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miR-132 loss de-represses ITPKB and aggravates
amyloid and TAU pathology in Alzheimer’s brain
Evgenia Salta1,2, Annerieke Sierksma1,2, Elke Vanden Eynden1,2 & Bart De Strooper1,2,3,*

Abstract

microRNA-132 (miR-132) is involved in prosurvival, anti-inflamma-
tory and memory-promoting functions in the nervous system and
has been found consistently downregulated in Alzheimer’s disease
(AD). Whether and how miR-132 deficiency impacts AD pathology
remains, however, unaddressed. We show here that miR-132 loss
exacerbates both amyloid and TAU pathology via inositol 1,4,5-
trisphosphate 3-kinase B (ITPKB) upregulation in an AD mouse
model. This leads to increased ERK1/2 and BACE1 activity and
elevated TAU phosphorylation. We confirm downregulation of miR-
132 and upregulation of ITPKB in three distinct human AD patient
cohorts, indicating the pathological relevance of this pathway in AD.
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Introduction

The pathogenic process in Alzheimer’s disease (AD) involves a long

cellular phase during which intricate feedback and feed-forward

cascades between distinct cell types affect the homeostasis of the

brain. This progressively leads to the clinical stage of the disease (De

Strooper & Karran, 2016). MicroRNAs (miRNAs) keep the expression

of various genes in check and are typically part of molecular home-

ostasis mechanisms. While the expression of miRNAs is disturbed in

AD brain (Hébert et al, 2008; Lau et al, 2013), it remains largely

unknown how these aberrations are induced and whether they play a

role in disease progression (Salta & De Strooper, 2012). Even if the

disruption of miRNA expression is part of the general pathogenic

process induced by accumulating toxic cues, it remains important to

investigate whether loss or gain of function of particular miRNAs has

also a specific functional impact on AD pathology. miRNAs that are

systematically and early downregulated in the disease course are of

particular interest in that regard. MicroRNA-132 (miR-132) is one of

the few miRNAs that are consistently and robustly downregulated in

AD brain (Cogswell et al, 2008; Hebert et al, 2013; Lau et al, 2013;

Wong et al, 2013; Smith et al, 2015), suggesting a functional involve-

ment in the pathogenic process. miR-132 has neuroprotective proper-

ties regulating the prosurvival PI3K-AKT pathway, which represses a

death signaling cascade that involves FOXO3a, P300, and PTEN in

primary hippocampal and cortical neurons (Wong et al, 2013). More-

over, miR-132 expression levels are negatively correlated to hyper-

phosphorylated TAU aggregates in the cortex of AD patients (Lau

et al, 2013) and miR-132 knockout increases TAU phosphorylation

and aggregation in a triple transgenic AD mouse model (Smith et al,

2015). Notably, miR-132 deficiency in AD brain might have addi-

tional neurotoxic effects as miR-132 is involved in neuronal plasticity

and synaptic function (Edbauer et al, 2010; Bicker et al, 2014; Salta

et al, 2014), it has been implicated in neuroinflammation and the

regulation of acetylcholinesterase expression (Shaked et al, 2009),

while activity-induced CREB-dependent miR-132 transcription also

contributes to memory formation and cognition (Hansen et al, 2013).

Overall these observations suggest that loss of miR-132 could play a

pivotal role in several aspects of AD. However, to date, little hard

data are available providing factual support to the hypothesis that

miR-132 is part of the disease process.

In this study, we set out to characterize the functional impact of

miR-132 deficiency on AD pathology in brain and to begin to dissect

the molecular networks underlying these effects. We demonstrate

here that downregulation of miR-132 aggravates both amyloid and

TAU pathology in AD mice and that it regulates the expression of

inositol 1,4,5-trisphosphate 3-kinase B (ITPKB), a regulator of

BACE1 activity and TAU phosphorylation (Stygelbout et al, 2014).

We suggest that loss of miR-132 is part of a feed forward loop

enhancing the biochemical stress that drives the disease.

Results

In vivo manipulation of miR-132 levels in the hippocampus of
APPPS1 mice

We previously observed miR-132 downregulation at Braak stage III in

AD brain (Lau et al, 2013), suggesting a relatively early role of this

miRNA in the disease process. To assess this further, we downregu-

lated miR-132 using intracerebroventricular (ICV) injections of locked

nucleic acid (LNA)-modified, 30 cholesterol-conjugated antisense
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Figure 1. Efficiency and specificity of in vivo down- and upregulation of miR-132.

A Experimental scheme of antagomiR-132 and miR-132 mimic injections into the lateral ventricle of 2-month-old APPPS1 mice.
B Semi-quantitative PCR of miR-132 and negative control miRNAs in the hippocampus of antagomiR-132-injected mice (ant-132) in comparison with control-injected

animals (aCSF and scramble) at 6 months of age. Sample size, n = 9 per group.
C FISH of miR-132 and negative control miR-124 in the hippocampus of ant-132- and scramble-injected mice. Scramble probes were used as FISH negative controls.

Scale bar, 500 lm.
D Semi-quantitative PCR of miR-132 and miR-212 in the hippocampus of 3-month old miR-132 mimic-injected mice (miR-132) compared to animals injected with a

negative control oligonucleotide (Ctr). Sample size, n = 6 per group.

