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Abstract

Background: Neoadjuvant endocrine therapy (NAE) has been employed to improve surgical outcomes for
hormone receptor-positive breast cancers in postmenopausal women. Endocrine responsiveness is estimated
by expressions of hormone receptors, but its heterogeneity has been recognized. Autophagy is an evolutionally
conserved process associated with cell survival and cell death and has been implicated in cancer treatment.

Methods: In order to examine the possible association between autophagy and response to endocrine therapy,
we evaluated the status of autophagy-associated markers, beclin 1 and LC3, and apoptosis-associated markers,
TUNEL and M30, in pre- and post-treatment specimens from 71 patients in a multicenter prospective study of
neoadjuvant exemestane (JFMC34-0601).

Results: Immunoreactivity of the autophagy-associated markers, beclin 1 and LC3, in carcinoma cells increased in
14 % and 52 % of the patients, respectively, following the exemestane treatment. These increases were statistically
significant (beclin 1, p = 0.016, N = 49; LC3, p < 0.0001, N = 33). The status of M30 immunoreactivity decreased
(p = 0.008, N = 47) and TUNEL remained unchanged (N = 53). In addition, tumors with pre-treatment stromal beclin
1 immunoreactivity revealed poor clinical and pathological responses compared with those without stromal beclin
1 immunoreactivity (25 % vs 67 % for clinical response, p = 0.011, N = 51; 0 % vs 41 % for pathological response,
p = 0.0081, N = 49). Tumors with positive pre-treatment stromal beclin 1 had a higher baseline Ki-67 labeling index
(both hot spot and overall average) than those without (p = 0.042 and 0.0075, respectively, N = 53). Results of
logistic regression analyses revealed that stromal beclin 1 was a predictor for clinical and pathological responses
while ER, PR, Ki-67, and stromal LC3 expressions were not.

Conclusions: Results of our present study demonstrated that beclin 1 and LC3 immunoreactivity increased in
carcinoma cells following exemestane treatment and that the status of pre-treatment stromal beclin 1 is
associated with higher carcinoma cell proliferation and poor clinical and pathological responses to NAE.

Trial registration: UMIN C000000345 (2006/03/06)
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Background
Neoadjuvant endocrine therapy (NAE) is one of the
treatment options for postmenopausal patients with hor-
mone receptor (HR)-positive breast cancers. NAE in-
creases the breast-conserving rate, which is indeed one
of its major purposes [1]. ACOSOG Z1031, a study com-
paring three neoadjuvant aromatase inhibitors, has re-
ported clinical response rates ranging from 62 to 75 %
and progressive disease (PD) rates from 4.7 to 7.3 % [2].
It has therefore become clinically important to predict
endocrine responsiveness in order to improve clinical
outcomes for HR-positive breast cancers.
Elucidation of cellular responses to endocrine treat-

ment is pivotal for understanding endocrine responsive-
ness. Endocrine treatment does reduce breast cancer
volume in almost 70 % patients but apoptosis was also
reported not to be necessarily increased in carcinoma
cells following endocrine treatment [3]. Therefore, it
remains to be determined how carcinoma cells react to
endocrine therapy and how clinically detected volume
reduction is accomplished.
Autophagy is one of the mechanisms of cell death and

represents an evolutionary conserved process critical for
adaptation to cellular stress and maintenance of cellular
homeostasis. During autophagy, long-lived proteins and
organelles are degraded by lysosomal degradation mech-
anisms. Autophagy is implicated in a dual role in cancer
biology: tumor suppression and promotion [4]. Monoal-
lelic deletion of the autophagy-related gene, beclin 1,
was known to increase the incidence of spontaneous
tumors in lung, liver and lymphoid tissue, suggestive of
an anti-tumor effect of autophagy [5]. Consistently,
breast cancer tissues were reported to express less
beclin 1 than normal breast tissues [6]. In contrast,
autophagy has been reported to be required for Ras-
mediated transformation of non-malignant breast epi-
thelial cells [7], and abrogation of autophagy to result
in decreased tumor growth, indicating a pro-tumor

effect of autophagy [8]. It is therefore pivotal to de-
termine how autophagy is involved in the treatment
responses of breast carcinoma cells.
In this study, we therefore investigated the status of

autophagy-associated markers, beclin 1 and LC3, in con-
junction with apoptosis-associated markers, TUNEL and
M30, in breast cancer tissues. We used archived speci-
mens, both pre- and post-treatment cases, from a neoad-
juvant exemestane study (JFMC34-0601), in order to
examine the association of these markers with clinical and
pathological responses to endocrine treatment. Results
revealed that endocrine treatment increased the expression
status of autophagy-associated markers in carcinoma cells.
In addition, the status of pre-treatment stromal beclin 1
was significantly associated with poor clinical and patho-
logical responses of the patients to endocrine treatment.

