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Abstract: Epithelial cells are apico-basolateral polarized cells that line all tubular organs and are often
targets for infectious agents. This review focuses on the release of human RNA virus particles from
both sides of polarized human cells grown on transwells. Most viruses that infect the mucosa leave
their host cells mainly via the apical side while basolateral release is linked to virus propagation within
the host. Viruses do this by hijacking the cellular factors involved in polarization and trafficking. Thus,
understanding epithelial polarization is essential for a clear understanding of virus pathophysiology.
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1. Introduction

Epithelial cells line all tubular organs and are often the first targets of infectious agents.
Their apico-basolateral polarization is due to molecular events that occur throughout their
development. These ones modify the cell membrane composition and produce different
trafficking routes to and from each pole [1]. These mechanisms can be hijacked by viruses
at several stages of their life cycle, resulting in polarized entry and release. While apical
or basolateral entry depends mainly on the distribution of virus receptors, virus egress
results from the interaction of the viral proteins with intracellular factors. Vectorial release
implies a non-lytic process, classically used by enveloped viruses, while particles of quasi-
enveloped viruses, which lack peplomers [2], and certain naked viruses, use membranes
for non-lytic egress. The resulting extracellular vesicles can contain several virus particles,
enabling their en bloc transmission and more efficient virus spreading [3].

This review focuses on studies that analyze the amounts, infectivity and physicochem-
ical characteristics of human RNA virus particles released from both sides of polarized
human cells grown in transwells. The most popular models are those of the intestine, lung
and liver, and the majority of studies have used primary cells or cell lines polarized in vitro.
While organoid models have been developed recently they have rarely been used yet to
study the polarized release of viruses. Finally, we indicate the key cellular factors involved
in polarized release.

2. Characteristics of Polarized Epithelial Cells

Epithelia are monolayer or multilayer tissues lining all tubular organs; their cells are
attached to a basement membrane by their basolateral side and their apical side is exposed
to a lumen or the air. Their planar polarization, with specific cell-to-cell contacts, results
in a physical barrier between the two sides of the epithelium. Some epithelial cells form
systems that are more complex. For example, the basolateral side of hepatocytes faces the
liver sinusoidal endothelial cells and one or more apical sides face bile canaliculi [4]. The
compositions of the apical and basolateral membranes of these epithelial cells become very
different during differentiation to ensure the proper function of the epithelium [5] (Figure 1).
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Figure 1. Characteristics of epithelial cells. (A) Epithelial cells polarity is maintained by several junc-
tional complexes including the vertebrate marginal zone (VMZ), tight junctions (TJ), adherens junc-
tions (AJ), desmosomes (D). These complexes depend on several proteins involved in polarity, in-
cluding Crumbs and Par at the apical side and disks large (Dlg) and Scribble at the basolateral side. 
Integrins are main proteins involved in the adherence to the extracellular matrix (ECM). ER: endo-
plasmic reticulum. TGN: Trans Golgi Network. The apical and the basolateral membranes are en-
riched in phosphatidylinositol (4,5) bisphosphate [PtdIns(4,5)P2] (yellow hashed line) and 
PtdIns(3,4,5)P3 (red hashed line), respectively. (B) Schematic representation of the actin (green) and 
microtubules (blue) polarization. ZO proteins ensure the link between junctional complexes and the 
cytoskeleton. (C) Apical and basolateral endocytosis pathways, initiated at apical or basolateral 
early endosomes (AEE and BEE, respectively) converge to the multivesicular body (MVB) or to the 
common recycling endosomes (CRE), from which apical recycling endosomes (ARE) can bud. Dis-
tinct Rab proteins are involved at each step of these processes. 

