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It is known that secondary transporters, which utilize transmembrane ionic gradients to drive their substrates up a concentration
gradient, can reverse the uptake and instead release their substrates. Unfortunately, the Michaelis-Menten kinetic scheme, which
is popular in transporter studies, does not include transporter reversal, and it completely neglects the possibility of equilibrium
between the substrate concentrations on both sides of the membrane. We have developed a complex two-substrate kinetic model
that includes transport reversal.Thismodel allows us to construct analytical formulas allowing the calculation of a “heteroexchange”
and “transacceleration” using standard Michaelis coefficients for respective substrates. This approach can help to understand how
glial and other cells accumulate substrates without synthesis and are able to release such substrates and gliotransmitters.

1. Introduction

Unlike “primary” or ATP dependent transporters that create
the major ionic gradients of K/Na/H and Cl/CO

2
ions across

cellular membranes harnessing the energy reserved in ATP,
the “secondary transporters” utilize the energy available from
transmembrane ionic and/or pH gradients and membrane
potential to drive their substrates up a steep concentration
gradient. Transporters on neurons and astrocytes clearing
neurotransmitters from the synaptic cleft and extracellular
space mainly belong to different “secondary transporters”
families. Recently, it has been shown that astrocytes and
other glial cells accumulate monoamines [1] and polyamines
[2, 3] while lacking the enzymes for their synthesis [1, 4–6].
One among many known representatives of the “secondary
transporters” that utilize the transmembrane ionic gradients
andmembrane potential is the family of organic cation trans-
porters (OCT). These transporters take up different mono-
and polyamines [7], and cells expressing such transporters
also release these substrates using possibly two pathways: (i)
large pores and (ii) transport reversal. Here we analyze one of
transport reversal mechanisms.
Energy Calculations. Experimentally, it has been shown that
secondary transporters can reverse their uptake releasing

their substrates instead [8–10]. Energy based calculations
were introduced to analyze the conditions for substrate
release or uptake for this kind of transporter [11, 12]. It
was established that substrate transport depends on the
energy balance of coupled transport of the substrate and
simultaneously transported ions (see Appendix A). Most
secondary transporters could be reversed by membrane
potential and by changes in the principal ion gradients
and substrate concentrations. Experimentally, the reversal
was shown for the glutamate transporters (for the review
see [13]), GABA (reviewed by [12]), and for glial organic
cation transporters [14, 15]. Being reversed, electrogenic
transporters usually change the direction of the net ion
flow. We summarize the energy balance study, introduced by
Rudnick [11] in Appendix A. This analysis only studies one
substrate uptake/release by a secondary transporter.
Michaelis-Menten Scheme. The kinetic concept based on the
Michaelis-Menten scheme proved very useful for transporter
mediated substrate uptake and inhibition [16, 17].This kinetic
model predicts saturability and specificity of secondary trans-
porters in many cases, and atypical transport kinetics can be
explained bymultiple binding sites [18].Wehave summarized
this classic concept in Appendix B. Unfortunately, as one
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can see, the Michaelis-Menten model does not include
transporter reversal, and it completely neglects the reversal
constant (see Appendix B). A more complex transporter
kinetic model is needed to predict quantitatively at least the
following well-established experimental observations.

(1) It has been shown that one transporter substrate
can release another one already accumulated inside
the cell. Sometimes this is called “heteroexchange.”
For example, dopamine, tyramine, and amphetamine,
which are substrates for the neuronal dopamine
transporter (DAT), can release the substrate named
N-methyl-4-phenylpyridinium (MPP) through DAT
[19], with releasing ability of these substances corre-
latedwith the elicited coupled transport current. Also,
it was shown that L-glutamate and its transportable
analogs (substrates for EAATs) specifically release
L-aspartate (another EAAT substrate) through this
transporter and can be blocked by nontransportable
analogs [20].