Methods
The design of the clinical trial JFMC34-0601, a multi-
center prospective neoadjuvant exemestane study, was
previously reported (Registration number: UMIN C00
0000345; Fig. 1) [9, 10]. Briefly, the eligibility criteria
included the followings: age, 55–75 years; positive ER
status; and stage II or IIIa invasive breast cancer. ER
or progesterone receptor (PgR) were determined posi-
tive using immunohistochemistry (IHC) (≥10 % nu-
clear staining in local laboratories). In addition, the
study treatment included 25 mg/day exemestane for
16 weeks with an 8-week extension, according to the
clinical assessment of therapeutic response. Patients
with PD during the treatment were withdrawn from the
study. At week 24, all the patients underwent surgery.
Clinical response was assessed based on the Response
Evaluation Criteria in Solid Tumors criteria version 1.0
by caliper measurement and ultrasound, as previously
reported [9]. Pathological response was assessed using
the following modified criteria, as reported by Miller
et al. [11] complete response when there was no

Registration (N = 116)

Exemestane 25 mg 16 wks

Exemestane 25 mg 8 wks

Discontinuation (N = 10)Continuation (N = 106)

Discontinuation (N = 4)Continuation (N = 102)

N = 60

N = 71

N = 67Surgery 

Paired sample
N = 57

Age: 55-75, ER+, Stage II or IIIA
Invasive breast cancer

ER+ HER2-
N = 70

Trial Sample

Fig. 1 Treatment flow and sample recruitment for JFMC34-0601, a multicenter prospective neoadjuvant exemestane study
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evidence of malignant cells at the original tumor site,
partial response when histological decrement in cellu-
larity and/or increment in fibrosis was detected, and
no response when no changes detected. Pretreatment
biopsy and post-treatment surgical tissue specimens
were retrieved for this study. The study protocol was
approved by the institutional ethics committee at
School of Medicine, Kyoto University (Number G-
240). Written informed consent was obtained from all
patients.

Immunohistochemistry
IHC evaluation of ER, PgR, and Ki-67 was centrally per-
formed and assessed by three independent pathologists,
as previously reported [9]. Immunostaining was per-
formed using a Histofine Kit (Nichirei, Tokyo, Japan).
Ki-67 was evaluated using a 1:100 antibody dilution
(Clone MIB-1; Dako, Glostrup, Denmark). The Ki-67 la-
beling index (LI) was determined by counting 500–1000
tumor cells at the hot-spot sites. The overall average
score of Ki67 was also determined in order to further ex-
plore the association with stromal beclin 1 immunoreac-
tivity by counting 500–1000 cells in the representative
fields of the specimens [12]. ER and PgR immunoreactivity
was scored by central assessment according to Allred’s

procedure [13], which is used in the analyses of this study.
HER2 status was determined using the HercepTest
(Dako). In addition, a positive HER2 status was defined as
either 3+ or 2+ with confirmed c-erbB2 gene amplification
using the FISH test. Apoptosis-associated markers were
evaluated using TUNEL (In Situ Cell Death Detection Kit;
Roche Diagnostics, Mannheim, Germany) and M30 Cyto-
DEATH (1:100; Roche Diagnostics). Autophagy-associated
markers were immunostained using the anti-beclin 1 anti-
body (1:250; NB500-249; Novus Biologicals, CO, USA)
and anti-LC3 antibody (1:200; PM036; MBL, Nagoya,
Japan), which reacts with LC3A, LC3B and LC3C and
detects both LC3-I and LC3-II. The cytoplasmic immuno-
reactivity of beclin 1, LC3, and M30 and nuclear reactivity
of TUNEL were all assessed using pre- and post-
treatment tissue specimens (Fig. 2). The positive staining
was defined as + (weak staining) or ++ (strong staining).
The positive rate of each marker was assessed as positive
cells per total cells.

