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Background: The subthalamic nucleus (STN) is an effective neurosurgical target to

improve motor symptoms in Parkinson’s Disease (PD) patients. MR-guided Focused

Ultrasound (MRgFUS) subthalamotomy is being explored as a therapeutic alternative to

Deep Brain Stimulation (DBS) of the STN. The hyperdirect pathway provides a direct

connection between the cortex and the STN and is likely to play a key role in the

therapeutic effects of MRgFUS intervention in PD patients.

Objective: This study aims to investigate the topography and somatotopy of hyperdirect

pathway projections from the primary motor cortex (M1).

Methods: We used advanced multi-fiber tractography and high-resolution diffusion MRI

data acquired on five subjects of the Human Connectome Project (HCP) to reconstruct

hyperdirect pathway projections from M1. Two neuroanatomy experts reviewed the

anatomical accuracy of the tracts. We extracted the fascicles arising from the trunk,

arm, hand, face and tongue area from the reconstructed pathways. We assessed the

variability among subjects based on the fractional anisotropy (FA) and mean diffusivity

(MD) of the fibers. We evaluated the spatial arrangement of the different fascicles using

the Dice Similarity Coefficient (DSC) of spatial overlap and the centroids of the bundles.

Results: We successfully reconstructed hyperdirect pathway projections from

M1 in all five subjects. The tracts were in agreement with the expected

anatomy. We identified hyperdirect pathway fascicles projecting from the trunk,

arm, hand, face and tongue area in all subjects. Tract-derived measurements

showed low variability among subjects, and similar distributions of FA and MD

values among the fascicles projecting from different M1 areas. We found an

anterolateral somatotopic arrangement of the fascicles in the corona radiata, and

an average overlap of 0.63 in the internal capsule and 0.65 in the zona incerta.
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Conclusion: Multi-fiber tractography combined with high-resolution diffusion MRI data

enables the identification of the somatotopic organization of the hyperdirect pathway. Our

preliminary results suggest that the subdivisions of the hyperdirect pathway projecting

from the trunk, arm, hand, face, and tongue motor area are intermixed at the level of the

zona incerta and posterior limb of the internal capsule, with a predominantly overlapping

topographical organization in both regions. Subject-specific knowledge of the hyperdirect

pathway somatotopy could help optimize target definition in MRgFUS intervention.

Keywords: somatotopy, diffusion MRI, tractography, stereotactic surgery, neuroanatomy

INTRODUCTION

The hyperdirect cortico-subthalamic pathway is a set of
white matter fibers sending direct inputs from the cortex to
the subthalamic nucleus (STN) (1, 2). Hyperdirect pathway
projections are sought to play a key role in the clinical outcomes
of Deep Brain Stimulation (DBS) of the STN in Parkinson’s
disease (PD) patients (3–5). Several studies have demonstrated
that direct stimulation of hyperdirect pathway fibers is involved
in DBS therapeutic effects (4, 6–10). In particular, hyperdirect
pathway projections from motor and premotor cortical areas are
sought to be a major neural substrate modulated by STN DBS
in addition to the STN itself (11). Recently, Magnetic Resonance
guided Focused Ultrasound (MRgFUS) subthalamotomy has
shown potential for improving motor symptoms and dyskinesias
in PD patients (12–14). In that context, patient-specific
knowledge of the topography of hyperdirect pathway fibers could
help optimize target definition during planning of DBS and
MRgFUS intervention. The anatomy of the hyperdirect pathway
has been investigated in non-human primates (2, 15, 16). Animal
experiments using anterograde tracers in monkeys have shown
that the STN receives somatotopically organized projections
from the primary motor cortex, and that these projections
are arranged from medial to lateral in the order of hindlimb,
forelimb and orofacial part (2, 3, 16). In rats, retrograde and
anterograde tracing studies indicate that a subset of projections
from the motor cortex innervate the STN and the striatum (17–
19). In addition, anterograde tracing studies have shown that
projections from the motor cortex are topographically organized
with the rostral part of the lateral motor cortex projecting to
the lateral portion of the rostral two-thirds of STN and the
caudal part projecting to the ventral aspect of the middle
third of STN (20).

