [174], though detection through optical (colorimetric, 
fluorescent or luminescent) and electric (changes in impedance or electric potential) signals are more 
widely used. The use of MEMS technology in building biosensors has made point of care diagnostics 
easier. A whole array of biosensors has been developed for measuring various compounds in the body 
like blood gas [175,176], glucose [177,178], ethanol [179], cholesterol [180], uric acid [181,182], 
lactate [183,184], and pH [184,185]. Biosensors have also been developed to analyze the various 
components of blood including whole blood analysis [186], haemoglobin [187,188], differential blood 
cell counters [189], and blood ketone analysis [190]. Microbial biosensors detect disease-causing 
pathogens [191,192]. Many immunosensors have been fabricated to detect specific kinds of proteins 
by antigen / antibody binding events [193,194]. The idea of DNA sensors has also been realized  
[139–143,153]. Huang et al. [195] made use of an impedimetric immunosensor for high-throughput 
screening of liver fibrosis markers, lamin. In a more recent work, a biosensor and drug delivery 
module were integrated onto a microfabricated system [196]. The same group has also reported the 
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design of a CMOS BioMEMS which demonstrates the possibility of integrating multiple type 
biosensors [197]. 

8. Precise Surface Patterning Using Microtechnology 

The ability of MEMS to precisely modify and pattern a surface up to micrometer or even nanometer 
scale has opened up a whole new dimension for cell culture. Research has been conducted to study the 
effects of topography and microtexture on the dynamics of cell behavior in culture. Considering that 
ECM in vivo is made up of nanoscale structures [198], micro- and nanotopography created by MEMS 
is potentially able to recreate a life-like geometry that might extend biomimetic cues to the cell  
culture system. 

8.1. Controlling Cell Orientation  

Most cell culture studies on microtextured surface inevitably include cell orientation discussions, 
and hint at its profound effect. The effect is especially notable with grooved surface. Numerous studies 
have shown that most cell types such as myocytes [44], fibroblasts [199], and osteoblasts aligned their 
shape and elongated in the direction of the grooves.  

Similar to cell adhesion, the scale of the grooves also plays an important role in determining cell 
alignment. It has been found that the cell orientation generally increases with increasing grove depth 
and decreases with increasing grooves width [200,201]. It has also been proposed that it is the aspect 
ratio of depth and width of gratings that affects the contact guidance behavior [202]. However, the 
range of topographic scale that induces contact guidance is still a debatable matter. One study reported 
that human dermal fibroblasts and human umbilical artery smooth muscle align poorly in grooves less 
than 1 μm in depth [203]. On the other hand, bovine corneal epithelial cells align parallel to substratum 
nanogrooves as shallow as 14 nm [204]. 

The directional growth of cells as determined by the topography has its own significant impact on 
Tissue Engineering. Firstly, organized cells allow one to recreate tissue architecture in a reproducible 
manner [205]. More importantly, a topography closely mimicking in vivo patterns might direct the 
cells to be organized into life-like tissue. When culturing osteoblast-like cells on nanogrooves, it was 
found that not only the cells and actin stress fibers were aligned and elongated along the direction of 
the nanogrooves, but the alignment of collagen matrix was also influenced by underlying nanogrooves. 
These results suggested that the alignment of bone tissue formed depends to some extent on nanoscale 
cues in the longitudinal direction [206]. 

8.2. Controlling Cell Behavior 

Apart from cell adhesion and cell orientation, other aspects of topography-influenced cell behavior 
is less studied. Despite the lack of general trends and systematic studies on this issue, work that focus 
on proliferation, differentiation, and cell superstructure are reviewed here to suggest some of the 
potential effects that can be induced by surface patterning. 