The integrity of epithelia depends on adhesion between cells that involves several 
junction protein complexes including tight junctions (TJ), adherens junctions, and desmo-
somes. Tan et al. recently described a distinct polarity domain at the apical side of TJ, the 
vertebrate marginal zone (VMZ), in Madin-Darby canine kidney (MDCK) cells [6], while 
Gap junctions are involved in intercellular communication [7]. Conserved polarity mod-
ules, Crumbs and Par (apical) and Scribble and Dlg (basolateral) all govern the correct 
assembly of these junctional complexes [1]. TJ are composed of several transmembrane 
proteins on the extracellular plasma membrane (PM) side that interact with homologous 
proteins of adjacent cells. Claudins, occludins and junction adhesion molecules (JAM) are 
essential components of TJ [8]. On the intracytoplasmic side, several proteins containing 
PDZ domains, such as zona occludens (ZO) proteins, form scaffolds for these complexes 
and ensure their junction with the cytoskeleton. TJ allow only water, ions and small mol-
ecules like sugars to cross the epithelium. They also maintain the different compositions 
of the apical and basolateral plasma membranes. During development, cell contacts in-
duce the mutual exclusion of proteins dedicated to the apical and basolateral sides, on 

Figure 1. Characteristics of epithelial cells. (A) Epithelial cells polarity is maintained by several
junctional complexes including the vertebrate marginal zone (VMZ), tight junctions (TJ), adherens
junctions (AJ), desmosomes (D). These complexes depend on several proteins involved in polarity,
including Crumbs and Par at the apical side and disks large (Dlg) and Scribble at the basolateral
side. Integrins are main proteins involved in the adherence to the extracellular matrix (ECM).
ER: endoplasmic reticulum. TGN: Trans Golgi Network. The apical and the basolateral membranes
are enriched in phosphatidylinositol (4,5) bisphosphate [PtdIns(4,5)P2] (yellow hashed line) and
PtdIns(3,4,5)P3 (red hashed line), respectively. (B) Schematic representation of the actin (green) and
microtubules (blue) polarization. ZO proteins ensure the link between junctional complexes and
the cytoskeleton. (C) Apical and basolateral endocytosis pathways, initiated at apical or basolateral
early endosomes (AEE and BEE, respectively) converge to the multivesicular body (MVB) or to the
common recycling endosomes (CRE), from which apical recycling endosomes (ARE) can bud. Distinct
Rab proteins are involved at each step of these processes.

The integrity of epithelia depends on adhesion between cells that involves several
junction protein complexes including tight junctions (TJ), adherens junctions, and desmo-
somes. Tan et al. recently described a distinct polarity domain at the apical side of TJ,
the vertebrate marginal zone (VMZ), in Madin-Darby canine kidney (MDCK) cells [6],
while Gap junctions are involved in intercellular communication [7]. Conserved polarity
modules, Crumbs and Par (apical) and Scribble and Dlg (basolateral) all govern the correct
assembly of these junctional complexes [1]. TJ are composed of several transmembrane
proteins on the extracellular plasma membrane (PM) side that interact with homologous
proteins of adjacent cells. Claudins, occludins and junction adhesion molecules (JAM) are
essential components of TJ [8]. On the intracytoplasmic side, several proteins containing
PDZ domains, such as zona occludens (ZO) proteins, form scaffolds for these complexes and
ensure their junction with the cytoskeleton. TJ allow only water, ions and small molecules
like sugars to cross the epithelium. They also maintain the different compositions of the
apical and basolateral plasma membranes. During development, cell contacts induce the
mutual exclusion of proteins dedicated to the apical and basolateral sides, on each side of
TJ [9]. Among them, integrins contribute to link the basolateral side to the extracellular
matrix [10]. The segregation of phosphoinositides between the poles is also critical for ep-
ithelial polarization. Phosphatidylinositol (PtdIns) (4,5) bisphosphate (P2) is concentrated
in the apical membrane while PtdIns(3,4,5)P3 accumulates at the basolateral side [11]. Pt-
dIns(4,5)P2 specifically recruits proteins like Annexin-2 and Slp2-a. Annexin-2 binds Cd42,
that helps form tight junctions and directs trafficking to the PM [12,13]. These processes
are closely maintained and regulated by enzymes that modify phospholipids [12,14,15].
PtdIns(3,4,5)P3 plays a critical role in polarized protein recruitment. Adding exogenous
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PtdIns(3,4,5)P3 to the apical side of MDCK cells orients basolateral proteins to their apical
pole [16]. Actin is also important for maintaining polarity; the actin cytoskeletal network
interacts directly with TJ junctional molecules, including ZO proteins [17].