Still, such neural tract-tracing techniques cannot be used
to study brain connectivity on human subjects. User-defined
holographic reconstructions of hyperdirect pathway fibers from
structural MRI scans and histological data have been proposed
to provide novel anatomical priors for human connectomic
analysis (21). However, the reconstructed hyperdirect pathway
fibers were defined based on scientific studies generated in
the macaque brain, thus the approach presents the same
limitations as other studies mapping results of non-human
primates into human subjects (22). Diffusion MRI tractography
enables the non-invasive exploration of white matter fibers at

the individual patient scale. Recent advances in neuroimaging
techniques have enabled identification of the trajectory of
the hyperdirect pathway in vivo in individual subjects using
single tensor deterministic tractography (10, 23–28), single
tensor probabilistic tractography (29), multi-fiber probabilistic
tractography (8, 10, 26, 27, 30–37) and generalized q-sampling
imaging (38). Still, the internal organization of the hyperdirect
pathway in the human brain remains unexplored. In this study,
we seek to reconstruct hyperdirect pathways fibers projecting
from the primary motor cortex using multi-fiber deterministic
tractography and to investigate the internal organization of
hyperdirect fascicles projecting from the trunk, arm, hand,
face, and tongue area. We used MRI datasets from the
Human Connectome Project as they offer the highest quality
diffusion MRI data currently available to investigate brain
connectivity. To the best of our knowledge, this is the first
study of the somatotopy of the hyperdirect pathway in the
human brain.

MATERIALS AND METHODS

MRI Data Acquisition
We used high-resolution structural and diffusion MRI data from
five healthy subjects (100307, 100408, 101915, 103414, 106016)
of the Washington University, University of Minnesota, and
Oxford University Human Connectome Project (WU- Minn
HCP) consortium (39). TheWU-Minn HCP scans were acquired
on young healthy subjects (age 21–35) and represent the best
neuroimaging data available for investigating the topography of
the white matter in the human brain. The subjects were scanned
on a customized Siemens 3.0 Tesla Skyra scanner using a 32-
channel head coil and a customized gradient. The structural MRI
data included T1-weighted and T2-weighted volumes acquired
with the following parameters: T1-weighted: TE = 2.14ms, TR
= 2,400ms, voxel size= 0.7mm; T2-weighted: TE= 565ms, TR
= 3,200ms, voxel size= 0.7mm. The diffusion-weighted images
were acquired using a single-shot 2D spin-echo multiband Echo
Planar Imaging sequence with 90 gradient directions, 3 b-values
(b1 = 1,000 s/mm2, b2 = 2,000 s/mm2, b3 = 3,000 s/mm2),
1.25mm slice thickness and 1.25mm image resolution (40, 41).
The diffusion-weighted images used in this study had been
processed for intensity normalization, eddy-current, patient-
motion and EPI distortion correction and co-registered to the
anatomical scans (42–44).
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MRI Data Analysis Workflow
Our data analysis workflow consisted of three steps: first,
the segmentation of anatomical regions of interest, second
the tractography reconstruction of hyperdirect pathway fibers,
and third the analysis of the somatotopic organization of the
hyperdirect pathway.

