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The idea that a flexible behavior relies on synchronous neural activity within intra- and
inter-associated cortical areas has been a matter of intense research in human and
animal neuroscience. The neurophysiological mechanisms underlying this behavioral
correlate of the synchronous activity are still unknown. It has been suggested that the
strength of neural synchrony at the level of population is an important neural code to
guide an efficient transformation of the sensory input into the behavioral action. In this
study, we have examined the non-linear synchronization between neural ensembles
in area MT of the macaque visual cortex by employing a non-linear cross-frequency
coupling technique, namely bicoherence. We trained a macaque monkey to detect
a brief change in the cued stimulus during a visuomotor detection task. The results
show that the non-linear phase synchronization in the high-gamma frequency band
(100–250 Hz) predicts the animal’s reaction time. The strength of non-linear phase
synchronization is selective to the target stimulus location. In addition, the non-linearity
characteristics of neural synchronization are selectively modulated when the monkey
covertly attends to the stimulus inside the neuron’s receptive field. This additional
evidence indicates that non-linear neuronal synchronization may be affected by a
cognitive function like spatial attention. Our neural and behavioral observations reflect
that two crucial processes may be involved in processing of visuomotor information in
area MT: (I) a non-linear cortical process (measured by the bicoherence) and (II) a linear
process (measured by the spectral power).

Keywords: bicoherence, quadratic phase coupling, non-linear phase synchronization, visual area MT,
spatial attention

INTRODUCTION

Neural oscillations are frequently observed in cortical activities. Notably, it has been widely
asserted that neural oscillations are involved in many cortical computations, including sensory
coding (Siegel et al., 2007; Belitski et al., 2008; Schroeder and Lakatos, 2009) and information
transmission (Hipp et al., 2011; van Kerkoerle et al., 2014; Rohenkohl et al., 2018). Brain
networks can communicate through frequency-specific oscillations. These oscillatory activities
can play a functional role in brain networks to flexibly integrate, process, and transmit neural
information among cortical circuitries (Moore and Armstrong, 2003; Buschman and Miller, 2007;

Frontiers in Neuroscience | www.frontiersin.org 1 April 2020 | Volume 14 | Article 230

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00230
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.00230
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00230&domain=pdf&date_stamp=2020-04-03
https://www.frontiersin.org/articles/10.3389/fnins.2020.00230/full
http://loop.frontiersin.org/people/540080/overview
http://loop.frontiersin.org/people/7246/overview
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00230 April 2, 2020 Time: 21:21 # 2

Khamechian and Daliri Non-linear-Synchronous Neuronal Activity in MT Cortex

Saalmann et al., 2007; Siegel et al., 2008; Hipp et al., 2011).
However, recent studies have suggested that brain oscillations
could interdependently interact, forming so-called cross-
frequency coupling (CFC) (Buzsáki, 2006; Jensen and Colgin,
2007). This form of interactive computation has been observed
in several brain areas of different species (Canolty et al., 2010;
Igarashi et al., 2014; Esghaei et al., 2015). The CFC has an
important role in many cortical functions, including sensory
processing (Saleh et al., 2010), learning (Tort et al., 2009; Igarashi
et al., 2014), memory (Axmacher et al., 2010), and attention
(Esghaei et al., 2015; Spyropoulos et al., 2018). It is believed
that CFC can functionally facilitate information coordination
between neurons, simultaneously in time and space (Aru
et al., 2015). Furthermore, recent studies in human and non-
human primates have shown that CFC may serve as a potential
physiological mechanism underlying intra-areal communication
in the brain (Darvas et al., 2009; Canolty and Knight, 2010;
Holz et al., 2010; Fiebelkorn et al., 2018). For example, a study
on the visuospatial working memory in human indicated that
CFC between oscillatory phases of theta (4–8 Hz) and gamma
(50–70Hz) activities can regulate an effective communication
between occipital and parietal brain regions (Holz et al., 2010).
Another investigation in macaque monkey suggested that
coupling between the phase of theta oscillations (3–8 Hz) and
the power of high frequencies (9–45 Hz) during spatial attention
potentially facilitates an interregional communication between
the frontal eye field (FEF) area, lateral intraparietal area (LIP),
and visual cortex (Fiebelkorn et al., 2018).

Contemporary investigations into visual areas have shown
that oscillatory components of local field potential (LFP) (Liu
and Newsome, 2006; Womelsdorf et al., 2006; Smith et al.,
2015; Khamechian et al., 2019) and neural spiking activity
(Liu and Newsome, 2005; Smith et al., 2015; Parto Dezfouli
et al., 2018) could provide useful information about how neural
activities are linked to visuomotor behavior. These studies have
reported a trial-by-trial correlation between the power of beta
(10–30 Hz) (Smith et al., 2015), gamma, and high-gamma
(50–200 Hz) (Liu and Newsome, 2006) LFPs and behavioral
output. Moreover, they have shown that the strength of gamma
(Womelsdorf et al., 2006) and high-gamma synchronization
(Khamechian et al., 2019) between sensory neurons in the
dorsal and ventral visual pathway, respectively, predict the speed
of behavioral responses. Despite these promising observations
on neural-behavior correlation in the sensory visual areas,
the contributive role of non-linear neuronal synchronization
in guiding visuomotor behavior has not been studied in
the visual cortex.

Bicoherence is an advanced signal processing technique
capable of tracking the neuronal non-linearity and non-Gaussian
signals underlying brain functions (Bullock et al., 1997; Darvas
et al., 2009; Li et al., 2009, 2013). Many studies has shown that this
technique can quantify the strength of non-linear phase-phase
CFC [i.e., quadratic phase coupling (QPC)] between frequency
components of the LFP signal (von Stein et al., 2000; Wang
et al., 2007; Darvas et al., 2009; Sheremet et al., 2019). The
neural generators of QPC have been reported for object coding
in single neuron, in which different features of an object (e.g.,

size and angular speed) are encoded by a multiplicative process
(Gabbiani et al., 2002). QPC has also been found in neuronal
control circuits underlying sensorimotor control (Ahissar and
Kleinfeld, 2003). Furthermore, QPC can effectively facilitate
transmission of selective information between cortical networks
(Darvas et al., 2009; Akam and Kullmann, 2014). On the other
hand, it has been shown that the QPC plays a key role in
multiplexing neural signals, which improves neural transmission
(Akam and Kullmann, 2014).