Statistical analysis
Statistical analyses were performed using the Wilcoxon’s
paired test for comparisons between pre- and post-
treatment levels of autophagy- and apoptosis-associated
markers. The Mann–Whitney test was used for comparing

- + ++

Beclin 1

LC3

TUNEL

M30

Fig. 2 Immunohistochemistry for the autophagy-associated markers beclin 1 and LC3 and apoptosis-associated markers TUNEL and M30. The
cytoplasmic staining of beclin 1, LC3, and M30 and nuclear staining of TUNEL were assessed (Scale bar = 100 μm). Weak and strong staining was
regarded as positive. -: negative staining, +: weak staining, ++: strong staining
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Ki-67 LI between patients with and without stromal beclin
1 expression. The χ2-test and logistic regression analysis
were used to determine the association between markers
and clinical and pathological responses. All analyses were
performed using the JMP Ver.8.0.1 software package (SAS
Institute, Inc., Cary, NC, USA). All p values were two-sided,
and p < 0.05 was considered statistically significant. All
graphs were generated using the GraphPad Prism ver. 5.0.4
software (GraphPad Software, San Diego, CA, USA).

Results
Exemestane increased beclin 1 and LC3 but not TUNEL
and M30 in carcinoma cells
Tissue specimens were obtained from 71 of the 116 pa-
tients in the JFMC34-0601 study. One patient with ER-
positive and HER2-positive breast cancers was excluded
from the study, leaving 70 patients for 60 core biopsies
and 67 resection samples (Table 1). Fifty-seven cases
were paired (Fig. 1). The cytoplasmic staining of beclin
1, LC3, and M30 and nuclear staining of TUNEL were
assessed (Fig. 2). Both weak (+) and strong (++) im-
munoreactivity was regarded as positive since, if the
positive staining is limited to the strong immunoreac-
tivity, the positive rate became too low. Due to the
limited availability of tissue slides, there were some
cases in which some markers could not be evaluated
(Additional file 1: Table S1).
Beclin 1 and LC3 increased in carcinoma cells follow-

ing exemestane treatment in 7 (14 %) of 49 patients
and 17 (52 %) of 33 patients, respectively. These in-
creases were statistically significant (beclin 1, p = 0.016;

LC3, p < 0.0001). However, M30 decreased after the
treatment (p = 0.008, N = 47) and the value of TUNEL
remained unchanged (N = 53, Fig. 3). Baseline status of
the markers and changes after the treatment were
not significantly correlated with clinical and patho-
logical responses of the patients to the treatment
(data not shown).

Baseline beclin 1 in stromal cells was significantly
associated with clinical and pathological responses to
neoadjuvant endocrine therapy
Stromal cells have been considered to play pivotal roles
in cancer treatment and therefore, we evaluated the as-
sociation between the status of autophagy-associated
markers in the stromal cells and treatment responses of
the patients. No tumors (0/12) with stromal beclin 1 im-
munoreactivity in pre-treatment tissues were associated
with a pathological response, whereas 41 % (15/37) of
tumors without beclin 1 immunoreactivity showed a
pathological response (p = 0.0081; Table 2). No cases
harboring any beclin 1 immunoreactivity in the stromal
cells in pre-treatment tissues showed a pathological re-
sponse and immunoreactivity with > 0 % was therefore
defined as positive stromal beclin 1. Consistently, only
25 % (3/12) of the patients with stromal beclin 1 demon-
strated a clinical response, whereas 67 % (26/39) of those
without beclin 1 expression demonstrated a clinical re-
sponse (p = 0.011; Table 2), suggesting that the status of
stromal beclin 1 was associated with the clinical re-
sponses of the patients to endocrine treatment. Normal
mammary gland epithelia were used as positive control
of immunostaining in this study. There were no significant
associations detected between other stromal markers at
baseline and clinical and pathological responses of the
patients.
In order to further explore the possible factors associ-

ated with responses to endocrine treatment, we also per-
formed logistic regression analyses of ER, PgR, Ki-67,
and stromal beclin 1 status. The status of stromal beclin
1 immunoreactivity did predict the clinical and patho-
logical responses (p = 0.01 for clinical response and
0.0013 for pathological response; Table 3) of the pa-
tients while all other factors not. Because all factors
other than stromal beclin 1 had p values > 0.2, we did
not perform a multivariate analysis for prediction of the
treatment response.