Segmentation of the Regions of Interest
We defined three sets of anatomical regions of interest (ROIs)
in the primary motor cortex (M1), internal capsule (IC) and
subthalamic nucleus (STN) using the 3D Slicer open-source
platform for medical research (45). In the first set of ROIs, we
outlined the precentral gyrus in a volume-rendered image of
the T1-weighted scan. In the second set of ROIs, we generated
a fractional anisotropy (FA) map and a diffusion-encoded
color (DEC) map from the diffusion-weighted images using
the SlicerDMRI extension of 3D Slicer (46, 47). We manually
segmented the posterior limb of the IC in axial cross-sections of
the FA map overlaid on the DEC map using the Segment Editor
module of 3D Slicer. In the third set of ROIs, as the contours
of the STN were not directly visible in the T1-weighted images,
we used the automated atlas-based segmentation approach of the
pyDBS software implemented in 3D Slicer (48). The method uses
a 3D histological and deformable atlas of the basal ganglia that
comprises 3D meshes of 80 structures identified on histological
stainings from a post-mortem specimen (49). We deformed
the Yeb atlas using a global-to-local registration approach to
generate 3D meshes of the STN from the T1-weighted images
(50). The meshes were subsequently voxelized in 3D Slicer to
create isotropic ROIs with 0.3mm voxel size.

Tractography Reconstruction
We applied a combination of diffusion MRI analysis tools that
arose from the specific experience of our team. We used a
multi-fiber ball-and-stick modeling to estimate the orientation
of white matter fibers at each voxel from the diffusion-weighted
MRI data. The ball-and-stick model is a multi-compartment
approach constrained to include an isotropic “ball” compartment
and multiple anisotropic “sticks” compartments (51). The model
was fitted to the diffusion-weighted MRI data using a Bayesian
estimation procedure to robustly estimate fiber orientations and
volume fractions, as well as their total count (52). Parameter
settings included the continuous exponential approach for multi-
shell data and a maximum of three fiber compartments per voxel.

To reconstruct the hyperdirect pathway fibers using the ROIs
described above, we used a multi-fiber streamline tractography
algorithm with a model-based interpolation framework (53, 54)
from the Quantitative Imaging Toolkit (QIT) (55). The ball-
and-stick models were interpolated during bundle tracking using
a data-adaptative kernel regression framework with a spatial
bandwidth of 1.0mm, model selection parameter λ = 0.9999,
and up to three fiber compartments (54). Fiber tracking was
performed using a step size of 0.5mm, and 25 seeds per voxel
in a one-voxel neighborhood surrounding the M1 and STN
ROIs. Hyperdirect pathway fibers were retained only if they
intersected the M1, IC and STN ROIs. Tracts were terminated
upon reaching the STN or M1 ROIs, when the angle changed

more than 55 degrees, or when a compartment’s volume fraction
dropped below 0.05. We stopped the fibers at the STN surface
as the image resolution was not sufficient to follow the tracts
inside the nucleus. Thus, by design this aspect of the hyperdirect
pathway termination is not covered in this study.

Evaluation by Neuroanatomy Experts
Two expert neuroanatomists (J.Y. and C.F.) with over 30 years
of experience performed qualitative evaluation of the anatomical
accuracy of the hyperdirect pathway. For each subject, the
tractography reconstructions were loaded in 3D Slicer along with
the structural MRI scans, diffusion-weighted MRI scans, and 3D
models of the subthalamic nucleus. The anatomical accuracy of
the tracts was evaluated based on the similarity between the
tractography reconstructions and known neuroanatomy using
three criteria: the topographical localization of each tract; the
start and end region of the fascicles, and the specific shape of the
bundles. The experts assigned a score ranging from 5 (excellent)
to 1 (poor) averaged on the criteria used for the review of
each tract.

Somatotopic Organization
To investigate the internal organization of the reconstructed
pathways, we defined five primary motor cortex ROIs in a 3D
volume-rendered image of the T1-weighted scan. The ROIs
were placed in the trunk, arm, hand, face, and tongue motor
homunculus in the precentral gyrus of each hemisphere using
the Markups module of 3D Slicer. First, we identified the “hand-
knob” sign in the precentral gyrus to place the hand motor ROI
(56). Second, we positioned the arm ROImedial to the hand ROI.
Third, the trunk ROI was placed medial to the arm ROI and close
to the midline of the brain. Fourth, we placed the face ROI lateral
to the hand ROI in the lower portion of the precentral gyrus in the
section of the top of the lateral ventricles (57). Fifth, the tongue
ROI was positioned in the most lateral portion of the precentral
gyrus in the section just above the Sylvian fissure (57). We used
the SlicerDMRI extension of 3D Slicer to extract the fascicles
arising from the trunk, arm, hand, face, and tongue ROIs from
the reconstructed hyperdirect pathway.