Here, we have studied LFP signals by employing the
bicoherence method to examine how non-linear neuronal
synchronization in the MT area is involved in the processing of
visuomotor information. For this purpose, we trained a macaque
monkey to perform a visuomotor detection task. The animal
had to detect a brief change in the target stimulus. Results have
indicated that the strength of non-linear phase synchronization
among MT neurons predicts the animal’s reaction time on
a trial-by-trial basis. Importantly, we observed that the non-
linear phase synchronization mostly occurs in the high-gamma
frequency band (100–250 Hz) of LFPs, in line with a recent study
(Khamechian et al., 2019). Moreover, the result demonstrated
that non-linear characteristics of neuronal synchronization are
modulated when the monkey covertly attends to the stimulus
inside the neuron’s receptive field. Furthermore, we observed
that the non-linear and the linear neuronal synchronizations
potentially play a functional role in processing visuomotor
information in the MT area of the visual cortex.

MATERIALS AND METHODS

Animal Welfare
All animal procedures in this study were performed at
the German Primate Center in Göttingen, Germany, and
were approved by the responsible regional government office
[Niedersaechsisches Landesamt fuer Verbraucherschutz und
Lebensmittelsicherheit (LAVES)], under the permit numbers
33.42502/08-07.02 and 33.14.42502-04-064/07. For more details
on the non-human primate facilities, training facilities, and
surgical techniques in this laboratory, please see Roelfsema
and Treue (2014), Calapai et al. (2017), Berger et al. (2018),
Pfefferle et al. (2018).

Experimental Task and Recording
A male macaque monkey was trained to fixate on a central
fixation point and covertly attend to one of two coherently
moving random dot patterns (RDP). Each trial was initiated
by pressing a lever while maintaining the gaze on a central
fixation point for 130 ms (Figure 1). Next, a static RDP appeared
for 455 ms to cue the upcoming target’s location. Following a
short blank period (325 ms), two moving RDPs were shown
inside and outside the receptive field (RF) of the recorded
neurons for a random period of 680–4250 ms. The monkey
had to release the lever immediately after the target underwent
a brief change in direction of motion. The RDP’s direction
for target and non-target (distractor) stimuli were the same,
chosen randomly from eight possible directions (0–360◦ with
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steps of 45◦). The monkey was rewarded if he correctly released
the lever within 150–650 ms after the target change occurred.
Trials were terminated without a reward when the monkey
(i) broke the maintenance of his gaze on the fixation spot,
(ii) released the lever in response to a distractor change, or
(iii) responded too late after the target change. The monkey
correctly detected the target changes in 86% of the trials
without fixation breaks. He incorrectly terminated 3 and 11%
of trials by responding to a non-target change (false alarm)
and ended the trial without performing any response (miss
trial), respectively.

Single-unit neural activities (SUAs) and local field potentials
(LFPs) were recorded extracellularly from MT neurons using
a multi-channel recording system (Mini-Matrix, Thomas
Recording, and Plexon data acquisition system, Plexon Inc.).
The signals were split into SUA and LFP by hardware filters.
Moreover, the LFPs and the SUAs were amplified and digitized
at 1 and 40 kHz, respectively. The 50 Hz noise of the power
line was eliminated from the LFPs using a non-causal 4th-order
Butterworth notch filter. Action potentials of recorded units
were sorted online using a Plexon MAP data acquisition system
(Plexon, Dallas, TX, United States). Single units were isolated
online using a window discrimination procedure. The data
were collected from 111 sites with five parallel electrodes,
advanced separately into brain tissue to isolate direction-tuned
MT neurons with overlapping RF. These electrodes were not
implanted chronically but were inserted simultaneously in
each experimental session. MT sites were identified by their
anatomical location in cortex (using structural MRI imaging)
and by the physiological properties of recorded neurons: neurons
were direction-selective and the average diameter of the neuron’s
RF was almost equal to the RF eccentricity. The RF centers of
MT neurons at different locations were predictable along the
superior temporal sulcus in cortex. For more details on the
experimental procedure, behavioral task, and recording details
see Esghaei and Daliri (2014).

Data Analysis Procedure
In the following sections, the analyses and quantitative procedure
are discussed. All analyses were implemented using MATLAB
software (R2017b; MathWorks, Natick, MA, United States).

Trial Selection Procedure
We only analyzed the hit trials in which the monkey correctly
detected the target change. The hit trials were sorted based
on reaction times (RTs) and sub-divided into four quartiles.
An equal number of these trials were selected from the
first and the last quartiles and labeled as the fast and the
slow trials, respectively. Through this process, there were
725 trials at each fast and slow group. We used single-unit
spiking activity and the LFP of chosen trials to predict the
animal’s reaction time (RT). All analyses were carried out for
stimulus presentation period, for a time window of 1500 ms
before the target change occurred (see “Analysis window” in
Figure 1). We chose the trials in which the target stimulus
was changed 3000 ms after the trial onset. The rationale for
this selection was to be ensured that the analysis window was

far enough from the stimulus-evoked activities induced by the
stimulus onset. We employed a built-in MATLAB function
to perform digital filtering with zero-phase distortion (the
filtfilt function).

Analysis of Bicoherence
General harmonic wavelet transform (GHWT)-based wavelet
bicoherence (WBIC) (Li et al., 2009, 2011) was used to measure
the quadratic phase coupling (QPC) in LFP signals. A segment-
averaging approach (Hagihira et al., 2001; Li et al., 2009) was
employed for calculating WBIC in order to obtain a reliable
estimate of bicoherence. We used a time window of 500 ms with
a 375 ms overlap to divide the LFP signal into eight time epochs.
For each epoch, the GHWT-based WBIC algorithm was run to
calculate bicoherence in all frequency pairs from 1 to 250 Hz,
with a step of 1 Hz and bandwidth of 2 Hz. The implementation
of this algorithm is briefly explained in the following (for more
details on the GHWT-based WBIC algorithm, see Li et al. (2009,
2011). First, we conducted the GWHT for each epoch of a trial’s
LFP (Xk (t), where k denotes the kth epoch of a given LFP
signal) to calculate the wavelet coefficient ak(f , t) in a frequency
component f. This frequency component varied from 1 to 250 Hz
(as mentioned previously). Next, the normalized squared WBIC
was calculated for each possible pair of frequency component as
given in eq. 1:

bk(f1, f2) =

∣∣Bk(f1, f2)
∣∣2∑N

t=1
∣∣ak(f1, t)ak(f2, t)