Data information: Values were normalized to scramble- (B) or control-injected group (D) and presented as mean � SEM. In (B), one-way ANOVA was used, while in (D),
Student’s t-test was applied.
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antagomiR-132 oligonucleotides in 2-month-old APPPS1 mice. These

mice co-express human-mutated APPSwe (KM670/671NL APP) and

human-mutated presenilin 1 (L166P) (Fig 1A). This widely used AD

model [Tg(Thy1-APPSw, Thy1-PSEN1*L166P) 21Jckr] typically

shows amyloid deposition in the hippocampus at 3–4 months and

cognitive impairment at 7–8 months of age (Radde et al, 2006;

Serneels et al, 2009). Monthly ICV injections of antagomiR-132

resulted in an approximately 80% decrease of miR-132 levels at

6 months of age (Fig 1B and C). A miR-132 scramble oligonucleotide

did not have any effect on miR-132 expression, similarly to injections

with only artificial cerebrospinal fluid (aCSF) used as carrier. No

changes in the expression of miR-212—a miRNA transcribed in the

same cluster as miR-132—or of three other, unrelated miRNAs, that is

miR-127, miR-29b (Fig 1B), and miR-124 (Fig 1C), were observed.

We additionally performed overexpression experiments using double-

stranded miR-132 mimic oligonucleotides. Four ICV injections of

150 pmol miR-132 mimic with one-week interval led to a 15-fold

upregulation of miR-132 in hippocampus at 3 months of age, again

without affecting the levels of the closely related miR-212 (Fig 1D).

miR-132 regulates soluble and insoluble Ab

We assessed the levels of Ab after up- or downregulation of miR-132.

Amyloid immunostaining in the ant-132-injected animals revealed a

twofold and a 1.7-fold increase of plaque burden in hippocampus and

cortex, respectively (Fig 2A and B). We next used ELISA to measure

hippocampal Ab40 and Ab42 levels. Both peptides were significantly

increased in the cytoplasmic and extracellular TBS-soluble and the

A

C D

B

Figure 2. Effect of miR-132 on Ab accumulation.

A Amyloid staining (6E10) combined with miR-132 FISH in ant-132- and scramble-injected mice at 6 months of age. Scale bar, 500 lm.
B Quantification of amyloid burden in hippocampus and cortex of ant-132-injected and control animals (see Materials and Methods). Sample size, n = 4 per group.
C, D ELISA of soluble (TBS) and insoluble (Formic acid) Ab40 and Ab42 levels in the hippocampus of ant-132- (C) and miR-132-injected (D) animals at 6 and 3 months of

age, respectively. Sample size, n = 6 per group.

Data information: In (B–D) values were normalized to scramble- (B, C) or control-injected group (D) and presented as mean � SEM. Student’s t-test was used.
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formic acid-soluble fractions in response to miR-132 downregulation

(Fig 2C). In contrast, a significant decrease of soluble and insoluble

Ab40 and Ab42 was observed upon miR-132 ectopic expression in

hippocampus (Fig 2D). These data indicate an inhibitory effect of

miR-132 over soluble and aggregated Ab species formation.

miR-132 controls TAU phosphorylation

Among the most prominent kinases involved in TAU hyperphosphory-

lation in AD are ERK1/2, CDK5, and GSK3B (Mandelkow et al, 1995),

and in silico analysis (Targetscan 7.0) predicts ERK1, ERK2, GSK3b,

and TAU itself as putative miR-132 targets in human and mouse. Total

TAU levels were, however, not affected following miR-132 down- or

upregulation (Fig 3A and B top panel) contrary to a previous report

(Smith et al, 2015). TAU phosphorylation levels were, in contrast,

significantly altered in antagomiR-132- or miR-132 mimic-injected

mice as assessed by Western blot using antibody AT8 against phos-

phorylated Ser-202/Thr-205 and antibody AT270 against phosphory-

lated Thr-181 (Mandelkow & Mandelkow, 2012) (Fig 3A and B middle

and bottom panels). These two epitopes can be phosphorylated by

ERK1/2, CDK5, and GSK3b (Fig EV1). However, no change in the

expression levels of these kinases was observed upon miR-132 down-

regulation in APPPS1 hippocampus (Fig EV2). We further assessed

the phosphorylation of two additional sites in TAU, which are phos-

phorylated by CDK5 and GSK3B but not by ERK1/2, namely Thr-212/

Ser-214 (recognized by antibody AT100) and Thr-231 (recognized by

antibody AT180) (Mandelkow & Mandelkow, 2012; Fig EV1). Interest-

ingly, phosphorylation levels of these epitopes were unaffected by

miR-132 ectopic expression, which, together with the positive AT8/

AT270 staining, suggested that ERK1/2 might be part of the kinases

involved in the miR-132-mediated effect on TAU phosphorylation.

miR-132 target identification

While the previous experiments demonstrate that miR-132 down-

regulation increases Ab generation and TAU phosphorylation, the

targets mediating these effects remain unknown. In a first approach

to make a choice among the 1,332 predicted miR-132 targets

conserved among human and mouse (Targetscan 7.0), we made use

of data previously obtained in six healthy (Braak stage 0-I) and six

diseased human AD (Braak stage V-VI) prefrontal cortex (PFC)

samples. We quantified the levels of miR-132 in the different brains

using the next generation RNA sequencing dataset published in Lau

et al (2013) and the levels of the different candidate mRNAs as

deduced from the microarray transcriptome study performed on the

same samples (Bossers et al, 2010) and correlated miR-132 expres-

sion and predicted miR-132 target levels (Fig 4A) (see Materials and

Methods). This approach yielded a list of 19 predictedmiR-132 targets

whose expression is significantly upregulated and anticorrelated with

miR-132 levels in AD (Table 1). We then assessed with real-time PCR

A B

Figure 3. Regulatory effect of miR-132 on TAU expression and phosphorylation.