Tract-Derived Measurements
To assess the variability among subjects, we calculated the
fractional anisotropy (FA) and mean diffusivity (MD) of the
envelope of the trunk, arm, hand, face and tongue hyperdirect
pathway fascicles. We computed the envelope of the fascicles by
converting the streamlines into voxel wise binary label maps with
label = 1 when a tract was detected in a voxel and label = 0
when no tract was detected. The envelope, FA volume, and MD
volume for each fascicle were calculated using the SlicerDMRI
extension of 3D Slicer. In addition, to investigate the segregation
of hyperdirect pathway fascicles, we segmented the contour of
each fascicle in two axial slices at the level of the internal capsule
and zona incerta superior to the subthalamic nucleus, and we
computed the centroid of each contour.
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Quantitative Analysis
We performed a statistical analysis of the scores given by the
neuroanatomy experts and the tract-derived measurements. We
evaluated the degree of agreement between the experts using
the intraclass correlation coefficient (ICC) and we computed
the internal consistency of the scores using Cronbach’s alpha
reliability analysis (58). To evaluate the variability among
subjects, we computed the average, maximum and standard
deviation of FA and MD values for the fascicles associated
with the trunk, arm, hand, face, and tongue M1 areas. Finally,
to investigate the segregation of hyperdirect pathway fibers,
we computed the Dice Similarity Coefficient (DSC) of overlap
between the contours of the trunk, arm, hand, face, and tongue
fascicles segmented in the axial slices at the level of the internal
capsule and zona incerta. We compared the relative anterior-
posterior orientation of the centroids of the contours to assess
the spatial arrangement of the fascicles.

RESULTS

We successfully reconstructed hyperdirect cortico-subthalamic
fibers connecting the primary motor cortex to the ipsilateral STN
in all five subjects. The hyperdirect pathway fibers presented a
fan shape configuration with fibers arising from the whole extend
of the precentral gyrus, converging into the corona radiata,
descending through the posterior limb of the internal capsule,
and terminating in a compact stem entering the subthalamic
nucleus. Figure 1 shows the 3D tractography reconstruction in
a single subject. The use of an advanced fiber models enables
the partial identification of complex fibers crossings of the
hyperdirect pathway with the superior longitudinal fasciculus
(Figure 1C).

The evaluation of the hyperdirect pathway fibers by two
neuroanatomical experts demonstrated that the tractography
reconstructions were in agreement with the expected anatomy
with an average score of 3.7 ± 0.92. The ICC score was 0.44 and
the Cronbach’s alpha score was 0.91 with 95% confidence interval
of [0.67, 0.98] which showed a good level of agreement between
the experts.

We identified fascicles projecting from trunk, arm, hand,
face, and tongue M1 area in all subjects. Figure 2 shows
the somatotopic organization of hyperdirect pathway fibers
in a single subject. The spatial arrangement of hyperdirect
pathway fascicles was anterolateral in the corona radiata and
predominantly overlapping at the level of the internal capsule and
zona incerta. Tract-derivedmeasurements showed low variability
among subjects, and similar distributions of FA and MD values
among the tracts projecting from the different motor regions
(Figure 3).

Table 1 summarizes the Dice Similarity Coefficient (DSC) of
spatial of overlap values between the trunk, arm, hand, face and
tongue fascicles in the internal capsule and zona incerta. Overall,
the tracts in the internal capsule showed an average overlap of
0.63 with a maximum average overlap of 0.83 for the fascicles
projecting from the arm and hand area, and a minimum average
overlap of 0.47 for the fascicles projecting from the trunk and

tongue area. In the zona incerta, the tracts showed an average
overlap of 0.65 with a maximum average overlap of 0.81 for
the fascicles projecting from the arm and hand area, and a
minimum average overlap of 0.50 for the fascicles projecting from
the hand and tongue area. The analysis of the position of the
centroid of the tracts in the internal capsule showed that the
most anterior position was occupied by tracts projecting from
the tongue (30%) and face (30%) area, while the most posterior
position was occupied by tracts projecting from trunk (70%) and
tongue (20%) area. In the zona incerta, the most anterior position
was occupied by tracts projecting from the hand (40%) and face
(40%) area; the most posterior position was occupied by tracts
projecting from the tongue (50%) and trunk (30%) area.