∣∣2 ∑N
t=1

∣∣ak(f1 + f2, t)
∣∣2 ,

1 ≤ f1, f2 ≤ 250 Hz (1)

where N represents the time length of the epoch, (f1, f2) indicates
a frequency pair (bifrequency), and Bk denotes the phase-
randomized wavelet bicoherence, which is calculated as indicated
in eq. 2:

Bk(f1, f2) =
N∑

t=1

ak(f1, t)ak(f2, t)a∗k(f1 + f2, t) eiRϕk(f1,f2,t) (2)

where R ∈ [−π, π] is a random variable and ϕk(f1, f2, t) denotes
instantaneous biphase, which is calculated using the function
provided in eq. 3:

ϕk(f1, f2, t) = ϕk(f1, t)+ ϕk(f2, t)− ϕk(f1 + f2, t) (3)

Next, we made use of a surrogate method to eliminate
all spurious QPCs and obtained a reliable estimate for the
wavelet bicoherence (Li et al., 2009, 2011). To this end, the
biphase function ϕk(f1, f2, t) was replaced with a new biphase
ϕ
′

k
(
f1, f2, t

)
= ϕk

(
f1, f2, t

)
+ θ in Eq. 2 in order to calculate a

surrogated bicoherence for a given bifrequency
(
f1, f2

)
. θ is a

random variable chosen from (−π, π]. We generated a hundred
samples of surrogated bicoherence for the bifrequency

(
f1, f2

)
and computed their mean (µ) and standard deviation (σ). The
original bicoherence was preserved if it exceeded µ+ 1.6 σ of
the surrogate bicoherence (as a 95% statistical threshold value);
otherwise, it was set to zero. The GHWT-based WBIC method
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FIGURE 1 | Behavioral paradigm. The monkey had to press a lever while maintaining his gaze on a fixation spot for 130 ms. Then, a static random dot pattern (RDP)
appeared for 455 ms to indicate the upcoming target location on the screen. The screen was blanked for the next 325 ms. Next, two RDPs were presented inside
and outside the receptive field (marked by a dashed circle here) for a random period of 680 to 4250 ms. The monkey received a drop of juice if it correctly detected a
short change in the direction of the target RDP and released the lever within a short time window (150–650 ms). The analysis window was 1500 ms preceding the
direction change in the target stimulus (delineated as a green area in the figure).

provided a two-dimensional bicoherence matrix with 250 × 250
bifrequency components for each trial’s LFP signal.

Quantitative Analysis of the Bicoherence
Matrix Using Bicoherence Indices
We calculated four indices using the bicoherence matrix obtained
for each trial. These indices were computed in WBIC studies to
quantify the bicoherence matrix (Li et al., 2009, 2011, 2013; Wang
et al., 2017). They were computed for each trial’s bicoherence
matrix as follows:

(i) Total amount of the wavelet bicoherence across all
bifrequency pairs of

(
f1, f2

)
;

Total Bic =
∑∑

b (f1, f2) (4)

where 1 ≤ f1, f2 ≤ 250 Hz and b is the bicoherence matrix.
(ii - iii) Eigen-decomposition for b; since bicoherence matrix

is a symmetric matrix with respect to the main diagonal (f1 = f2),
Eigen-decomposition can be conducted as follows:

b νi = λiνi, λi ∈ {λ1 ≤ λ2 ≤ . . . ≤ λM, M = 250} (5)

where λi, υi are the eigenvalue and eigenvector, respectively. M
denotes the number of frequency components (f ). The maximum
eigenvalue (Li et al., 2009) and Shannon entropy of the eigenvalue
distribution (Cui et al., 2010; Dauwels et al., 2010; Li et al., 2011)

were considered as the next bicoherence indices. The Shannon
entropy of the eigenvalue distribution is computed with the
following function:

Entropy of eigenvalues = −

∑M
i=1 λ′i log(λ′i)

log(M)
(6)

where λ
′

i = |λi | /
M∑

i=1
|λi | is the normalized absolute eigenvalue.

(iv) Average diagonal elements of the bicoherence matrix
(f1 = f2):

Diagonal Bic =
∑

b(f1 = f2, f2 = f1)
M

(7)

We computed the bicoherence indices for the fast and the slow
trials in both target position conditions (target-in and target-
out, see Figure 2). To ensure that the bicoherence indices were
independent of the spectral power, a subset of the fast and the
slow trials with no significant differences in their spectral power
in a wide frequency band (0–500 Hz) were selected. We calculated
the LFP band-power for each fast and slow trial in a wide
frequency band (0–500 Hz). Consequently, the same number of
trials were sub-selected from individual histogram bins of the fast
and the slow band-power. This procedure provided two subsets
of the fast and the slow trials that had no significant differences in
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FIGURE 2 | The bicoherence indices for the fast and the slow trials at each target location condition (Target-In\Target-Out). Stars show a significant difference
between the bicoherence indexes calculated for the fast (blue) and the slow (red) trials (two-sided Wilcoxon rank-sum test, P-values have been reported on top of
the bars). Error bars indicate SEM.

power spectrums (p > 0.98, for both target stimulus conditions,
using a two-sided Wilcoxon rank-sum test).

Selection of the Bifrequency
Components by Using a
Feature-Ranking Method
We compared the bifrequency components of the bicoherence
matrix between the fast and the slow trials using a two-
sided Wilcoxon rank-sum test. We then chose the bifrequency
components with significance levels of p < 0.01. With this,
965 and 610 bifrequency components were sub-selected from
250 × 250 components in the bicoherence matrix for the target-
in and the target-out conditions, respectively. The bicoherence
at each bifrequency component was z-score-normalized across
trials. We further employed a feature-ranking method to exclude
bifrequency components yielding low performance in decoding
the fast and slow trials. Firstly, a repeated holdout method was
conducted for 100 independent repetitions to segregate trials into
training and test subsets. At each repetition, 70% of trials (1015
trials) were randomly selected for training, and the remaining
trials (435 trials) were used for the test. Then, the sub-selected
bifrequency components were sorted based on their performance
in decoding the fast and the slow trials in descending order.
We utilized a built-in MATLAB function (rankfeatures, using
receiver-operator-characteristic (ROC) criteria) to sort the
bifrequency components. A k-Nearest Neighbor classifier (k = 1)
was employed to evaluate the sorting process. This classifier
assigned a query sample to the class of the single sample in
the training subset that was nearest to it. We used the metric
of Euclidean distance (Ed) to measure the dissimilarity between
samples. The classifier was trained several times, equal to the
number of bifrequency components sub-selected for each target
position condition. We used the first F bifrequency components
(features) for training the classifier, which had the top ranks
in the sorting analysis. F was varied from 1 (the best feature)
to the number of sub-selected bifrequency components (see
Figures 3A,C x-axis). The accuracy of the classifier was assessed
using the test trials. We repeated the feature-ranking method