The secretion and trafficking of extracellular vesicles are also polarized. Secreted
or membrane proteins are sorted in the trans-Golgi network and orientated towards the
appropriate pole [18]. The main drivers of the selective recycling of endosomes to the
apical or basolateral plasma membranes during endocytosis-exocytosis are soluble N-
ethylmaleimide-sensitive attachment protein receptors (SNAREs) and Rab proteins [19].
Rab4-dependent apical and basolateral early endosomes can both fuse to a common Rab8-
and Rab10-positive recycling endosome. Rab11 and Rab17 then play a major role in
vesicular trafficking to the apical recycling endosome, while Rab27 ensures their passage to
the apical plasma membrane [20,21]. VAMP8/Endobrevin addresses extracellular vesicles
to the basolateral side of MDCK cells [22], while Rab27a and Synaptotagmin-Like Protein 2a
(Slp-2a) address vesicles to the apical side. Slp-2a then interacts with PtdIns(4,5)P2-rich
membrane domains [13]. The compositions of basolateral and apical exosomes differ at
the end of this process [23]. Apical exosomes from human colon carcinoma LIM1863 cells
are enriched in EpCAM while the basolateral exosomes are enriched in A33 antigen [24].
The apical exosomes of MDCK cells polarized in culture are enriched in HSP70, GPR5C
and CD63 while the basolateral exosomes have more TSG101, CD81 and CD9 [25,26]. This
depends on the cell type since CD81 is enriched in the extracellular vesicles secreted from
the apical side of proximal tubular epithelial cells [27].

3. Experimental Systems for Studying Vectorial Virus Release

Polarized cells must be grown in transwells in order to study the release of virus
particles from both sides of these cells, as this provides them with basolateral and apical
sides. Differentiation can be promoted by coating the membrane with extracellular matrix
(ECM) components like collagen or gelatin, or the ECM produced by the Engelbreth-
Holm-Swarm (EHS) mouse sarcoma, commercialized as Matrigel [28]. ECM components
help induce cell polarization [1]. These inserts are maintained in culture with medium
added to the basal side. The apical side is usually covered with medium, which may
be identical to or different from the basal medium, depending on the experiment. An
air-liquid interface can be generated with no medium added above the insert to mimick
respiratory epithelia [29]. Virus particles released from the apical side of these systems
can be recovered by washing [30]. Studies on virus propagation in polarized cells often
use replicative viruses that can propagate in culture. Comparison of the amounts of viral
markers on each side of transwells is usually the result of these successive infection cycles.
This must be considered when interpreting the results, particularly if there is no difference
between apical and basolateral infections.

MDCK cells or their derivatives are widely used because they are readily polarized in
culture [31]. Cell lines from organs of interest or their subclones are also used: A549 for lung,
Caco-2 for intestine, and Huh-7 or HepG2 for liver. These cell lines are readily available and
long-lived but they do not reproduce all the characteristics of the primary organ. Intestinal
and respiratory primary cells are frequently used to reproduce a polarized 2D-epithelium
in culture [32,33]. The liver epithelium is particular in that it has a 3D architecture [4].
However, 2D systems have been set up to study traffic and transcytosis [34]. Polarized
cells can also be differentiated from adult or pluripotent stem cells [35]. Human stem
cell-derived hepatocyte-like cells (HLCs) have been polarized on inserts to reproduce the
hepatocyte phenotype [36]. Hepatocyte can be polarized by adding dimethylsulfoxide
(DMSO) to the culture medium [37,38]. Organoids are cellular systems that allow to
reproduce the characteristics of the corresponding adult tissues including their multicellular
composition [39].

There are several ways to check epithelium polarization. The transepithelial electrical
resistance is increased as a result of the barrier generated during polarization [40]. Labeling
TJ proteins show relatively straight, continuous lines that connects tricellular contact points.
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Ruffles in TJ result from the interaction of claudins with the cytoskeleton and can alter
permeability, while spikes in TJ are involved in intercellular communication [41]. Functional
cell polarization can also be evaluated by measuring secreted components. For example,
hepatocytes secrete albumin from their basolateral side and bile acids from their apical
side [42]. Polarized secretions by organoids can be studied by reversing them or laying
then on transwells [43].