In terms of proliferation, most of the studies found that micro or nanostructure is often associated 
with a decrease in proliferation. Studies have been performed with fibroblasts [207], endothelial cells 
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[208], osteoblasts [209], and even stem cells [210]. However, there are also contradictory results which 
show that topography has no influence over proliferation [46], and even increases proliferation of 
certain cell types [211]. As of now, it seems that there are still no obvious trends to predict the effect of 
surface geometry on proliferation and the interplay of geometry and the target cells. This could mean 
that effects are system- and cell-specific. 

The general decrease in proliferation in stems cells cultured on patterned surfaces prompted some 
researchers to investigate whether it will induce differentiation in stem cells. Although the research in 
this field is still in its early stage, there are some promising results that support such a hypothesis. Yim 
et al. [212] showed that hMSCs can be differentiated into neuronal-like cells when cultured on a 
nanograting. Another study demonstrated the differentiation of osteoblasts from mesenchymal stem 
cells [213]. 

It has been shown that certain cell-surface pattern interaction is able to increase cell-cell interaction 
and subsequently alter the cell culture superstructure. Fabricated micropegs increase the surface area 
for myofibrils stacking [44]. As a result, myocytes cultured on micropegs are significantly higher than 
cells grown on a flat membrane, thus mimicking the cylindrical shapes found in vivo. On the other 
hand, human endothelial progenitor cells cultured on nanograting were organized into a multicellular 
band structure, instead of the confluent monolayer on the flat surface [214]. 

The precise mechanism of how microtopography induces the above-mentioned cell behavior and 
their direct relationships are still unclear. However, work has been conducted to analyze the effect of 
surface patterning on gene expression profiles to give an insight into the underlying molecular 
mechanism [215,216]. It is generally speculated that the initial effect of surface patterning affects 
individual cell cytoskeleton organization and focal adhesion formation [217]. Other effects taking 
place, for example percolation, suggests that cytoskeletal restructuring would result in changes of 
cytoskeletal-linked G-protein and kinase signaling and subsequently affect downstream biochemical 
pathways.  

9. Co-Cultivation Using MEMS Platforms 

Heterotypic cell interactions are important for optimal cell growth, migration, and differentiation. 
The demonstrated physiological importance of interactions between parenchymal cells and non-
parenchymal neighbors has fueled attempts to replace and recover tissue functions through Tissue 
Engineering [218,219]. Effort towards this end has resulted in many works on co-culturing different 
type of cells together. These used to be performed by seeding cells separated by filters or varying the 
seeding density ratio. In the first instance, direct cell interaction is not possible, prohibiting cell-cell 
junctional interaction. In the second instance, there is no control over the spatial distribution of the 
different cell types. In contrast, the development of micro and even nanoscale MEMS devices has 
allowed up to micrometer resolution scale of cell culture patterning [220,221].  

9.1. Co-Cultivation by Chemical Patterning  

The most common technique employed in MEMS for cell patterning is to fabricate a layer of 
chemical patterns on a substrate. This is done in two steps. In the first step, chemicals or biomolecules 
are patterned using micro-contact printing or photolithography. This layer of chemicals will mediate 
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the adhesion of the first cell type. The second cell type can be attached to the remaining surface by 
serum-mediated non-specific adhesion. Such a technique was used to co-culture hepatocytes and 3T3 
fibroblast by Bhatia et al. [222]. 

A similar but more complex variation of the aforementioned technique can be used to spatially 
pattern different cells types onto the same substrate. Two or more types of chemicals that react 
specifically to each target cell would be used. As an example, poly(allylamine) containing azidophenyl 
and β-galactose moieties in the side chains (LPAN3) was patterned on a photosensitive LPAN3-coated 
PMMA substrate to co-culture hepatocytes and fibroblasts. As a result, hepatocytes and fibroblasts 
adhered only to the LPAN3 and PMMA lane respectively and the co-culture followed the pattern as 
determined by the photolithrography procedure [223].  