Baseline beclin 1 in stromal cells was significantly
associated with increased carcinoma cell proliferation
We evaluated the association between stromal beclin 1
positivity and Ki-67 LI in carcinoma cells at baseline.
Carcinoma cells in tissues with stromal beclin 1 positiv-
ity had higher Ki-67 LI than those without its positivity
(p = 0.042 for hot spot Ki67 and 0.0075 for overall

Table 1 Clinical background of the patients

Factor N

Total 70

Age 50–59 12

60–69 37

70–79 21

T 2 70

3 0

N 0 52

1 18

Clinical Stage IIA 52

IIB 18

IIIA 0

ER + 70

- 0

PgR + 64

- 6

HER2 + 0

- 70
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average Ki67, N = 53; Fig. 4a), suggesting the correlation
between stromal beclin 1 expression and carcinoma cell
proliferation. The representative findings of immunohis-
tochemistry were illustrated in Fig. 4b. A tumor with
stromal beclin 1 immunopositivity (upper panel) demon-
strated higher Ki67 LI than a tumor without stromal
beclin 1 (lower panel).

Discussion
This study demonstrated that treatment of ER-positive
breast cancer with exemestane decreased expression of
the apoptosis-associated marker, M30, in carcinoma
cells, which is consistent with results of the study re-
ported by Dowsett et al. [3]. However, results of our
present study also demonstrated that exemestane in-
creased the expression of autophagy-associated markers
in carcinoma cells, suggesting that autophagy was in-
volved in cellular responses to endocrine treatment.

Autophagy is one of the cell death mechanisms and
therefore autophagy induction itself could reduce breast
cancer volume. However, results of our present study
did not necessarily provide any correlation between
the increases of autophagy-associated markers and
therapeutic responses to treatment of the patients. In
cell lines, autophagy inhibition has been reported to
sensitize carcinoma cells to steroidal aromatase inhib-
itors [14, 15]. In addition, ER-positive carcinoma cells
with acquired antiestrogen resistance have been re-
ported to overexpress glucose-regulated protein 78
(GRP 78), which stimulated pro-survival autophagy,
suggesting that autophagy serves as one of the resist-
ance mechanisms for endocrine therapy [16]. There-
fore, at least at this juncture, autophagy alone may
not be involved in the volume loss of tumors. In
addition, underlying mechanisms for autophagy induc-
tion by exemestane still remain unknown but GRP 78

TUNEL M30

Beclin 1 LC3

P = 0.008N.S.
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Fig. 3 Changes in expression of each marker in cancer cells by treatment. In cancer cells, the autophagy-associated markers, beclin 1 and LC3,
increased (p = 0.016 and < 0.0001, respectively), whereas M30 decreased (p = 0.008) and TUNEL remained unchanged. A decrease in tumor size
was also shown (p < 0.0001). The y-axis for the markers indicates a positive rate of each marker, which was assessed as positive cells per total cells.
Data are shown in box-whisker with dot plots. Horizontal bars in the box-and-whisker plots indicate min–max and 1st, 2nd, and 3rd quartiles

Table 2 Stromal expression of beclin 1 and clinical and pathological response

Clinical response Pathological response

Non-responder Responder Non-responder Responder

Stromal beclin 1 + 9 3 12 0

- 13 26 22 15

p value 0.011 0.0081
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Table 3 Logistic regression analysis for clinical and pathological response

Clinical response Pathological response

Factors OR 95 % CI p OR 95 % CI p

ER 0.76 0.077–7.6 0.81 0.56 0.03–6.2 0.65

PR 1.43 0.24–9.8 0.7 0.52 0.05–3.6 0.52

Ki-67 LI (hot spot) 1.0 0.15–6.5 0.98 2.1 0.26–25 0.49

Stromal beclin 1 (− vs +) 6.0 0.01 140000 0.0013

%
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Ki67 LI
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P = 0.042