4. Exit Poles and Production of RNA Virus Particles
4.1. Polarized Release of RNA Viruses Infecting Mucosal Epithelia and Triggering Local
Related Symptoms

Viruses transmitted by the respiratory or oral routes first encounter the apical side
of the corresponding epithelium. Coronaviruses (CoV) enter epithelial cells via the apical
membrane, following interaction of the Spike protein with a peptidase receptor. HCoV-NL63,
SARS-CoV and SARS-CoV-2 all interact with angiotensin-converting enzyme 2 (ACE2),
MERS-CoV interacts with dipeptidylpeptidase-4 (DPP4), and HCoV-229E with aminopepti-
dase N (APN) [44]. CoV entry is independent of the peptidase activity but could be linked to
enrichment of these enzymes on the apical side, in parallel with their low affinity for their
natural ligand [45]. Most the coronaviruses infecting airway epithelial cells are released from
the apical side [44]. SARS-CoV is mainly released from the apical side of human bronchial
epithelial Calu-3 cells in transwell culture systems [46]. SARS-CoV-2 can infect the ciliated
and goblet cells, in a human airway epithelium (HAE) cultured at an air-liquid interface
(HAE-ALI) and is released from the apical side. The virus has a cytopathic effect, with cell
fusions, destruction of tight junctions, and disorganization of cilia [30]. Uninfected basal
cells then proliferate to regenerate the epithelium and support a persistent infection [47]. In
severe COVID-19, infection of endothelial cells results in virus leakage across the inflamed
epithelium rather than the basolateral release of virus particles [48]. MERS-CoV has been
shown to infect Calu-3 cells by both sides. While apical infection is more efficient, and
infectious particles are preferentially released apically, there is substantial particle release
from the basolateral side [49]. Similar results have been obtained with polarized colon Caco-2
cells. This could explain why MERS-CoV is more likely than other CoV to disseminate in
its host [50]. Electron microscopic studies showed that influenza A virus (IAV) buds from
the apical side of cellular microvilli in differentiated human airway epithelial cells [51]. IAV
can infect both sides of porcine tracheal or bronchial epithelial cells at an air-liquid interface,
leading to the apical release of virus particles and the loss of cilia. However, the permeability
and barrier functions of the epithelium were not altered during the eight-day experiment [52].
The M2 protein of IAV, a viroporin, plays a major role in this apical release. Adding ectopic
M2 protein to the basolateral membrane or the endoplasmic reticulum of human nasal
epithelial cell (hNEC) cultures inhibited virus production [53]. The cytoplasmic domain of
the envelop glycoprotein is a key determinant of its transport to the membrane: replacing
the cytoplasmic domain of the vesicular stomatitis virus (VSV) G protein by that of IAV
hemagglutinin (HA) changes its localization from the basolateral to the apical membrane [54].
Studies on polarized MDCK or Calu-3 cells grown on inserts show that the negative single
strand RNA Mumps virus (MuV, Paramyxoviridae) infects both sides of cultures with similar
efficiency but is mostly released from the apical surface, at which its N and M proteins
accumulates [55].

However, RNA viruses transmitted by airway or orally do not always preferentially
infect the apical side of an epithelium. Rotavirus, a naked double strand RNA virus
(Reoviridae), is mainly responsible for gastroenteritis in children. It infects polarized
porcine small intestine cells preferentially via the basolateral side but is mainly released
from the apical side before cell lysis [56]. Measles virus first infects alveolar macrophages
and dendritic cells via its receptor, CD150/SLAM. These cells can then deliver the virus to
epithelial cells via their basolateral side [57]. While Measles virus particles can be released
from the apical side of human airway epithelium cells [58], recent studies indicate that this
release is not fully efficient. Clusters of highly infected cells become dislodged from the
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epithelium, which could explain why they are highly infective when they are ejected in
respiratory aerosols and droplets [59].