9.2. Co-Cultivation by Topography Patterning 

Compared to chemical patterning, topographic patterning has been less employed. This is partly due 
to the lack of thorough understanding of cell-topography interaction. Nevertheless, since different cell 
types have different microtopography preferences, topography patterning can be used to control cell 
cultures of more than one cell type. For example, when culturing a mixture of cardiac myocytes and 
fibroblasts on a 10 µm micropegs surface, fibroblasts show a decrease of 50% in proliferation activity. 
Given that terminally differentiated myocytes do not proliferate but fibroblasts in the primary cultures 
do, this method effectively keeps fibroblast numbers in control without totally removing them from 
culture, which is important to maintain long-term survival of myocytes [224].  

10. Precise Control of Mass Transfer 

Compared to traditional cell culture systems, miniaturization of culture devices using MEMS has 
significantly improved the surface-to-volume ratio. Therefore MEMS devices have better mass transfer 
capabilities. Moreover, the ability of MEMS to fabricate materials with nanometer resolution means 
that mass transfer of nutrients and oxygen can be delivered in a precise manner to the cells in culture.  

10.1. Improved Porosity and Decreased Substrate Thickness 

The improvement of matrix porosity and decrease in substrate thickness is important for cells 
cultured in a sandwich configuration such as hepatocytes. In order to maintain the long-term function 
of primary hepatocytes, a second layer of collagen has to be overlaid on top of hepatocytes [225]. 
However, it has been shown that collagen gel itself is a transport barrier for nutrients and metabolic 
waste [226]. The 100–200 μm thick collagen gel [227] is significantly thicker than the mass transport 
distance in vivo where hepatocytes are generally separated from sinusoids by only 5 μm [228]. A 
MEMS fabricated silicon nitrate membrane is able to cut down that distance to 3 μm. Moreover, the 
size and coverage of the pores on the membrane can be precisely determined to achieve optimum mass 
transfer to cell culture surface ratio [91].  
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10.2. Artificial Vascularization 

When culturing a large number of cells for tissue formation, mass transfer poses a great challenge. 
Few cells can tolerate distances of more than 200 µm from blood or media supply since oxygen 
consumption rate is much higher than oxygen diffusion rate. Some sensitive cells, such as islets, 
experience cell death when the diffusion distance is greater than 100 µm [229]. To circumvent this 
problem, MEMS can be used to create patterns mimicking the branched architecture of vascular and 
capillary networks.  

In [230], trenches were etched on silicon and Pyrex surfaces by using standard photolithography 
techniques for seeding cells. Endothelial cells were seeded on the trenches while hepatocytes were 
seeded on the surface. When the co-culture cell sheet was lifted up, a vascularized hepatocyte cell 
sheet was formed. 

In another model, a cell culture chip was separated into media channel and cell culture chamber. 
The media channel is progressively branched into smaller channels that run beneath the cell culture 
chamber. Cells seeded in the cell culture chamber were separated from the media channel by a thin 
layer of membrane. Since the media channel was directly under the cells, effective mass transport of 
metabolites and small proteins was achieved [231]. 

11. Conclusions 

It is clear from these discussions that recreating cell-friendly environments is no small feat. MEMS 
technology provides an excellent miniaturized platform on which to design and execute specialized 
microenvironments for biological assays and Tissue Engineering. There are however many parameters 
that need to be considered in order to create a system optimal to the cell type of interest and the 
biological question being addressed (basic research), or the engineering assay being developed 
(applied research). Biocompatibility considerations traditionally address potential toxicity effects from 
the material surrounding cells, but this consideration is insufficient when designing cell-handling 
systems. We also highlight here that the ability to control protein adsorption, cell-specific adhesion, 
orientation, spreading, and long term maintenance also need to be evaluated, and present some 
methods that serve this purpose. The fairly large repertoire of cell manipulation devices that have been 
successfully designed and implemented to date, as outlined above, is testament to the utility of MEMS 
for cellular and Tissue Engineering assays. In moving forward, MEMS technology has the definite 
potential of allowing researchers to create increasingly complex and detailed modules that would help 
elucidate the working mechanisms of biological systems. 
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