DISCUSSION

Our exploratory study investigated the somatotopic organization
of hyperdirect pathway projections from the primary motor
cortex to the subthalamic nucleus (STN) on healthy subjects of
the HumanConnectome Project.We have shown that multi-fiber
tractography and high-resolution multi-shell diffusion-weighted
MRI data enable the identification of white matter fascicles
connecting the trunk, arm, face, hand, and tongue primary motor
cortex area to the subthalamic nucleus. We demonstrated that
the use of an advanced fiber model enables the identification
of lateral projections of the hyperdirect pathway from the face
and tongue motor area, as well as some complex fibers crossings
with the superior longitudinal fasciculus. The evaluation of the
anatomical accuracy by neuroanatomy experts demonstrated that
the topography of the reconstructed tracts was in agreement
with known neuroanatomy. The analysis of tract-derived
measurements demonstrated a low level of variability among
subjects. We found an anterolateral somatotopic arrangement
in the most superior section of the hyperdirect pathway. In
the internal capsule, hyperdirect pathway fibers projecting from
different motor areas showed an average overlap of 0.63, with
the most anterior position occupied by tongue and face fibers
and the most posterior position occupied by trunk and tongue
tracts. In the zona incerta, the average overlap was 0.65 with the
most anterior position occupied by hand and face fibers and the
most posterior position occupied by tongue and trunk fibers. Our
preliminary tractography results suggest that the subdivisions of
the hyperdirect pathway are intermingled in the zona incerta
and posterior limb of the internal capsule, with a predominantly
overlapping topographical organization in both regions. Tract-
tracing experiments in monkeys have previously reported
anatomical overlap of projections from the frontal cortex in
subcortical structures: Selemon et al. observed topographical
overlap and interdigitation of corticostriatal projections in
the ventromedial striatum (59); in the pedunculopontine
nucleus, Matsumara et al. have shown that the somatotopic
representations of projections from motor-related areas are
intermingled rather than segregated (60).

Our tractography findings in the hyperdirect pathway are
consistent with observations from two previous experimental
studies on the structure and function of the STN in the human
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FIGURE 1 | Hyperdirect pathway in subject 100307. The figure shows the tractography reconstruction of hyperdirect pathway fibers projecting from the primary

motor cortex to the subthalamic nucleus. The tracts (white) are displayed on a diffusion encoded color map overlaid on a T1-weighted image with 3D models of the

subthalamic nucleus (orange) for anatomical reference. (A) Anterior 3D view of the hyperdirect pathway. (B) Superior 3D view of hyperdirect pathway fibers

descending from the primary motor cortex. (C) Anterior 3D view of the crossings of hyperdirect pathway fibers with the superior longitudinal fasciculus. The arrow

points at the intersection of lateral projections of the hyperdirect pathway with a cross-section of the superior longitudinal fasciculus (green).