4.2. Polarized Release of RNA Viruses Infecting Mucosal Epithelia and Triggering
Distant Symptoms

Other RNA viruses acquired by the oral or respiratory routes replicate in the cor-
responding epithelium without evident associated clinical signs and then gain access to
secondary organs, with clinical manifestations reflecting this secondary infection. Hepatitis
A and E viruses are naturally transmitted orally, but the liver is their major target organ.
While virus particles propagate in the environment as naked infectious particles, they are
released from cells and circulate in the host as lipid-associated quasi-enveloped particles
that lack virus glycoproteins to interact with a cognate receptor. Lipid-associated particles
are less infectious than naked particles but can still infect new cells [60,61]. HAV and HEV
are transmitted orally and can infect intestinal cells. HAV infects polarized Caco-2 cells
in culture mostly via the apical side, and is preferential release apically [62,63]. Primary
intestinal cells polarized in Matrigel-coated transwells and infected with HEV via the
apical side preferentially release virus particles apically, with a small fraction released
basolaterally [64]. For both HAV and HEV, the low proportion of infectious virus particles
released at the basolateral side could reach the liver in vivo via the portal vein, and so
infect hepatocytes. Clones of HepG2 human hepatocarcinoma cells line were selected
for their ability to become polarized in culture. The HepG2-N6 clone is infected by HAV
preferentially by the basolateral side [65]. The HepG2/C3A/F2 clone is efficiently infected
by HEV apposed at the basolateral side [66]. These observations are consistent with the
natural route of these viruses during infection: after apical infection of intestinal cells, virus
particles released at the basolateral side could reach the liver via the bloodstream and infect
hepatocytes via their basolateral membrane. Once infected, HepG2-N6 cells released HAV
preferentially via the basolateral side [65] while the HepG2/C3A/F2 clone preferentially
released infectious quasi-enveloped HEV particles apically [66]. HEV expresses ORF3, a
small protein with functions similar to the M2 viroporin of IAV [67]. Palmitoylated ORF3
becomes embedded in the membrane of multivesicular bodies, which drives the export of
newly assembled virions [68]. ORF3 is necessary for the apical release of HEV particles from
HepG2/C3A/F2 cells [69]. Stem cell-derived hepatocyte-like cells also release most HEV
particles apically. These cells produce more bile salts than HepG2/C3A/F2 cells and these
could strip off the quasi-envelope to give more infective particles [36]. Orally transmitted
viruses such as enteroviruses propagate from the gastrointestinal entry site to secondary
organs, such as the heart or the central nervous system [70], using several receptors located
at the TJ or on the apical side of polarized cells [71]. Phosphatidylserine-enriched large
vesicles containing several infectious particles undergo autophagy-dependent release upon
infection [72], thus potentiating the spread of the infection [73]. The vectorial release of
enteroviruses is mainly apical, as is that of poliovirus from polarized Caco-2 cells [74],
that of coxsackie B1 from a human gut-on-a-chip microfluidic device [75], and that of
parechoviruses from human airway epithelia [76]. These viruses can bypass the innate
immune response of the initially-encountered epithelium [71]. It has been shown that
endothelial cells of the human choroid plexus papilloma (HIBCPP) are more sensitive to
basolateral infection (than apical) by echovirus-30, one of the enteroviruses responsible for
outbreaks of meningitis [77]. This links the apical release from the digestive tract to the
basolateral entry into the target organ.

Some RNA viruses acquired by the respiratory or oral routes are highly pathogenic
and are rapidly disseminated from their primary infection site. Old World arenaviruses are
naturally transmitted by ingestion. These bisegmented ambisense RNA viruses, such as the
Lassa virus (LASV), infect Caco-2 cells preferentially apically and are released both apically
and basolaterally. Apical release is more efficient after an apical infection. The recombinant
strain ML-29 composed of the MOPV L segment, a non-pathogenic relative of LASV, and
the S segment of LASV, cannot leave the cell basolaterally. This should prevent intra-host
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dissemination, which makes it a vaccine candidate [78]. The New World arenavirus, Junin
virus, is preferential released apically from both polarized Vero C1008 and MDCK cell
lines [79]. Nipah virus (NiV) belongs to the genus Henipavirus (Paramyxoviridae); it is
transmitted via the respiratory route by airway secretions and urine. Its receptor, ephrin-
B2/-B3, is located on both sides of polarized MDCK cells and infection occurs whatever
the inoculated side of cell culture on inserts. Lamp et al. showed that the M protein drives
virus assembly and release via the apical membrane. NiV F and G proteins are initially
targeted to the basolateral side and induce cell fusion while the M protein is produced
in the host cytoplasm. Cell fusion is followed by the apical accumulation of M, F and G
proteins, leading to the apical release of NiV particles. Finally, the integrity of the epithelial
barrier is lost, allowing the basolateral release of NiV and its dissemination in its host [80].
Marburg virus (MARV), a causative agent of severe hemorrhagic fever, buds preferentially
from the basolateral side of MDCK as well as hepatocytes, which is consistent with the
systemic dissemination of infectious particles in its host [81].