- +
0

10

20

30

40

50

60

- +
0

10

20

30

40

50

60

P = 0.0075

Stromal beclin 1
- +

0

10

20

30

40

50

60

- +
0

10

20

30

40

50

60%

Ki67: Hot Spot Ki67: Overall average
a

b
beclin 1 Ki67

positive

negative

Stromal beclin 1

Fig. 4 a Stromal beclin 1 expression and Ki-67 LI in cancer cells. Tumors with stromal beclin 1 expression revealed higher Ki-67 LI than those without
the expression (p = 0.042 for hot spot Ki67 and p = 0.0075 for overall average Ki67). Data are shown in box-whisker with dot plots. Horizontal bars in
the box-and-whisker plots indicate min–max and 1st, 2nd, and 3rd quartiles. b Representative tissues with or without stromal beclin 1 expression. A
tumor with stromal beclin 1 expression (upper panel) had higher Ki67 LI than a tumor without the expression (lower panel). Beclin 1 and Ki67 were
stained in serial sections of two representative tissues. Scale bar = 100 μm
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has been reported to be up-regulated by the selective
estrogen receptor down-regulator and therefore, GRP
78 could be one possible mechanism for autophagy induc-
tion by endocrine therapy [17]. It is important to deter-
mine whether carcinoma cells with autophagy-associated
markers are sensitive or resistant to endocrine therapy in
breast cancer tissues. Therefore, we planned to follow
long-term patient outcomes to examine if an induction of
autophagy-associated markers in cancer cells is indeed as-
sociated with better or worse patient outcomes.
Results of our present study also demonstrated that

stromal beclin 1 positivity at baseline was associated
with poor clinical therapeutic response to exemestane.
Autophagy in stromal cells has been reported to protect
carcinoma cells from cell death [18–20]. Autophagy
in cancer-associated fibroblasts induced by a loss of
caveolin-1, did protected carcinoma cells from cell death
through upregulation of TP53-induced glycolysis and
apoptosis regulator in cancer cells [18]. Consistently, the
absence of stromal caveolin-1 expression has been also
reported to be associated with poor clinical outcome of
the patients [19, 20]. In addition, autophagic stromal cells
were also reported to fuel carcinoma cells with recycled
nutrients, such as pyruvate and lactate, resulting in an
adverse clinical outcome of breast cancer patients [20].
Results of our present study also demonstrated that tu-
mors with stromal beclin 1 had higher carcinoma cell pro-
liferation, which is also consistent with the hypothesis
above. However, further studies such as a prospective
study with a larger number of the cases are required to
explore stromal expression of beclin 1 as a predictor of
endocrine responsiveness.
The status of baseline stromal beclin 1 was signifi-

cantly correlated with a poor clinical response to exe-
mestane but that of stromal LC3 not, indicating that
beclin 1 and LC3 could be differently regulated. Beclin 1
is a coiled-coil myosin-like BCL2-interacting protein in-
volved in membrane trafficking and initiation and nucle-
ation of the phagophore, whereas LC3 is a ubiquitin-like
protein involved in elongation and closure of the autop-
hagosome [21]. LC3 is degraded by autophagy and dis-
appearance of total LC3 could also be a good indicator
of autophagic flux [22]. Therefore, an involvement in
different autophagic phases and different turnovers
could lead to the possible discrepancy between beclin 1
and LC3 expressions. p62 is also involved in autophagy-
dependent elimination of different cargos including ubi-
qutinated protein aggregates and constantly degraded by
autophagy and, therefore, useful for measuring autopha-
gic flux. However, due to the limited availability of tissue
slides, the assessment of p62 expression could not be
performed in this study and further investigations are
required for clarification of the role of autophagy in
endocrine treatment.

In this study, the status of ER and PgR was not neces-
sarily associated with clinical and pathological responses
to exemestane, although ER is a key biomarker for endo-
crine treatment. This could be due to narrow ranges of
ER and PgR status of the tumors evaluated in this study.
Indeed, more than 95 and 70 % of tumors in this NAE
study had relatively high ER and PgR expressions, re-
spectively, with Allred’s score ≥ 6. Results of our present
study did not show a predictive value of Ki67 LI for re-
sponses to neoadjuvant endocrine therapy in concord-
ance with previous studies [11, 23].
There are some limitations in this study. One of the

limitations is the relatively small sample size. Specimen
availability for this study was limited, and surgical speci-
mens from patients who had discontinued treatment
were not obtained. Another limitation is that only exe-
mestane was used as an aromatase inhibitor. It remains
unknown if nonsteroidal aromatase inhibitors could
show similar results in breast cancer tissues.

Conclusions
Beclin 1 and LC3 immunoreactivity in carcinoma cells
increased following exemestane treatment, and the stro-
mal beclin 1 at baseline was associated with poor clinical
and pathological responses to exemestane in this study.
A larger study is definitively required to confirm our re-
sults but an elucidation of stromal involvement in re-
sponse to endocrine treatment could possibly lead to a
novel treatment strategy which targets stromal cells for
further improvement of clinical outcomes of breast can-
cer patients.
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