100 times to measure the average accuracy of each F value. To
extract the features that had better decoding performance, we
set F based on a trade-off of maximizing two factors; (1) the
ratio between the number of selected features to the total number
of features (which are shown by the x-axes in Figures 3A,C)
and (2) the decoding performance of the classifier. We extracted
features for which the rank numbers were lower than F = 140 at
each repetition. Considering this procedure, we ensured that we
selected the features that provided classification accuracy above
90% in decoding the fast and the slow trials (see Figures 3B,D).
Since the rank of a feature that had a moderate F was not
consistent across different repetitions, we adopted a selection
routine. This routine extracted the feature that was repeated
between F = [1−140] across all algorithm repetitions. We applied
the feature-ranking method for each target position condition
(target-in\target-out, see Figure 3) and obtained 85 and 89
features (bifrequency components) for the target-in and the
target-out conditions, respectively.

Analysis of Spectral Power
We implemented a power spectrum analysis using a built-in
MATLAB function (pwelch function). Briefly, the trial’s LFP was
sub-divided into eight segments using a 500 ms time window with
a 375 ms overlap. Individual segments were windowed with a
Hamming window. Then, spectral density was calculated for each
segment using discrete Fourier transform. The power spectrum
was calculated by the average squared magnitude of spectral
densities across all segments. We calculated normalized power for
each trial’s LFP using the following equation:

Power =

∑fh
fl

PSD (f )∑
0≤f≤250 PSD (f )

(8)

where fl, fh denote the lower and upper frequency bounds of
the power spectral density (PSD), respectively. This equation
calculates the normalized power by dividing PSD in the narrow
frequency band by the total PSD. We computed PSD for
frequency bands ranging between 2 and 250 Hz, with a step of
2 Hz and bandwidth of 4 Hz. This provided 124 components of
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FIGURE 3 | Distributions of the bifrequency components provided high classification performance in decoding the fast and the slow trials. (A,C) The bifrequency
components (features) in the Target-In and the Target-Out conditions, respectively, which were sorted based on the decoding performance in descending order.
(B,D) Distributions of the bifrequency components in panels (A,C), respectively, which provided performance of over 90% in decoding the fast and the slow trials.
(B,D) show 85 and 89 bifrequency components for the Target-In and the Target-Out conditions, respectively. We did not analyze the upper bound of the X = Y-axis
in panels (B,D) because of the symmetric property of the bicoherence. X-Y axes indicate the center bound of frequency bands in panels (B,D).

normalized power for each trial’s LFP. We applied this analysis
on individual trials, including all the target position conditions
(target-in\ target-out).

Analysis of Feature Extraction
We extracted three types of features from each trial’s LFP, namely:
(1) the bifrequency components that were sub-selected from
the bicoherence matrix, (2) the bicoherence indices, and (3)
the normalized power. We used the feature-ranking method to
extract the best features provided a high decoding performance
for classifying the fast and the slow trials, but here, we only
extracted the 60 first features (by setting F = 60) instead of
the 140 features (F = 140) extracted in the original algorithm.
Furthermore, we selected features that repeated across 90% of
algorithm repetitions within the first 60 features (the algorithm
was repeated 100 times). The classifier could reach an accuracy
of over 95% in decoding the fast and the slow trials. However,
despite choosing different F values for the analyses shown in

Figures 3, 4, the number of selected features in both analyses were
comparable. In more detail, about 15–30% of the total number of
features were sub-selected in each analysis.

Categorization of the Bifrequency
Components
We categorized the bifrequency components sub-selected from
a trial’s feature vector into the Bicfast or Bicslow group based on
the average bicoherence in the fast and the slow trials. To this
end, a bifrequency component was labeled as Bicfast or Bicslow
if the average bicoherence for that bifrequency component was
larger in the fast than the slow trials or vice versa, respectively
(Figure 5). We further calculated the median and the median
absolute deviation (MAD) for each Bicfast and Bicslow group. The
MAD is calculated using the following equation:

MAD = median
∣∣X −median (X)

∣∣ (9)
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FIGURE 4 | Type of features providing high classification performance in decoding the fast and the slow trials. (A,C) Three types of features (shown on the x-axis of
panels B,D) in the Target-In and the Target-Out conditions, respectively, which were sorted based on the decoding performance in descending order. (B,D) Types of
features in panels (A,C), respectively, which provided classification performance of over 95% in decoding the fast and the slow trials. The selected bicoherence in
panels (B,D) lies on the high-gamma frequency band (150–250 Hz, see Figure 5). The selected powers in panel (D) lie between 190 and 200 Hz.

Where X is a vector of the bifrequency components at each
Bicfast or Bicslow group. We conducted a permutation test to
analyze significant difference between bifrequency distributions
of Bicfast and Bicslow groups. The Ed was calculated between
the bifrequency components and the corresponding median at
the Bicfast and Bicslow groups. Then, the Eds of Bicfast and Bicslow
were randomly shuffled between these groups 100,000 times. For
each repetition, we calculated an absolute difference between
the average Ed in the Pseudo-Bicfast and Pseudo-Bicslow group.
Then, the proportion of repetitions with absolute differences
larger than the original absolute difference was calculated.

The proportion showed a significant difference between the
bifrequency distribution of the Bicfast and Bicslowgroup if it was
smaller than 0.05.