4.3. Polarized Release of RNA Viruses Unable to Cross Mucosa but Subsequently
Infecting Epithelia

Many viruses can infect epithelial cells in experimental systems or in their host organ-
ism even if they cannot reach or cross the intestinal or respiratory barriers. The hepatitis
C virus (Hepacivirus) is mainly acquired by contact with blood after percutaneous injec-
tion. Particles of HCV strain JFH1 are released preferentially from the basolateral side of
infected polarized HepG2-CD81 cells regardless of the side of infection [82], as might be
expected because the HCV replication cycle hijacks the lipoprotein pathway and follows
the same release pathway [83]. The genus Flavivirus includes several major arboviruses,
Zika virus (ZIKV), Japanese encephalitis virus (JEV), West Nile virus (WNV) and Usutu
virus (USUV), all infecting the human upper respiratory tract epithelium without altering
its barrier function. All their virus particles are released both apically and basolaterally,
but ZIKV and JEV particles are mainly released apically in this model [84]. This could
explain why JEV can be transmitted without vectorial transmission between pigs and ZIKV
between guinea pigs [85,86]. WNV infecting polarized Vero cells enters and is released
mainly apically [87], as is ZIKV in Caco-2 cells [88]. ZIKV also infects a wide range of
tissues, resulting in ZIKV proteins becoming colocalized with the apical proteins β-IV
tubulin and Muc5A [89]. ZIKV can also infect polarized human brain microvascular en-
dothelial cells (HBMEC); it is released from both side of these cells [90], which shows
that vectorial virus release may depend on the cell-type. Infectious Dengue virus (DENV)
particles are released in equal amounts from both sides of MDCK cells regardless of the
side of infection [91]. Chikungunya virus (CHIKV), an Alphavirus (Togaviridae) is also
transmitted by a mosquito bite. CHIKV enters and is released from polarized HBMEC and
Vero C1008 cells preferentially apically [92]. VSV, which is seldom pathogenic for humans,
preferentially buds from the basolateral surface of polarized human epithelial T84 cell line
(derived from a colon carcinoma); this release is driven by its G protein, which accumulates
on the basolateral side of host cells [93].

In summary, most viruses that infect the mucosa leave the cells mainly apically, while
basolateral release is linked to virus propagation in the host. The entry and egress of
viruses infecting internal epithelia such as the endothelium or liver are specific to each
virus (Figure 2).
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5. Cellular Mechanisms of Polarized Virus Egress
5.1. From the Endoplasmic Reticulum (ER) and the Virus Assembly Sites to the
Recycling Endosomes

Infection by an RNA virus induces rearrangement of host cell membranes, mainly ER
and Golgi, in order to build platforms for replication [94]. Virus proteins leave the Golgi
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compartment and become concentrated at the basolateral or apical pole [95]. However,
some viruses exploit distinct organelles: the enterovirus 3A protein binds to the Arf1
GTPase and its guanine nucleotide exchange factor GBF1 in the ER membrane, leading
to local recruitment of phosphatidylinositol-4-kinase IIIb. The resulting enrichment in
PtdIns4P facilitates the virus polymerase binding and initiates replication in newly-formed
replication organelles [96]. Studies on polarized Caco-2 cells inoculated with simian
rotavirus strain RRV showed that the virus particles never reach the Golgi apparatus
but move directly from the ER to the apical membrane [97]. Intermediate compartments
generated during coronavirus infection could bypass the Golgi apparatus and be brought
by Rab11 to the recycling endosomes [98]. It has been shown that coronavirus can be
secreted apically from MDCK cells in the presence of Brefeldin A, which blocks ER to Golgi
traffic [99].