A, B Western blot analysis of total TAU and pTAU (AT8, AT270) levels upon miR-132 knockdown (A) or overexpression (B) at 6 and 3 months of age, respectively. Sample
size, n = 9 per group (A) and n = 6 per group (B). Values were normalized to the respective control groups and presented as mean � SEM. Student’s t-test was used.

Source data are available online for this figure.
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which of these transcripts additionally became upregulated in the

APPPS1 mice upon miR-132 downregulation (Fig 4B). We set as

threshold a 1.3-fold change above baseline levels (Selbach et al,

2008) and found five mRNAs that responded to that criterion: Taf4,

Arid1A, Erbb2ip, ItpkB, and Kccn3. A search in PubMed using as

keywords each transcript’s name in combination with Alzheimer,

amyloid, Abeta, or TAU yielded no results for Taf4, Arid1A, Erbb2ip,

and Kcnn3. However, strikingly, one of these candidates, the inositol

1,4,5-trisphosphate 3-kinase B (ITPKB), was recently shown to

induce both Ab aggregation and TAU phosphorylation in 5XFADmice

(APP K670N/M671L (Swedish) + I716V (Florida) + V717I (London),

and PS1 M146L + L286V) (Stygelbout et al, 2014). Since such a target

would theoretically explain the observed impact of miR-132 defi-

ciency on Ab and pTAU in APPPS1 mice, we set out to further explore

the possible regulatory interplay between miR-132 and ITPKB.

The miR-132 target ITPKB mediates miR-132 effects on Ab

The 30UTR of ITPKB contains one predicted miR-132 binding site

conserved among human and mouse and an additional one which is

unique to human ITPKB. We used a luciferase reporter construct

containing the human ITPKB 30UTR to co-transfect HEK293 cells along

with a miR-132 mimic or a negative control oligonucleotide. Co-

transfection with the miR-132 mimic led to an approximate

luminescence repression of 70% compared to the negative control-

transfected cells (Fig 5A). Mutating the two predicted miR-132 binding

sites in the 30UTR of ITPKB completely abolished the effect on

luciferase enzymatic activity (Fig 5A), indicating that ITPKB is a direct

miR-132 target in vitro. Since ITPKB has been shown to affect Ab
generation (Stygelbout et al, 2014), we assessed whether ITPKB is

necessary and/or sufficient to induce the effect of miR-132 on Ab
levels. Transfection of HEK293 cells overexpressing human APPSwe

with a miR-132 antisense oligonucleotide led to a significant increase

of both Ab40 and Ab42 confirming our in vivo findings (Fig 5B). Inter-

estingly, downregulation of ITPKB using an siRNA oligonucleotide

resulted in a reduction of Ab levels pointing toward the pro-amyloido-

genic role of ITPKB (Fig 5B). Moreover, simultaneous downregulation

of ITPKB rescued the miR-132 knock down effect on Ab levels

(Fig 5B). Knockdown efficiency of miR-132 and ITPKB is shown in

Fig EV3. We then assessed whether altering ITPKB levels was suffi-

cient to exert an effect on Ab levels in vivo. Indeed, downregulation of

ITPKB using ICV injections of an ITPKB siRNA resulted in significantly

decreased insoluble Ab levels in APPPS1 hippocampus (Fig 5C and

D), a finding that mimics the effects observed upon miR-132 overex-

pression and indicates the possible functional involvement of ITPKB

in the miR-132-dependent effect on Ab. Finally, to dissect the in vivo

regulatory relationship between miR-132 and ITPKB, we assessed

ITPKB expression in the hippocampus of antagomiR-132- and miR-132

mimic-injected APPPS1 mice. ITPKB was significantly upregulated

following miR-132 downregulation (Fig 5E), while miR-132 overex-

pression significantly repressed ITPKB levels (Fig 5F) indicating that,

also in vivo, ITPKB is under the regulatory control of miR-132.

miR-132 regulates ERK1/2 and BACE1 enzymatic activity

It has been previously shown that ITPKB has a dual regulatory role

in relation to AD pathology: It can affect BACE1 activity leading to

more Ab generation, while at the same time, it promotes TAU

phosphorylation via phosphorylation and activation of ERK1/2

(Stygelbout et al, 2014). No differences between antagomiR-

132- and control-injected mice were observed with regard to total

APP and BACE1 levels (Fig EV4). Interestingly, APP CTFb and

soluble APPb (sAPPb), the two products derived from the prote-

olytic processing of APP by BACE1, were indeed elevated upon

miR-132 downregulation in the hippocampus of the APPPS1 mice,

while a significant decline was observed upon miR-132 upregulation

(Fig 6A and B), indicating that miR-132 negatively regulates BACE1

activity. Moreover, increased levels of phosphorylated ERK1/2 were

observed in the antagomiR-132-injected mice, while reversely,

phosphorylation of ERK1/2 decreased in the miR-132 mimic-injected

A

B

Figure 4. miR-132 target screening and validation.