brain. In 2002, an anatomical study using calbindin labeling
demonstrated that the subdivisions of the STN are separated
by functional gradients, not by sharp boundaries (61). In 2007,
a DBS study on PD patients suggested that the STN serves as
a nexus for the integration of motor, cognitive and emotional
components of behavior and that these functional modalities
are not processed in a segregated manner (62). These two
studies on the lack of anatomical and functional segregation of
components of the STN are in agreement with our observations
on the overlap of hyperdirect pathway fibers projecting from
different cortical regions. Furthermore, a cytoarchitectural study
of STN neurons in the human brain has shown that the
dendrites of STN neurons extend up to 1,200µm to neighboring
territories, which suggests a convergence of inputs from different
cortical areas on individual neurons of the nucleus (63). This
convergence has been used in the model of focused selection and
inhibition of competing motor programs by the basal ganglia
(64). In this model, when voluntary movement is generated,
the motor cortex uses the hyperdirect pathway to send a short-
latency signal to the whole STN, which causes a fast and
widespread excitation of the globus pallidus pars interna (GPi)
and substantia nigra pars reticulata (SNpr) resulting in an
inhibition of competing motor mechanisms that would interfere
with the desired movement (64). Simultaneously, the motor
cortex creates a focused excitation of the striatum through the
direct pathway, which causes a focused inhibition of specific GPi
and SNpr neurons, followed by a focused excitation of neurons
in the thalamus and cortex allowing the desired movement
to proceed (64). The convergence of inputs from different
cortical areas suggests that the STNmight not be topographically

organized to preserve the somatotopy of the motor cortex (62),
which is in agreement with our findings on the topography of
corticosubthalamic fibers.

To the best of our knowledge, this is the first study of
the somatotopy of the hyperdirect pathway in the human
brain. Tractography studies have investigated the somatotopy
of the pyramidal pathway using single-tensor deterministic
tractography (65–69), single-tensor probabilistic tractography
(70–73), and two-tensor probabilistic tractography (74). These
studies have reported a segregation of corticospinal tract
fibers (65–74) and an overlap of corticobulbar tract fibers
(74). While the pyramidal tract is adjacent to the hyperdirect
pathway, the two white matter bundles are anatomically
different. Pyramidal projections from the primary motor cortex
are composed of corticospinal projections to the spine and
corticobulbar projections to motor nuclei of cranial nerves,
whereas hyperdirect pathway projections from the primary
motor cortex terminate in the subthalamic nucleus. In addition,
the hyperdirect pathway and the pyramidal pathway have
opposite roles in DBS outcomes: direct stimulation of the
hyperdirect pathway is involved in DBS therapeutic effects (4,
6–10), whereas the spread of current to the pyramidal tract
can trigger pyramidal tract side effect (75). These anatomical
and functional differences are a potential explanation of the
differences between the somatotopy we observed in our study and
the somatotopies reported in pyramidal tract studies.

The somatotopic organization of the STN has been described
in healthy monkeys using invasive neural tracing techniques.
These studies have shown that the primary motor cortex
projects to the whole extend of the STN (1, 16), and neural
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FIGURE 2 | Somatotopic organization of hyperdirect pathway fibers projecting from the primary motor cortex trunk, arm, hand, face, and tongue area. The tracts are

displayed on axial and coronal T1-weighted images. (A) 3D anterior view of hyperdirect pathway fibers with 3D models of the subthalamic nucleus (orange). (B) 3D

anterior view of hyperdirect pathway fibers with axial T1-weighted images at the level of the coronal radiata, internal capsule and zona incerta. (C–E) Intersection of

hyperdirect pathway fibers with an axial T1-weighted image at the level of the corona radiata (C), posterior limb of the internal capsule (D), and zona incerta (E). The

three axial slices in (B) correspond to the axial images displayed in (C–E). The fibers are colored according to the motor regions: trunk (blue), arm (dark purple), hand

(dark pink), face (light purple), tongue (light pink).

tracers have revealed a somatotopic arrangement with lower-
limb cells located medially to upper-limb cells, and the face
area located in the most lateral zone of the nucleus (1, 76, 77).
Several groups have investigated the somatotopic organization
of the STN in Parkinson’s disease patients using microelectrode
recordings (MERs) to identify movement related cells (MRCs)
during DBS surgery (78–82). In these studies, most MRCs were
detected in the dorsolateral portion of the STN. Rodriguez-
Oroz et al. identified a somatotopic distribution similar to
the distribution in healthy monkeys, with cells associated
in the lower limb located in the upper dorsal third and
centromedian portion, and cells associated with the upper
limb located in the dorsal two-thirds and lateral region of