5.2. Rab GTPases

Rab proteins are essential for the biogenesis of infectious virus particles as they are
involved in the trafficking of viral proteins and RNA to the correct sites of assembly and
budding. Several respiratory viruses use Rab11, which is involved in the traffic from
common to apical recycling endosomes. Respiratory syncytial virus (RSV) assembly in
polarized MDCK cells is dependent of Rab11a and its interacting protein FIP2 [100]. The
M and N proteins of MuV are not apically distributed in polarized MDCK or Calu-3 cells
having a dominant negative form of Rab11. Studies on nocodazole-treated cells have shown
that functional microtubules are necessary for the correct Rab11-dependent addressing of
viral proteins to the membrane [55].

Rab11a is also colocalized with the L protein of MeV. And host cells with a dominant
negative mutant of Rab11a do not address MeV particles to the apical membrane [101].
Rab 11 is also needed for the transport of Sendaï and Parainfluenza viruses to the plasma
membrane [102], and the transport of Andes Hantavirus [103]. Hendra virus (HeV) M and
F proteins converge into Rab11-positive endosomes, making them a preassembly compart-
ment for virus particles [104]. The IAV nucleoprotein remains in the perinuclear zone of
host cells transfected with a double negative mutant of Rab11, and does not accumulate in
vesicles close to the plasma membrane. This results in the release of significantly fewer in-
fectious IAV particles [105]. Moreover, IAV infection causes the endoplasmic reticulum con-
taining the viral nucleoproteins to swell and recruits Rab11 for the export of newly-formed
irregular coated vesicles to the plasma membrane [106]. Rab11a is necessary for the correct
distribution of the eight ribonucleoproteins in the newly assembled virus particles [107].
IAV hemagglutinin also interacts with Rab17 and Rab23 in a cholesterol dependent manner,
suggesting its Rab17- and 23-dependent association to lipid rafts [108]. Rab27a colocalizes
with the capsid ORF2 protein of HEV at the apical side of HepG2/C3A/F2 cells [66]. A lack
of Rab27a reduces the propagation of several RNA viruses, including human and rat HEV
in human hepatocarcinoma cells PLC/PRF/5 [109,110], human parainfluenza virus type
2 (hPIV-2) in HeLa cells [111], and rabies virus in Vero cells [112].

Silencing of Rab9 showed that it is involved in the propagation of MARV in Vero
cells [113] and of HCV in the Huh7.5 cell line [114]. Rab9 is involved in the trafficking of
vesicles to the MVB, which suggests that these two viruses released by the basolateral side
use the exocytosis pathway. However, a traffic route involving actin and Rab11 has also
been described for MARV [115], highlighting that different Rabs may be used by viruses in
their life cycle.

5.3. Cytoskeleton

During viral egress, viral elements have to pass through the dense cytoskeleton struc-
tures maintaining the cell architecture [116]. Studies on the role of actin and microtubules
in virus-infected polarized cells have shown that the apical membrane is the preferred side
for the release of human Parainfluenza virus type 3 (PIV3) particles from polarized human
A549 cells. Disruption of the actin microfilaments with cytochalasin D has no effect on PIV3
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release, while release is blocked by nocodazole, which inhibits microtubule polymerization,
in the twelve hours following the blocking of protein synthesis with cycloheximide [117].
The egress of Rift Valley fever virus (RVF) from polarized Caco-2 cells is only moderately
apically polarized. The microfilaments and microtubules of infected cells are disrupted,
which could help the virus particles reach the basolateral side for egress [118]. The rotavirus
protein VP4 binds to the actin network at the apical pole of infected polarized Caco-2 cells.
This is an active process, since inhibiting actin treadmilling with jasplakinolide leads to
the loss of preferential apical virus particle release [119]. A comparative study of RSV and
human Metapneumovirus (hMPV) infections in human airway epithelia showed that both
viruses infect cells via the apical side. While RSV is efficiently released from the apical
side, hMPV is not; it forms filamentous actin-based extensions that suggest cell-to-cell
transmission [120]. MeV can also hijack the actin network of well-differentiated primary
cultures of human airway epithelial cells and so propagate the infection horizontally; RNPs
move along the circum-apical F-actin ring. This is accompanied by cell fusion but leads to
the formation of infectious centers in which the epithelium remains polarized [121].