A Correlation analysis process: miRNA and mRNA profiling datasets were cross-
checked for miR-132 predicted targets that are significantly anticorrelated to
miR-132 expression and significantly upregulated at late stages of AD.

B Positive hits were validated by semi-quantitative qPCR in ant-132-injected
mouse hippocampus. Black line indicates mean of scramble control set to 1.
Dashed line indicates chosen threshold of 1.3-fold. Sample size, n = 9 per
group. Values were normalized to scramble-injected group and presented
as mean � SEM.
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APPPS1 hippocampus (Fig 6C), suggesting that miR-132 acts

upstream of ITPKB in a cascade eventually regulating ERK1/2

phosphorylation.

ITPKB colocalizes with amyloid plaques and neurofibrillary
tangles in human AD brain and exhibits a mutually exclusive
expression pattern to miR-132

We further validated miR-132 levels in an independent set of human

AD prefrontal cortex samples. miR-132 was approximately twofold

downregulated in AD compared to non-demented control samples

in agreement with previous work (Lau et al, 2013; Fig EV5). miR-

124 was previously reported not to change in human AD prefrontal

cortex (Lau et al, 2013) and was therefore used as negative control.

Interestingly, ITPKB colocalized with amyloid plaques (Fig 7A). We

then assessed the in situ expression patterns of miR-132 and ITPKB

in neurons bearing NFTs in AD prefrontal cortex (Fig 7B and C).

Low miR-132 expression was observed in cells displaying ITPKB

and pTAU accumulation, while miR-132 signal was high in cells

with lower ITPKB+- and pTAU+-immunolabeling. This was not

observed for miR-124 expression. ITPKB levels were elevated in

cells with strong pTAU immunoreactivity.

The miR-132/ITPKB pathway is disrupted in human AD brain

We finally assessed the expression of the different molecular players

in 39 late-stage AD and 15 control hippocampal samples. These

brains were part of the patient cohorts in which we originally

reported the downregulation of miR-132 (Lau et al, 2013). We con-

firmed miR-132 deficiency in these samples by real-time PCR

(Fig 8). Interestingly, along elevated phosphorylated ERK1/2 and

phosphorylated TAU levels, we also observed significantly increased

ITPKB expression (Fig 8). Notably, ITPKB levels were significantly

correlated to phosphorylated TAU (AT270) levels (Pearson’s

r = 0.7; P = 0.002). No changes in total ERK1/2 or TAU expression

were observed.

Discussion

We show here that loss of miR-132 in the context of an AD mouse

model affects the two arms of the biochemical cascade that leads to

the well-known AD pathology. miR-132 knockdown in APPPS1 mice

increases soluble and insoluble Ab and amyloid burden, while it

also enhances TAU phosphorylation in hippocampus. These effects

are reversed upon miR-132 overexpression, suggesting a direct rela-

tion between miR-132 levels and these biochemical phenotypes.

Thus, the strong miR-132 downregulation previously observed in

AD brain is not only a consequence of the disease process but also

contributes to the biochemical alterations that characterize the

pathology. The dual effect on Ab and TAU is surprising and is

apparently—partially—mediated by inositol 1,4,5-trisphosphate

3-kinase B or ITPKB. Interestingly, ITPKB mRNA and protein levels

increase up to threefold in human AD frontal cortex (Bossers et al,

2010; Saetre et al, 2011; Stygelbout et al, 2014). Here, we confirm

the significant ITPKB upregulation along with the strong miR-132

Table 1. Predicted miR-132 targets that were significantly upregulated and anticorrelated with miR-132 expression in human AD prefrontal cortex.

Transcript ID Pearson’s correlation Differential expression

Symbol NCBI ID r P-value BH adj P-value P-value BH adj P-value

KIAA1958 AB075838 �0.878 0.0002 0.0175 6.3E-05 0.0142

ZBTB34 AB082524 �0.857 0.0004 0.0285 2.8E-09 0.0001

ZCCHC11 NM_001009881 �0.846 0.0005 0.0294 9.0E-05 0.0165

CAPN2 NM_001748 �0.768 0.0036 0.0443 3.7E-04 0.0277

ITGB8 NM_002214 �0.765 0.0038 0.0443 7.5E-05 0.0156

ITPKB NM_002221 �0.766 0.0036 0.0443 2.4E-04 0.0233

KCNN3 NM_002249 �0.814 0.0013 0.0362 1.1E-04 0.0186

SP3 NM_003111 �0.765 0.0037 0.0443 1.0E-03 0.0443

TAF4 NM_003185 �0.884 0.0001 0.0163 3.8E-06 0.0035

PRPF4B NM_003913 �0.783 0.0026 0.0421 2.0E-04 0.0220

TJP2 NM_004817 �0.731 0.0069 0.0555 1.2E-03 0.0478

NFIB NM_005596 �0.764 0.0038 0.0443 7.3E-04 0.0386

ARID1A NM_006015 �0.859 0.0003 0.0285 1.1E-04 0.0186

SIRT1 NM_012238 �0.908 0.0000 0.0112 5.4E-07 0.0013

ZNF395 NM_018660 �0.792 0.0021 0.0403 4.4E-04 0.0302

ERBB2IP NM_018695 �0.784 0.0026 0.0420 3.6E-04 0.0276

PARD3 NM_019619 �0.802 0.0017 0.0370 1.1E-04 0.0182

ARHGAP21 NM_020824 �0.820 0.0011 0.0354 1.2E-04 0.0190

HSPA2 NM_021979 �0.886 0.0001 0.0161 2.1E-05 0.0076

P-values were adjusted using the Benjamini–Hochberg correction. Differential expression data were deduced from Bossers et al (2010).
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downregulation in AD brain. Moreover, up- or downregulation of