the STN (78). Abosch et al. found movement-related neurons
located throughout the STN, including the ventral portion of
the nucleus despite a rostrodorsal clustering of the cells, and
reported an absence of clear somatotopic relationship of limb
representation (79). Theodosopoulos et al. reported arm-related
cells located laterally and at the rostral and caudal poles of
the STN, and leg-related cells located medially and centrally
(80). Romanelli et al. found that lower extremity–related cells
were located medial and ventral to upper extremity–related cells
(81). Sasaki et al. showed that cells responding to the upper
limbs were more commonly observed in the lateral, anterior,
and superior regions of the STN, and that cells associated
with the distal joints were located above those associated with
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FIGURE 3 | Tract-derived measurements across subjects. The figure shows

box plots of the fractional anisotropy (FA) (top) and mean diffusivity (MD)

(bottom) of hyperdirect pathway fascicles projecting from the trunk, arm,

hand, face, and tongue motor area for all subjects. The lines in each box

correspond to the median (green), interquartile range (blue), minimum and

maximum (black) values of the tract-derived measurements.

TABLE 1 | Dice Similarity Coefficient of overlap of hyperdirect pathway fascicles in

the internal capsule and zona incerta.

DSC Tr-

A

Tr-

H

Tr-

F

Tr-

To

A-

H

A-

F

A-To H-F H-To F-To

IC Mean 0.8 0.74 0.63 0.47 0.83 0.7 0.49 0.68 0.48 0.49

Std 0.07 0.03 0.09 0.21 0.08 0.13 0.18 0.14 0.12 0.18

ZI Mean 0.76 0.71 0.67 0.54 0.81 0.73 0.53 0.68 0.50 0.57

Std 0.09 0.09 0.13 0.21 0.09 0.14 0.20 0.10 0.21 0.20

The table shows the mean and standard deviation (std) of the Dice Similarity Coefficient

(DSC) of spatial overlap of the fascicles projecting from the trunk (Tr), arm (A), hand (H),

face (F), and tongue (To) motor area displayed in Figure 2. Results show that the fascicles

predominantly overlap with a minimum DSC average of 0.47 in the internal capsule (IC)

and 0.50 in the zona incerta (ZI).

the proximal joints, in both upper and lower limbs (82).
While somatotopic findings in Parkinson’s disease patients may
not be generalized to healthy subjects, these electrophysiology
results in the STN contrast with our tractography findings.
Although we did not investigate the somatotopy of the fibers
inside the STN due to the presence of multiple fiber crossings
that pose technical limitations to tractography algorithms, our
results in the zona incerta immediately superior to the STN
show a predominant overlap of hyperdirect fascicles projecting
from different motor regions without any clear segregation
of the fibers. These discrepancies between MERs findings
and tractography results might arise from the difference in
scale between the two techniques: the 10µm diameter of

the tip of a microelectrode enables single neuronal response
recordings whereas the 1.25mm voxel size of a diffusion-
weighted MRI dataset contains over 100,000 axons. In addition,
hyperdirect pathway fibers projecting from large regions of
the primary motor cortex homunculus are compacted into
a relatively small space at the level of the internal capsule
and zona incerta. The use of smaller voxel size may help
further establish whether homunculus organization observed
in the primary motor cortex is maintained as hyperdirect
pathway fibers descend to subcortical areas, as suggested by
electrophysiology studies of the STN, or whether intermingling of
fibers occurs.