5.4. Lipids

It has long been known that the lipid composition of enveloped viruses depends on the
cell budding membrane. VSV buds at the basolateral pole and fowl plague virus (FPV) buds
at the apical pole of infected polarized MDCK cells and they have different phospholipid
contents [122]. The IAV hemagglutinin (HA), neuraminidase (NA) and nucleoprotein (NP)
are driven to the host cell apical membrane where they are associated with lipid rafts [123].
HA must be directly associated with cholesterol for it to function fully [124]. Rotavirus
VP4 spike protein associates with lipid rafts in both polarized intestinal Caco-2 cells and
unpolarized renal MA-104 cells. Differences in the virus egress from these two host cells
are due to differing lipid raft compositions; Caco-2 cell rafts have more neutral glycolipids
with more hydroxylated chains than MA-104 cell rafts. The virus leaves the apical side
in Caco-2 cells by budding and leaves MA-104 cells by lysis [125]. PI and PI kinases and
PI phosphatases play a major role in the building and maintenance of cell polarity. The
HCV core protein moves to the basolateral membrane of polarized MDCK cells where it
blocks the synthesis of the major regulators of polarity, Scribble and Dlg1. This results in
disorganization of focal contacts and actin and reduced activation of the actin-regulating
Rho GTPase, Rac1. This phenotype is due to the decrease in PtdIns(3,4)P2, the PI that
recruits Dlg1 in the basolateral membrane, and in SHIP2, a phosphatase that converts
PtdIns(3,4,5)P3 to PtdIns(3,4)P2 [126].

5.5. Tight Junctions

Tight junctions maintain the integrity of polarized epithelia. Some viruses can alter
the barrier function of the epithelium they infect, cross it, and spread within the infected
host. This requires modification or degradation of TJ. Polarized Caco-2 cells infected with
rotavirus have altered TJ with disorganized occludin [127]. The glycoproteins and fusion
protein in enveloped viruses make them fusogenic. Fusion of NiV-infected cells leads to
loss of TJ [80]. DENV infection modifies the subcellular distribution of claudin-1, ZO-1
and ZO-2 proteins and the cleavage of occludin in MDCK cells. The resulting increase in
70 kDa FITC-Dextran passing across the cell layer shows that the transepithelial barrier is
defective [91]. The differentiated blood brain barrier is also altered as early as two days after
infection with JEV, as shown by the decreased trans-endothelial electrical resistance [128].
Several RNA viruses produce proteins that can bind to the PDZ domain of adapter proteins
involved in TJ integrity, leading to disruption of the epithelium [129]. For example, SARS-
CoV-1 and SARS-CoV-2 E proteins bind to the PALS1 PDZ domain of the Crumbs apical
complex leading to loss of epithelial barrier function [130]. The interaction of viral proteins
with PDZ-containing proteins also influences cell immune responses, such as the interferon
response [131].
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6. Conclusions

RNA viruses can hijack the pathways of virus release from polarized epithelial cells.
Mucosal epithelial cells are main replication and release sites of many viruses. They
distribute infectious virus particles toward one or both poles of these primary entry sites,
which determines whether the virus spreads within and/or between hosts. Tools that
reproduce cell polarization in vitro have been developing from primary cell cultures and
stem cells in order to study these phenomena. Transwells remain the main system for
selectively recovering apical and basolateral virus particles and determining their amounts
and properties. Organoids, the newest models, have several attractive features. They
can be reversed or open and laid on transwells to gain access to apical secretions. They
can also be used to study cellular trafficking and the interaction of viral processes with
the innate response, and they reflect the multicellular nature of the original tissue. These
systems are useful tools for analyzing the trafficking that is a fundamental component of
the virus cell cycle and propagation in polarized epithelial cells. Further studies analyzing
the compositions of the virus particles released from each pole will provide a clearer
understanding of virus pathophysiology. Key questions that remain to be addressed are:
(i) to what extent do viruses use the pre-existing cellular routes of polarized trafficking?
(ii) which characteristics of the apical and basolateral virus particles are related to their
propagation in the infected host or between hosts?
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