Analysis of QPC Temporal Dynamic for
the Fast and the Slow Trials
We employed a time window of 150 ms with a 125 ms overlap to
calculate the temporal dynamic of the quadratic phase coupling
(QPC) in the same analysis time window used for the original
bicoherence analyses (Figure 7). We ensured that the analysis
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FIGURE 5 | The characteristic bifrequency of QPC in fast and slow trials for each target position condition (Target-In\Target-Out). The blue (Bicfast ) and the red
(Bicslow ) circles show the bifrequency components in which the average bicoherence was larger in fast rather than slow trials, and vice versa, respectively. Blue and
red squares represent medians of Bicfast and Bicslow groups, respectively. Error-bars demonstrate the median absolute deviation (MAD) calculated for each
frequency axis. Distributions of the bifrequency component in Bicfast and Bicslow groups are significantly different in the Target-Out condition (p < 0.046; using a
permutation test). This is not the case for the Target-In condition (p > 0.3, using a permutation test).

time window was at least 590 ms after the stimulus onset. Firstly,
we filtered the trial’s LFP with the GWHT to calculate wavelet
coefficients a (f1, t) and a (f2, t) in a given frequency pair at the
Bicfast or Bicslow group. Second, we took advantage of the GHWT-
based WBIC algorithm (Eq. 1) to compute the bicoherence in
each frequency pair for each time epoch. Next, the bicoherences
were averaged across frequency pairs in each Bicfast and Bicslow
group. Eventually, we averaged the bicoherence at each time
epoch for the fast and the slow trials. The following equation
computes the bicoherence for each time epoch in the analysis
window:

Bic(ti) =
1

NF × NTr

NTr∑
j=1

Nf∑
l=1

bj
i(f l

1, f l
2) i = 1 , 2 , . . . , Nep

(10)
where bj

i(·) indicates the WBIC of the ith time epoch in the jth

trial, (f l
1, f l

2) shows the lth frequency component in the Bicfast
and Bicslow group, NTr denotes the total number of trials, Nf
represents the total number of bifrequency components at each
Bicfast and Bicslow group, and Nep = 55 is the total number of
time epochs in the analysis window. The Bic(·) lies between [0–
1] in which zero indicates no QPC and 1 reflects perfect QPC,
respectively. We used a permutation test analysis to characterize
the time epochs with a significant difference between the QPC of
the fast and the slow trials. The QPC of trials at each time epoch
were randomly shuffled between the fast and the slow groups
1000 times. For each repetition, we calculated the difference
between average QPCs in the shuffled fast and the shuffled slow
trials. Then, the proportion of repetitions with larger absolute
differences compared to the original absolute difference was

calculated. The time epochs that had a proportion smaller than
0.05 were considered the time epoch with a significant difference
between QPCs in the fast and the slow trials. We next used false
discovery rate (FDR) for multiple comparisons.

Analysis of Correlation Between
Single-Unit Spiking Activity and
Bicoherence
We pooled the fast and the slow trials, regardless of their
behavioral outcomes. First, we calculated the bicoherence at
each bifrequency component in the Bicfast and Bicslow group
to measure correlation between single-unit spiking activity
and bicoherence. Second, the bicoherence at each bifrequency
component was z-score-normalized across trials. Third, the trial’s
bicoherence was averaged across all bifrequency components at
each Bicfast and Bicslow group. Fourth, we calculated the trial’s
spike-rate using single-unit spiking activity. The analysis of
spike-rate was conducted for the same time window used in
the bicoherence analyses. Fifth, the Spearman’s correlation was
employed to calculate the correlation between the trial’s spike-
rate and the trial’s bicoherence at each Bicfast and Bicslow group
(see Figures 6, 8).

RESULTS

To study the functional interaction of neural circuits underlying
behavior, we trained a monkey to perform a change detection
task. In brief, the monkey had to covertly attend to one (target)
of two coherently random dot patterns (RDP). The monkey
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was rewarded with a drop of juice if it correctly detected
a short direction change in the target RDP (Figure 1, see
also section “Materials and Methods”). The monkey correctly
reported the target change in 86% of trials without breaking
its eye fixation. We recorded the local field potentials (LFP)
and the single-unit spiking activity from the MT area while
the monkey performed the task. To study the neural process
underlying behavior, we analyzed the hit trials in which the
monkey correctly detected the target change. The hit trials
were subdivided into fast and slow trials based on the animal’s
reaction time (see section “Materials and Methods”). Next, we
calculated the bicoherence for LFPs to investigate how the non-
linear neuronal synchronization likely leads to fast or slow
behavior. We employed general harmonic wavelet transform
(GHWT)-based wavelet bicoherence (WBIC) (Li et al., 2009,
2011) to measure the strength of QPC in LFP signals. We applied
GHWT-based WBIC for a time window of 1500 ms before the
target change occurred. Our analyses indicated that the QPC,
especially in high-gamma frequencies (150–250 Hz), can reliably
decode the animal’s reaction time. Moreover, we observed that
the characteristic frequency pair of QPC are selective to the
target position condition (target-in\target-out) and the speed of
visuomotor behavior (fast\ slow).

QPC Influences Behavior Systematically
Analysis of QPC allows us to measure the phase synchrony
between three signals with different frequencies. We applied
the GHWT-based WBIC method on LFPs to calculate the
bicoherence for each trial. We calculated the bicoherence for
all frequency pairs [e.g., (f1, f2)] between 1 and 250 Hz, with
a step of 1 Hz and bandwidth of 2 Hz. This provided a
two-dimensional matrix (bicoherence matrix) with 250 × 250
components for each trial. Each element in the bicoherence
matrix represents the strength of QPC in a pair of frequency
components (bifrequency) in the LFP spectrum. To analyze the
bicoherence matrix, we calculated four indices (Li et al., 2009,
2011, 2013; Wang et al., 2017), namely (I) total bicoherence
(Total Bic), (II) average diagonal elements (Diagonal Bic),
(III) maximum eigenvalue, and (IV) Shannon entropy of the
eigenvalue distribution (see section “Materials and Methods”).
Figure 2 shows the bicoherence indices in the fast and the
slow trials (blue and red, respectively) for the target-in and
target-out condition. The result clearly demonstrates that the
strength of QPC in fast trials is significantly larger than in
slow trials for the three bicoherence indices and both target
position conditions (p < 0.03, using two-sided Wilcoxon rank-
sum test, excluding the significance level in the Shannon entropy
of eigenvalues). In addition, these differences in bicoherence
indices are not due to the difference between the length of
stimulus presentation in the fast and the slow trials (see
Supplementary Figure S1). Moreover, it is visually evident that
the strength of bicoherence indices is clearly enhanced in the
target-in condition compared with the target-out condition,
irrespective of the animal’s reaction time. This observation
suggests that a cognitive process like selective attention probably
modulates the QPCs in the target-in condition. However, the
QPC enhancement in fast trials among both target position

conditions reflects that the QPC is potentially not a cortical
function that is preferably processing only that stimulus placed
inside the neuron’s RF.