Our study presents several limitations. First, we used a small
number of subjects as our goal was to explore the feasibility
of identifying the somatotopic organization of the hyperdirect
pathway using multi-fiber tractography and the highest quality
neuroimaging data available. We showed that white matter
bundles projecting from the trunk, arm, hand, face and tongue
motor areas could be consistently identified in all subjects. Future
work using a larger cohort will enable us to investigate the
anatomical variability of hyperdirect pathway projections from
the primary motor cortex. Second, we used voxelized tracts to
evaluate the variability of tract-derived measurements across
subjects. Converting streamlines into a voxel grid can introduce
small inaccuracies due to partial volume effects. Third, while
we used an advanced multi-fiber model and high-resolution
diffusion-weighed data, our tractography results include false-
negative tracts in the hand and face fascicles as seen in
Figure 2A. These false-negative tracts are likely due to complex
fiber crossings with the dorsal superior longitudinal fasciculus
which interconnects the frontal and parietal lobe (83). While
our multi-fiber model enabled the resolution of some of the
crossings of hyperdirect fibers with the superior longitudinal
fasciculus, the large extent of the pathway still poses technical
challenges to fiber tracking. We conducted our analysis using
HCP diffusion MRI data which are the best neuroimaging
data currently available to study the connectivity of the human
brain. The 1.25 mm-voxels of the diffusion-weighted images
nevertheless contain a large number of axons belonging to
different white matter bundles. Future work with a higher
number of compartments will enable us to refine the tractography
reconstruction of complex fiber crossings of the hyperdirect
pathway with the superior longitudinal fasciculus. Further
developments also include the exploration of other advanced
tractography methods such as multi-fiber unscented Kalman
Filter tractography (47). Finally, a comparison of histological
data with our tractography findings would help investigate the
topography of hyperdirect pathway fibers in the internal capsule
and in the zona incerta.

Diffusion MRI tractography provides a non-invasive window
on the architecture of the human brain white matter. While
tractography reconstructions enable 3D visualization of the
location and trajectory of white matter pathways, the technique
still presents limitations for neurosurgical decision-making
(84). As mathematical models of diffusion and fiber tracking
algorithms are continuously refined by the medical image
computing research community, diffusion MRI tractography
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has the potential to become part of the apparatus of brain
mapping tools to help understand the clinical effects of electrical
stimulation and focused ultrasound lesioning in motor disorders
patients. Tractography reconstructions of the pyramidal tract,
medial lemniscus and dentatorubrothalamic tract have provided
innovative tractography-based approaches for targeting the
ventral intermediate nucleus during MRgFUS intervention
in Essential Tremor patients (85–89). Recent studies using
tractography reconstructions of the hyperdirect pathway on
motor disorder patients have revealed the potential of the
technique to assist with Deep Brain Stimulation intervention
in Parkinson’s Disease patients (8, 25–28, 34, 35, 37, 38).
The HCP diffusion MRI scans represent the state-of-the-art
data for characterizing structural human brain connectivity.
As transcranial focused ultrasound subthalamotomy is being
investigated for unilateral treatment of motor symptoms and
dyskinesias in Parkinson’s Disease patients (12–14), our study
aimed at investigating tractography reconstructions of the
hyperdirect pathway that could become available to assist with
target definition during MRgFUS intervention in the near future.

CONCLUSION

Our study shows that advanced multi-fiber tractography
techniques combined with high-resolution diffusion MRI data
enable 3D reconstruction of the whole extent of hyperdirect
projections from the primary motor cortex to the STN
and the identification of cortico-subthalamic fascicles arising
from the trunk, arm, hand, face, and tongue area. Our
preliminary tractography results suggest that the subdivisions
of the hyperdirect pathway are intermingled in the zona
incerta and posterior limb of the internal capsule, with a
predominantly overlapping topographical organization in both
regions. Diffusion MRI tractography is a clinical research
tool that holds promise for identifying the location and
trajectory of white matter pathways during stereotactic surgery.
Knowledge of the somatotopic organization of the hyperdirect
pathway at the individual patient scale could provide clinically
relevant information for planning stereotactic surgery of the
STN, and contribute to advancing the understanding of the
therapeutic mechanisms of action of MRgFUS and DBS. White
matter maps of the hyperdirect pathway in healthy subjects
could help evaluate potential alterations of the somatotopy
of different body parts in Parkinson’s disease patients, and

thus expand our understanding of the pathophysiology of
the disease.
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