miR-132 in mouse hippocampus led to a direct down- or upregula-

tion of ITPKB, respectively. Intriguingly, this kinase is known to

phosphorylate ERK1/2 (Wen et al, 2004; Maréchal et al, 2007) lead-

ing to increased TAU phosphorylation and at the same time

enhanced BACE1 activity (and Ab accumulation) in another mouse

model of AD (Stygelbout et al, 2014). Along these lines, we report

that ITPKB deficiency in vivo results in a significant decrease in Ab
levels in AD mouse hippocampus. The direct link between miR-132

and ITPKB was further confirmed in a genetic occlusion experiment

in cell culture demonstrating that the effect of downregulation of

miR-132 on Ab generation is neutralized by downregulating ITPKB

at the same time (Fig 5B).

We and others previously suggested that miR-132 directly affects

TAU expression as MAPT mRNA contains a miR-132 binding site

(Lau et al, 2013; Smith et al, 2015). We could not demonstrate

such an effect here, although Smith et al (2015) recently reported

elevated mouse and human TAU expression in both wild-type and

triple transgenic (APPSwe/PSENM146V/TAUP301L, 3xTg-AD) mice

following genetic deletion of the miR-132/212 cluster. Obviously,

we induce here miR-132 knockdown in young adult mice, while

the genetic knockout is already present at birth, which could

explain this apparent discrepancy. It should be pointed out,

however, that in the latter model, the human TAU transgene does

not contain the MAPT 30UTR, and therefore, it is not clear how the

increased human TAU levels in the miR-132 knockout mice are

A

C

E F

D

B

Figure 5. miR-132 regulation over ITPKB.

A Luciferase reporter assay of wild-type (wt) and mutant (mut) ITPKB 30UTR in HEK293 cells co-transfected with a synthetic miR-132 (miR-132) or a negative control
(Neg Ctr) oligonucleotide.

B ELISA of Ab40 and Ab42 levels in HEK293-APPswe cells transfected with a miR-132 antisense oligonucleotide (miR-132 inh), an siRNA against ITPKB (ITPKB siRNA) or both.
C Western blot analysis of ITPKB knockdown in APPPS1 hippocampus using an siRNA oligonucleotide against ITPKB. Sample size, n = 6 per group. Values were

normalized to control-injected group (Ctr) and presented as mean � SEM.
D ELISA of insoluble (formic acid soluble) Ab40 and Ab42 levels in the hippocampus of ITPKB siRNA- and control-injected animals at 3 months of age. Sample size,

n = 6 per group. Values were normalized to control group and presented as mean � SEM.
E, F Western blot analysis of ITPKB levels upon miR-132 down (E)- or upregulation (F) at six and three months of age, respectively. Sample size, n = 9 per group for

miR-132 downregulation and n = 6 per group for miR-132 overexpression. Values were normalized to control groups and presented as mean � SEM.

Data information: The assays in (A and B) were performed in three independent experiments, each in triplicates. In (A, C–F) Student’s t-test was used, while in (B),
one-way ANOVA was employed.
Source data are available online for this figure.
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explained. Our data indicate that the endogenous TAU is not

directly affected by miR-132 regulation, but that, indirectly,

increased activity of ERK1/2, induced by ITPKB, could explain the

increased TAU phosphorylation.

The second AD-related effect of miR-132 downregulation, the

increase in Ab generation, is also—at least partially–mediated by

increased ITPKB levels. This effect has the signature of increased

BACE1 activity as APP CTFb and sAPPb were increased, as well.

A previous report had already indicated that ITPKB activates

BACE1 (Stygelbout et al, 2014). Interestingly, ERK1/2 has

previously been shown to affect membrane lipid composition

and thereby promote BACE1 enzymatic activity via phosphoryla-

tion of sphingosine kinase in neurons (Takasugi et al, 2011).

Further supporting the possible relevance of these observations

in human brain, we found increased levels of phosphorylated

sphingosine kinase in the AD hippocampi compared to the

controls (Fig 8).

The real novelty of our work stems from the insight that miR-132

is upstream of ITPKB, which links our previous observation of

miR-132 downregulation in AD to a pathologically relevant mecha-

nism. The link between miR-132 and ITPKB, ERK1/2 activity, APP

processing, Ab accumulation and TAU phosphorylation is strong

as shown by the consistent effects upon in vivo up- and downregula-

tion of miR-132 in the brain of an AD mouse model. We further

employed three independent sets of AD patient samples to explore

to which extent the proposed miR-132/ITPKB pathway may also

occur in AD brain. Notably, ITPKB significantly increased in late-

stage AD hippocampal samples, in which miR-132 levels were found

to be decreased by approximately 50%. Moreover, in the same set

of samples, we were able to confirm enhanced levels of activated

ERK1/2 (pERK1/2) and pTAU. ERK is required for TAU hyperphos-

phorylation in mice (Le Corre et al, 2006), while ERK1/2 activity,

but not total protein levels, was previously found to be elevated in

human AD brain (Ferrer et al, 2001) concomitantly with initial TAU

deposition, reflecting one of the earliest events in disease pathogen-

esis (Stygelbout et al, 2014). This is remarkably congruent with the

miR-132 downregulation at the early Braak stage III as previously

reported (Lau et al, 2013).