QPC in High-Gamma Frequencies Plays
a Crucial Role in Guiding Behavior
We next examined how neuronal oscillatory activities at
different frequencies can individually or interactively contribute
to the processing of visuomotor information in MT cortex.
For this purpose, we analyzed the bicoherence matrix to
find the bifrequency component that provided maximum
discrimination between the fast and the slow trials. Firstly,
we extracted the bifrequency components that showed a
significant difference between the fast and the slow trials
(p < 0.01using two-sided Wilcoxon rank-sum test). Then, a
feature ranking method was employed for sub-selecting the
bifrequency components provided the classification performance
above 90% in decoding the fast and the slow trials (see section
“Materials and Methods” for more details). Figures 3A,C show
the bifrequency components (features) sorted based on their
decoding performances in descending order in the target-in and
the target-out condition, respectively. Figures 3B,D demonstrate
the distributions of the bifrequency components for the features
in Figures 3A,C, respectively, showing a decoding performance
above 90%. There are 85 and 89 bifrequency components in
Figures 3B,D, respectively. It is visually evident that the selected
bifrequency components are distributed in a broadband high-
gamma frequency range for each target position condition (100–
250 Hz). In addition, the result clearly indicates that the selected
bifrequency components in the target-out condition are more
widely distributed than the target-in condition in the high-
gamma frequency range.

We next examined the contributive role of the spectral
power to the bicoherence in decoding the animal’s RT. The
idea is that the power spectrum does not retain the phase
information of the signal but captures the statistical property
of the signal’s Gaussianity. In contrast, the bicoherence can
extract information relevant to the signal’s non-Gaussianity
and signal phase spectrum (Nikias and Mendel, 1993). We
computed LFP power in narrow frequency bands between 2
to 250 Hz, with a step of 2 Hz and bandwidth of 4 Hz.
Then, the LFP powers were normalized to the total power
in 2–250 Hz (see materials and methods). Next, we defined a
feature vector for each trial including three types of features: (I)
the selected bifrequency components shown in Figures 3B,D,
(II) the normalized spectral powers, and (III) the bicoherence
indices (see section “Materials and Methods”). We employed
the same selection routine used for Figures 3B,D to select the
best feature from the feature vector. In brief, we sorted the
features based on decoding performances in descending order.
We then extracted features yielding classification performance of
over 95% in decoding the fast and the slow trials (see section
“Materials and Methods” for more details). Figures 4A,C show
the sorted features in the target-in and the target-out conditions,
respectively. Figures 4B,D demonstrate the types of selected
features extracted from Figures 4A,C, respectively. The result
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FIGURE 6 | The performance of LFP power in the high-gamma frequency
band (190–210 Hz) in decoding the fast and the slow trials. The LFP power in
the high-gamma frequency band was calculated for the fast and the slow
trials using the Welch method (see Materials and methods). The bounds of
high-gamma frequencies (i.e., 190 to 210 Hz) were defined based on the
frequency ranges in Figure 5 with a high concentration of bifrequency
components. We normalized the high-gamma power to the average
high-gamma power at each site. The performance of the high-gamma power
for decoding the fast and the slow trials was calculated by employing a
k-Nearest Neighbor classifier. We used a repeated holdout method (100
times) to subdivide the trials into the training and the test subsets. In each
repetition, we used 70% of the trials for training and the remaining trials for the
test. The chance level was calculated for each target position condition by
repeatedly (100 times) shuffling the trials between the fast and the slow
groups. The result clearly indicates that the decoding performance of
high-gamma power is not significantly different between the original and the
shuffled high-gamma power in each target position condition (permutation
test, p > 0.05). The p-values have been shown on top of the bars.

is clearly evident that bicoherence is the most frequent type of
feature that was selected for each target position condition. This
observation suggests that QPC in the high-gamma frequency
band functionally plays a key role in guiding the fast and the slow
behavioral responses.

Switching Toward the Neuron’s RF
Modulates the Characteristic
Bifrequency of the Fast and the Slow
Trials
To further investigate how the selected bifrequency components
in Figures 4B,D are distributed across the bifrequency
map, we subdivided the bifrequency component into
Bicfast and Bicfast groups based on average bicoherence in
the fast and the slow trials. In more detail, a bifrequency
component was labeled as Bicfast or Bicslow if the its average
bicoherence was larger in the fast compared to the slow trials or
vice versa, respectively. We further calculated the median and the
median absolute distance (MAD) for the bifrequency component
of the Bicfast and Bicfast group per target position condition (see
section “Materials and Methods”). Figures 5 and Supplementary
Figure S2 show the distribution of bifrequency components

in Bicfast and Bicslow groups for each position condition. The
result indicates that the QPC in a narrower band of high-
gamma frequencies (i.e., 150–250 Hz, instead of 100–250 Hz
in Figures 3B,D) is more implicated in guiding visuomotor
behavior. In addition, the high-gamma QPC is disassociated
from potential differences between high-gamma powers in the
fast and the slow trials (see Figure 6). The result demonstrates
that distributions of the bifrequency in Bicfast and Bicslow groups
are not significantly different for the target-in condition (p > 0.3,
using a permutation test, see section “Materials and Methods”)
and show a significant difference for the target-out condition
(p < 0.046, using a permutation test, see section “Materials and
Methods”). Given that Bicfast and Bicslow potentially represent the
characteristic bifrequency of QPC in the fast and the slow trials,
respectively, the result visually indicates that the distributions
of characteristic bifrequencies in the fast and the slow trials are
clearly different across target position conditions. In more detail,
we observe that the medians of characteristic bifrequency in
Bicfast and Bicslow groups increases for (7 Hz, 7 Hz) and (6 Hz,
38 Hz) for each (f1, f2) dimension, respectively, when the monkey
performed the target-in condition. In addition, the result clearly
illustrates that the median of characteristic bifrequency in slow
trials is strongly modulated by switching toward the neuron’s
RF (i.e., target-in condition). But this is not the case for the fast
trials. Despite this observation, the increase of medians in the
target-in condition suggests that the frequency of non-linear
coupling increases when the monkey attends to the stimulus
inside the neuron’s RF. Despite the different distributions of
the characteristic bifrequencies in fast and slow trials across
target position conditions, the decoding performance of QPC
is similar across the target-in and the target-out conditions (see
Figures 3B,D; see section “Materials and Methods”).