We report here that the well-established miR-132 loss in AD

brain has a presumably early, dual effect on key biochemical

aspects of pathogenesis: It aggravates both amyloid and TAU

pathology likely, and at least partially, via direct regulation of the

kinase ITPKB. This mechanism amplifies both pathologies. Strate-

gies to simultaneously tackle both amyloid and TAU pathways in

AD would possibly represent a highly efficient approach to halt

the pathogenic process. Therefore, and given the versatility and

the increasing know-how in using miRNAs as therapeutics, it is

attractive to speculate on the potential use of miR-132 mimics to

A

B

C

Figure 6. Effect of miR-132 regulation on BACE1 and ERK1/2 activity.

A–C Western blot analysis of CTFb (A), sAPPb-swe (B) and phosphorylated ERK1/2 (pERK1/2) (C) levels upon miR-132 down (ant-132) (left panel)- or upregulation
(miR-132) (right panel) in APPPS1 hippocampus at 6 and 3 months of age, respectively. Sample size, n = 9 per group for miR-132 downregulation and n = 6 per
group for miR-132 overexpression. Values were normalized to respective control groups and presented as mean � SEM. Student’s t-test was used.

Source data are available online for this figure.

EMBO Molecular Medicine Vol 8 | No 9 | 2016 ª 2016 The Authors

EMBO Molecular Medicine miR-132 ameliorates Ab and TAU pathology in AD Evgenia Salta et al

1012



A

B

C

Figure 7. miR-132/ITPKB expression profile in human AD prefrontal cortex.

A Double immunofluorescence staining of amyloid plaques (6E10) and ITPKB in AD prefrontal cortex. Scale bar, 50 lm. Arrowheads indicate ITPKB immunopositivity.
B miR-132 FISH coupled with double immunofluorescence against hyperphosphorylated TAU (AT8)-containing neurofibrillary tangles (NFTs) and ITPKB in AD prefrontal

cortex. miR-124 was used as a control. Scale bar, 50 lm.
C Quantification of miR-132, ITPKB and hyperphosphorylated TAU (pTAU) signal in single neurons. Integrated intensity values of each signal per cell were normalized to

the mean integrated density of each signal across all the cells analyzed (see Materials and Methods). Sample size (AD patients), n = 3. Values are presented as
mean � SEM. Two-way ANOVA was used. Quantifications are summarized in the table provided. Arrow directions refer to the comparison of each normalized signal
to the same signal in the other group (in the “low miR-132” group comparisons are made to the “high miR-132” group and vice versa).
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mitigate the progressing neurodegenerative process in AD

patients.

Materials and Methods

Animal procedures

All animal experiments were approved by the ethical committees of

KU Leuven and UZ Leuven (LA1210596). Eight-week-old males

were used in all stereotaxy protocols. Sample size was estimated in

pilot studies prior to each experimental approach.

Intracerebroventricular injections

The intracerebroventricular injections were performed as previously

described (Jimenez-Mateos et al, 2011) using the following stereo-

tactic coordinates: AP—0.1 mm, ML—1.0 mm, and DV—3.0 mm

(from the skull). For miR-132 downregulation, mice were infused

with 2–3 ll of miR-132 antagomiR (locked nucleic acid (LNA)-,

30-cholesterol-modified oligonucleotide) (Exiqon, Denmark) in artifi-

cial cerebrospinal fluid (CSF) (Harvard Apparatus, USA). Control

mice received either a scrambled LNA oligonucleotide or CSF. In

total, four injections of 0.66 nmol each were performed per animal

with 1-month intervals over a total period of 4 months. Analysis of

Figure 8. miR-132/ITPKB pathway assessment in human AD hippocampus.
Semi-quantitative PCR of miR-132 and Western blot analysis of ITPKB, phosphorylated (pERK1/2) and total ERK1/2, phosphorylated (AT8, AT270) and total TAU,
phosphorylated sphingosinekinase1 (pSphK1), BACE1, full lengthAPP (flAPP), APPCTFsand sAPPb inhumanADhippocampi (AD) compared tonon-dementedcontrol samples (ND).
Sample size, n = 39 for AD and n = 15 for ND. Values were normalized to ND and presented as mean � SEM. Student’s t-test was used.

Source data are available online for this figure.
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antagomiR-132-injected animals was performed at 6 months of age.

For miR-132 overexpression, mice received either a miR-132 mimic

or a negative control oligonucleotide (Dharmacon, GE Healthcare,

Belgium) in a mix with lipofectamine 2000 (at a 1:1 volume ratio)

(Thermo Fischer Scientific, Belgium). Injections of 150 pmol oligo

each were performed once a week for 1 month in total. Analysis of

miR-132 mimic-injected animals was carried out at 3 months of age.