QPC of Characteristic Bifrequencies in
the Fast and the Slow Trials Follow
Different Temporal Dynamics Among
Target Position Conditions
Our analyses highlighted that the QPC in the high-gamma
frequency band plays a crucial role in processing visuomotor
information. In addition, we observed that the fast and the slow
trials are discriminated by the distinct characteristic bifrequency
of QPC in the MT area. To study the time dynamics of QPC
in the fast and the slow trials, we used a time window of
150 ms with a 125 ms overlap. We calculated the bicoherence
at each characteristic bifrequency of Bicfast and Bicslow for a
given time window. Then, the bicoherence was averaged across
all characteristic bifrequencies and trials for each time window
(see section “Materials and Methods” for more details). Figure 7
shows the temporal dynamics of QPC in the fast and the
slow trials using characteristic bifrequncies of Bicfast and Bicslow
groups in each target position condition. We observed that the
QPC in the fast and the slow trials follows a distinct temporal
pattern at each target position condition using characteristic
bifrequencies of Bicfast and Bicslow groups. In addition, it is
visually evident that the magnitude of the significant QPC
difference between the fast and the slow trials in Figure 7C is
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FIGURE 7 | Temporal dynamics of QPC in the fast and the slow trials for the time window before the target change. The blue and red curves show the temporal
dynamics of QPC for the fast and the slow trials, respectively. The curves show the average bicoherence for the bifrequency component of the Bicfast (right column)
and Bicslow (left column) groups shown in Figure 5. The black lines on top of the traces mark the times that the QPC of the fast and the slow trials are significantly
different (p < 0.05, permutation test, FDR corrected for multiple comparisons).

somewhat enhanced in Figure 7A (comparing the times showing
a significant difference between red and blue curves in Figure 7A
with the corresponding times in Figure 7C). In other words,
the significant QPC difference between fast and slow trials in
characteristic bifrequencies of Bicslow is modulated when the
monkey attends to the stimulus inside the neuron’s RF. In
contrast, we observe that the magnitude of the significant QPC
difference between the fast and the slow trials in Figure 7D
strongly decreases in Figure 7B (comparing the times showing
a significant difference between the red and blue curves in
Figure 7D with the corresponding times in Figure 7B). In other
words, the significant QPC difference between fast and slow trials
in the characteristic bifrequencies of Bicfast strongly decreases
when the animal attends to the stimulus inside the neuron’s
RF. We hypothesize that these contrary observations in the

characteristic bifrequency of the fast and the slow behavior (i.e.,
Bicfast and Bicslow, respectively) along target position conditions
are potentially due to the influence of a cognitive function like
attention. Our hypothesis is in line with previous studies that
have shown that attention could decouple sensory neurons and
thereby enhance the neural representation of relevant stimuli to
effectively guide a fast behavioral reaction (Esghaei et al., 2015,
2018; Spyropoulos et al., 2018).

QPC Is Anti-correlated With the Neuronal
Spike Rate Exclusively for the Target-in
Condition
We calculated the correlation between the QPC and the single-
unit spiking activities to study how neuronal non-linear coupling
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FIGURE 8 | Correlation between the single-unit spike rate and the QPC of
characteristic bifrequencies in Bicfast and Bicslow groups for the Target-In and
the Target-Out condition. Y-axis represents the strength of correlation
between the QPC and the spike rate using Spearman’s correlation method.
The star shows a significant correlation in Bicslow groups at the Target-In
condition (p < 0.002, Spearman correlation).

potentially influences the neuronal output (see section “Materials
and Methods”). We computed the single-unit spike rate as well
as the average normalized QPC for each trial using characteristic
bifrequencies of Bicfast and Bicslow groups (shown in Figure 5).
Figure 8 shows the Spearman correlation between spike rates
and QPCs in each target position condition. The result indicates
that the QPC and the spike rate are strongly anti-correlated
in the target-in condition. Notably, we observe that the spike
rates and the QPC of the Bicslow group are significantly anti-
correlated in the target-in condition (p < 0.002, using Spearman
correlation). In contrast, there is a negligible non-significant
positive correlation between QPCs and the spike-rates for the
target-out condition.

DISCUSSION

Many studies have highlighted that oscillatory activity plays a
mediating role in the neuronal coupling underlying cognitive
functions (Lisman and Jensen, 2013; Khodagholy et al., 2017;
Rohenkohl et al., 2018). However, the relationship between
this neuronal coupling and behavior has not been studied in
the visual cortex.

In this study, we recorded the LFP and the single-unit spiking
activity from the visual area MT of a behaving monkey. The
animal had to covertly attend to one of two RDPs placed inside or
outside the RF of recorded neurons and detect a short direction
change in the target stimulus. We examined how linear and
non-linear neural synchronization could influence the animal’s

RT. For this purpose, the spectral representation of the second-
order statistics (i.e., the power spectrum) and the third-order
statistics (i.e., bicoherence) were calculated for LFPs on a trial-
by-trial basis.

We measured the strength of non-linear coupling between
all frequency pairs in the LFP spectrum (1–250 Hz) using
four bicoherence indices. The bicoherence indices were: (i)
total Bic, which reflects the strength of QPC between different
low-frequency oscillations and one of the high-frequency
oscillations, which is useful for investigating the strength
of rhythmic synchronization between neuronal populations
oscillating at different frequencies (Li and Li, 2016), (ii)
maximum eigenvalue, (iii) Shannon entropy of eigenvalues,
which measures information on the synchronization between
oscillatory activities in the neuronal population (Li and Li,
2016), and (iv) diagonal Bic, which reveals the presence
of self-frequency and self-phase coupling in neural circuits
(Muthuswamy et al., 1999). We selected the trials which had
no significant difference between average spectral powers to
prevent dependence of our analyses to the different levels
of 1/f noise (Bédard et al., 2006; Lombardi et al., 2017).
With this approach, we ensured that the signal-to-noise ratio
(SNR) was not significantly different between the chosen
fast and slow trials (see section “Materials and Methods”).
In addition, we ensured that the change in the bicoherence
indices was potentially due to the change in underlying
neuronal non-linear coupling (Pesaran et al., 2018). Our
analysis revealed that the strength of the non-linear coupling
between the oscillatory activities of MT neurons is strongly
increased in the fast rather than the slow trials (see Figure 2).
Furthermore, we observed that switching toward the neuron’s
RF increases the strength of non-linear coupling between
neural oscillations. We speculate that this finding is possibly
due to the influence of a cognitive function like attention
that enhances the non-linear synchronization between local
neurons. Our hypothesis is in line with previous studies that
have shown that spatial attention selectively increases the
strength of synchronization between neurons processing the
target stimulus (Womelsdorf et al., 2006; Zareian et al., 2018;
Khamechian et al., 2019).