For in vivo ITPKB downregulation, 11-week-old mice received either

an siRNA against ITPKB (Accell mouse SMARTpool ITPKB siRNA,

Dharmacon, GE Healthcare, Belgium) or a control oligonucleotide (2

injections of 1 lg each with 4 days interval at a 1:1 volume ratio in

lipofectamine) and sacrificed at 3 months of age. Randomization of

injectates was employed for all injection sessions, and animals were

randomly allocated to each treatment.

RNA isolation, reverse transcription, and real-time PCR

For RNA analysis, hippocampi were processed using the miRVana

Paris Kit (Life Technologies, Belgium) according to the manufac-

turer’s instructions. Briefly, tissue was homogenized (or cells were

lysed) in 300 ll cell disruption buffer supplemented with protease

and phosphatase inhibitors. Following denaturation, addition of acid

phenol:chloroform, incubation, and centrifugation, 1.25 volumes of

ethanol 100% were added to the aqueous phase. The samples were

then loaded on miRVana spin columns and processed according to

the manufacturer’s instructions. Reverse transcription of 200 ng

(mRNA) or 100 ng (miRNA) RNA was performed using the Super-

script II reverse transcriptase (Invitrogen, Life Technologies Europe,

Belgium) for protein-coding transcripts and the Universal cDNA

synthesis kit (Exiqon, Denmark) for miRNAs. Real-time semi-quan-

titative PCR was performed using the LightCycler 480 Sybr Green

(Roche Diagnostics, Belgium) for coding transcripts and the Sybr

Green mastermix and LNA PCR primers (Exiqon, Denmark) for

miRNAs. The primer sequences can be found in Appendix Table S1.

Primers. Cp (crossing points) were determined by using the second

derivative method. Fold changes were calculated with the DDCt
method (Livak & Schmittgen, 2001).

Western blotting

For protein analysis, tissue was homogenized (or cells were lysed)

in 300 ll cell disruption buffer as described above. Following

centrifugation, the supernatants were diluted in 1× SDS–PAGE load-

ing buffer containing 5% b-mercaptoethanol, boiled for 5 min at

96°C and centrifuged briefly. About 15 lg (mouse), 15 lg (cells), or

30 lg (human) of protein were finally electrophoresed on NuPAGE

10% Bis-Tris gels (Invitrogen, Life Technologies, Belgium). Follow-

ing electrotransfer, the nitrocellulose membranes were blocked in

blocking solution (5% milk powder in TBS-Tween 0.1%) and then

incubated with primary antibodies in blocking solution overnight.

Blots were incubated with the appropriate secondary antibody in

blocking solution for 1 h at room temperature and then developed

using chemiluminescence (Perkin Elmer, USA).

Fluorescent in situ hybridization and immunofluorescence

The in situ hybridization protocol was adapted from Silahtaroglu

et al (2007); Papadopoulou et al (2015). Briefly, 20 lm (mouse)- or

18 lm (human)-thick brain sagittal cryosections were postfixed in

ice-cold PFA 4% for 15 min, acetylated for 1 min, and prehy-

bridized in 50% formamide, 5×SSC and 500 lg/ml yeast t-RNA

(prehybridization buffer) for 1 h at 60°C. Hybridization was

performed with 42 nM of miR probe or scrambled negative control

(50-fluorescein, LNA, 20-OMe oligonucleotides) (Ribotask, Denmark)

in prehybridization buffer for 1 h at 70°C. Following posthybridiza-

tion washes in 0.2× SSC (70°C), 0.5× SSC (70°C), 2× SSC (room

temperature) and incubation in 3% H2O2 for 7 min, sections were

incubated in 0.5% BSA and 0.5% blocking reagent (Roche Diagnos-

tics, Belgium) (blocking solution 1). Finally, sections were probed

with an antifluorescein HRP-conjugated antibody (Roche Diagnos-

tics, Belgium) in blocking solution 1 and signals were developed in

TSA Plus Fluorescein reagent (Perkin Elmer, USA). For immunofluo-

rescence, samples were subsequently boiled in 10 mM sodium

citrate, 0.05% Tween-20, pH 6.0 for antigen retrieval, incubated in

2% normal goat serum in 0.5% TBS-Triton X-100 for 1 h (blocking

solution 2), probed with the primary antibodies in blocking solution

2 at 4°C overnight and with the appropriate secondary antibodies

for 2 h at room temperature. Finally, sections were incubated in

DAPI (Sigma-Aldrich, Belgium) and mounted in Mowiol.

Image acquisition and quantification

Images (z-stacks) were acquired using a Nikon A1R Eclipse Ti

confocal microscope. The FIJI software was employed for image

processing and quantification. In all quantifications, four sections

per sample were used with 100 lm distance between each two

sections and average values for each sample were calculated. For

amyloid burden, a region of interest was manually drawn around

each plaque and the total area occupied by plaques in hippocampus

or cortex was calculated per sample. The mean of the total area in

scramble-injected mice was set to 100, and all values were normal-

ized to 100%. For miR-132 and miR-124 total signal quantification

in human prefrontal cortex, integrated density of miR staining in

grey matter was calculated. The mean of the integrated density in

ND samples was set to 100, and all values were normalized to

100%. For single-cell colocalization analysis of miR-132, ITPKB,

and pTAU, the mean integrated density for each of the three signals

(miR-132, ITPKB, and AT8) across all the cells analyzed (435 cells)

was set to 100. The integrated intensity of each of the three signals

for each cell was then normalized against the appropriate mean to

100%. Eventually cells were grouped together into two separate

groups based on the miR-132 normalized intensity (high or low).