To further study the non-linear neuronal synchronization
underlying behavior, we implemented a machine learning
approach to extract the bifrequency component that accurately
discriminates the fast and the slow trials (see section “Materials
and Methods”). The result showed that oscillatory activities in
the high-gamma frequency band (100–250 Hz) are quadratically
phase-coupled in the fast and the slow trials (Figures 3B,D).
This observation is in line with a recent study showing that the
strength of neural synchronization in the high-gamma frequency
band (180 to 220 Hz) predicts the animal’s RT (Khamechian
et al., 2019). In addition, this study also showed that the
difference between high-gamma synchronizations in the fast and
the slow trials cannot be attributed to the difference between
the magnitude of the spike leakage onto LFPs (Khamechian
et al., 2019). Many studies have suggested that interneurons
contribute to the generation of high-gamma oscillations in the
LFPs (Brunel and Wang, 2003; Buzsáki and Draguhn, 2004;
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Henrie and Shapley, 2005; Gieselmann and Thiele, 2008; Stark
et al., 2014; Suffczynski et al., 2014).

We next examined the contributive role of cortical Gaussian
and non-Gaussian processes (activities) in guiding visuomotor
behavior. We computed the power spectrum (as a measure
of Gaussianity) and the bicoherence (as a measure of non-
Gaussianity) for the fast and slow the trials. We then
adopted a machine learning method (see section “Materials
and Methods”) to examine the potential role of these processes
in predicting the animal’s behavior. The results illustrated
that the neural non-Gaussian process (in addition to the
Gaussian process) plays a key role in coding behavioral RTs
in the macaque area MT (see Figures 4B,D). The result is
consistent with a recent study indicating that bicoherence
is a biomarker candidate for identifying neurodevelopmental-
behavioral disorders like attention deficit hyperactivity disorder
(ADHD) (Chen et al., 2019).

We further examined the QPC to understand which specific
bifrequency of the bicoherence at the broadband high-gamma
frequency range (100–250 Hz, see Figure 3) might orchestrate
the fast and the slow behaviors. The result indicated that the
distribution of the characteristic bifrequency is significantly
different between the fast and the slow trials, particularly for
the target-out condition (see Figure 5). In addition, we observed
that switching toward the neuron’s RF enhances the characteristic
bifrequency of the QPC explicitly in the slow trials. We speculate
that a top-down cognitive function like attention probably
modulates the characteristic bifrequency of the QPC in slow
trials in the target-in condition. In addition, our observations
suggest that this modulatory effect mostly occurs between the MT
neurons that selectively process the target stimulus. Moreover,
we observed that the characteristic bifrequency of the fast trials
has similar distribution medians in the target-in and the target-
out conditions. The result suggests that entire neurons in the MT
area can be synchronized in the high-gamma band to efficiently
process the behavioral information and facilitate a fast behavioral
action. Given that spatial attention can effectively shorten RT
(Posner, 1980; Womelsdorf et al., 2006) and modulate neuronal
synchronization (Womelsdorf et al., 2006; Hoogenboom et al.,
2010; Khamechian et al., 2019), we hypothesize that such
synchronization in the fast trial can also be attributed to top-
down attention. In addition, our hypothesis is in line with
previous studies that suggested that attention could improve
neuronal communication and thereby route the most relevant
information into associative areas in the brain (Gregoriou et al.,
2009; Morishima et al., 2009; Briggs et al., 2013).

We next examined the temporal dynamics of QPC in
the fast and the slow trials based on the characteristic
bifrequency obtained for each target position condition. The
result demonstrated that switching to the neuron’s RF enhances
the QPC difference between the fast and the slow trials using
the characteristic bifrequency of the slow behavior (i.e., Bicslow ).
In contrast, we observed that the QPC difference between the
fast and the slow trials strongly decreases in the characteristic
bifrequency of the fast behavior (i.e., Bicfast ) when the monkey
covertly attends to the stimulus inside the neuron’s RF. We
hypothesize that this contrary observation for the QPC difference

in the characteristic bifrequency of the fast and the slow behavior
is due to a cognitive function like attention. Our speculation is
based on previous studies suggesting that attention can suppress
the strength of coupling between oscillatory activities in the visual
cortex (Esghaei et al., 2015; Spyropoulos et al., 2018).

Some physiological models have shown that decisions are
formed based on accumulating sensory evidence over time to
a bound (Gold and Shadlen, 2001; Palmer et al., 2005; Ratcliff
and McKoon, 2008). In addition, they have indicated that these
computations could shape the RT distribution and the speed
of behavior. The accumulation of evidence has been observed
in several electrophysiological studies at different cortical areas
of monkeys (Roitman and Shadlen, 2002; Purcell et al., 2012;
de Lafuente et al., 2015), rodents (Hanks et al., 2015), and
humans (Kelly and O’Connell, 2013; Twomey et al., 2016).
For example, some of these studies reported that oscillatory
activities underlying the accumulation process follow different
accumulation-to-bound dynamics that predict the behavioral RTs
(Kelly and O’Connell, 2013; Twomey et al., 2016). However,
it is unclear how these oscillatory activities transmit sensory
information from upstream to downstream cortical areas to
shape the accumulation process. Previous investigations have
shown that neural oscillatory activities can interact via CFC to
facilitate communication of information between brain regions
(Darvas et al., 2009; Canolty and Knight, 2010; Holz et al., 2010;
Fiebelkorn et al., 2018). Based on these studies, we speculate
that the QPC (as a non-linear form of CFC measured by the
bicoherence) could play a functional role in the transmission
of the relevant information between associative neurons in the
intra- or inter-areal of the cortex.

In summary, we employed bicoherence and spectral power
to examine non-linear and linear neuronal coupling underlying
visuomotor behavior. Our results show that: (I) the non-linear
phase coupling between oscillatory activities of sensory neurons
is a good candidate for predicting the speed of the animal’s
behavior, (II) the non-linear neuronal coupling is expressed
in a broad band of high-gamma frequencies (100–250 Hz) in
area MT of the macaque visual cortex, (III) the non-Gaussian
cortical process (measured by the bicoherence) and the Gaussian
process (measured by the spectral power) are both involved in
the processing of visuomotor information, and (IV) the non-
linear characteristic of neuronal synchronization among MT
neurons is probably controlled by a cognitive function like
selective attention.
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