The cell populations analyzed spread equally across the three AD

PFC samples. All image quantifications were performed in a single-

blind manner.

Antibodies

Western blotting: mouse anti-CDK5 (1:1,000, sc-6247, Santa Cruz,

USA); rabbit anti-GSK3b (9315), rabbit anti-ERK1/2 (9102), rabbit

anti-pERK (9101s), rabbit anti-BACE1 (1:1,000, s5606, Cell Signaling,

USA); mouse TAU-5 (anti-total TAU) (1:1,000, 577801, Calbiochem,

Merch Chemicals, Belgium); mouse AT8 (MN1020), AT100

(MN1060), AT180 (MN1040), AT270 (MN1050) (1:500, Pharmingen,

BD Biosciences, Belgium); rabbit anti-ITPKB (1:500, 12816-1-AP,

Proteintech, Germany); rabbit B63 (anti-flAPP, anti-CTFs) (De
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Strooper et al, 1993); rabbit anti-sAPPb wild-type (1:500, 813401,

Covance BioLegend, USA); mouse anti-sAPPb Swe (1:250, 10321, IBL,

Germany); and anti-pSphK (1:500, SP1641, ECM Biosciences, USA).

Immunofluorescence: mouse AT8 (1:100, Cell Signaling, USA);

rabbit anti-ITPKB (1:50, Proteintech, Germany); and mouse 6E10

(amyloid staining) (1:150, 803002, BioLegend, USA).

Cell culture and transfections

For miR-132 downregulation, a miR-132 antisense hairpin inhibitor

was used (GE Healthcare, Belgium) to transfect HEK293-APPswe

using lipofectamine. Control transfections were performed using a

negative hairpin oligonucleotide (GE Healthcare, Belgium). For

ITPKB knockdown, a 27-mer siRNA duplex against human ITPKB or

a scrambled negative control were used (Origene, USA) to transfect

HEK293-APPswe using lipofectamine. Briefly, cells were seeded on

12-well plates at a cell density of 250,000 cells per well. Twenty-four

hours after seeding, cells were transfected and finally harvested

72 h thereafter.

Correlation analysis

To correlate the expression of hsa-miR-132-3p to the expression of its

predicted targets in the human prefrontal cortex, the normalized

miRNA deep sequencing data were obtained from Lau et al (2013)

and the normalized mRNA microarray data from Bossers et al

(2010), both of which were performed on the prefrontal cortex of the

same patient cohort from the Netherlands Brain Bank (Amsterdam,

Netherlands). The data for the six Braak 0-I and six Braak V-VI

patients were derived from the full normalized mRNA microarray

dataset. Pearson’s correlation coefficient and accompanying P-values

and Benjamini–Hochberg-corrected P-values were calculated for the

expression of hsa-miR-132-3p versus all detected mRNAs. A total of

960 transcripts were mapped to the mRNA profiling dataset out of a

total of 1332 initially predicted (Targetscan 7.0) miR-132 targets.

Luciferase assay

The 30UTRs were obtained by Gen9, Inc., USA. Subcloning into the

psiCHECK plasmid, transfection into wild-type HEK293 cells, and

luciferase assay were performed as previously described (Salta et al,

2014).

Ab extraction and ELISA

For Ab isolation and quantification in hippocampi, the three-step Ab
extraction protocol was adapted from Shankar et al (2011). Briefly,

TBS extracts were prepared by mechanical homogenization of tissue

in TBS supplemented with protease and phosphatase inhibitors and

subsequent centrifugation at 88,000 g in a TLA 100.4 rotor on a

Beckman for 1 h at 4°C. TBS-Triton X-100 extracts were obtained by

rehomogenizing the pellets from the previous step in TBS with 1%

Triton X-100, followed by ultracentrifugation as before. Finally,

rehomogenization of the previous pellet in 88% formic acid, sonica-

tion, overnight incubation at 4°C, and neutralization in non-buffered

Tris 1 M yielded the formic acid extract. For Ab quantification

in vitro, HEK293-APPswe (kind gift from Christian Haass) were

grown on poly-l-lysine plates in DMEM/F12 with 10% FBS for 48 h

following transfection. Medium was replaced with DMEM/F12 with

1% FBS, and cells (for protein and RNA isolation) and medium (for

Ab quantification) were collected 24 h thereafter. Ab ELISA

measurements were performed as previously described (Thathiah

et al, 2013). Values were normalized to extract protein concentra-

tion (for TBS extracts) or cell protein concentration (for HEK293-

APPswe).

Human samples

Hippocampal tissue samples were obtained from the London

Neurodegenerative Diseases Brain Bank. These samples were patho-

logically confirmed but not further categorized according to Braak

stage (Thathiah et al, 2013). Prefrontal cortex tissue blocks were

obtained from the Banner Sun Health Research institute (Arizona,

USA). All brain samples were collected according to legislation and

ethical boards of the respective brain banks. The human study was

evaluated and approved by the ethical committees of Leuven

University and UZ Leuven (Thathiah et al, 2013). Protein extracts

were prepared in 2% SDS supplemented with protease and phos-

phatase inhibitors.

Expanded View for this article is available online.
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