(2) A special term was coined for the release of the
(tracer) substrate by the same substrate, a process
named “transacceleration.”While the phenomenon is
not kinetically different from the “heteroexchange”
described in the previous paragraph, it is well estab-
lished experimentally (see, e.g., [21]). As new trans-
portermodels arise (e.g., a channel-transportermodel
[22]), it might be important to get this phenomenon
explained by a purely thermodynamic model, not by
using kinematic assumptions.

Here we present kinetic algorithms that more accurately
explain the behavior of a secondary transporter pumping
two substrates simultaneously; it predicts transporter reversal
by the application of an additional second substrate to the
transporter already in equilibrium with the first substrate,
“transacceleration” and other interactions.

2. Results

Wemodified the Michaelis-Menten kinetic model to include
two different transportable substrates and also additional
elementary steps, characterized by their kinetic coefficients,
which are necessary for the transporter not only to uptake
but also to release substrates. The model is presented in
Appendix C by relations 1–8. This model can be considered
as a system of kinetic equations describing the dynamics of
the model (C.2)–(C.11). A general solution for this scheme is
difficult to obtain analytically. But some particularly interest-
ing cases can be resolved (see Appendices C.1, C.2, and C.3),
and we are presenting them below.

2.1. Equilibrium Conditions for Both
Substrates (See Appendix C.1). Practically,
the initial concentrations of substrates 𝑆

1

and 𝑆
2

are considered known (i.e., 𝑆
10

and 𝑆
20
), and

then substrate concentration can be measured in the outside
solution (𝑥

1
and 𝑥

2
in our notation for this section of
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Appendix C). In this way, we tried to reduce all equations to
measurable parameters.

It follows from relationships (C.30) (Appendix C) that
at fixed concentration of 𝑆

10
(initial concentration of first

substrate 𝑆
1
) and variable concentration of 𝑆

20
(different

initial concentrations of 𝑆
2
), the equilibrium concentration

of 𝑥
1
(the 𝑆

1
substrate outside) increases with increasing

𝑆
20

(the effect of 𝑆
1
substrate releasing from the cell), and

similarly, the equilibrium concentration of 𝑥
1
decreases with

decreasing 𝑆
20

(effect of 𝑆
1
substrate transport inside of the

cell). The same behavior follows from (C.30) for the equilib-
rium concentration of 𝑥

2
at fixed concentration of 𝑆

20
and

variable concentration of 𝑆
10
. These respective dependencies

are shown in Figure 1.

Conclusions of Appendix C.1

(1) Effect of substrate being released in case of competi-
tion in the two-substrate system can be observed, if
at equilibrium condition most of the transporter is
coupled by both substrates of interest: 𝑇

0
≫ 𝑦.

(2) Efficiency of the substrate releasing process is depen-
dent on equilibrium constant values describing pro-
cesses of substrate-transporter intermediate complex
formation.

(3) Correct sign of the square root term in relations
(C.30) is defined by the conditions of

𝑆
10
≥ 𝑥
1
≥ 0,

𝑆
20
≥ 𝑥
2
≥ 0.

(1)

(4) Relationships (C.30) can be used for analysis of
equilibrium substrate concentration dependence on
initial substrate concentrations.

(5) The relationship of

𝑥
2
=
𝑆
10
+ 𝑆
20
− 𝛼𝑥
1

𝛽
(2)
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can be used to determine parameters 𝛼 and 𝛽, if
concentrations of 𝑥

1
and 𝑥

2
can be simultaneously

measured as functions of 𝑆
10

and 𝑆
20
, the initial

concentrations of the first and second substrates.

2.2. Two-Substrate System Dynamics at the Initial Time.
Transporter velocities (transport rates) can be determined if
(similar toMichaelis-Menten scheme) there is no equilibrium
between substrate concentrations inside and outside and
processes of the type

𝑆
󸀠

1
+ 𝑇 󳨀→ (𝑆

1
𝑇) ,

𝑆
󸀠

2
+ 𝑇 󳨀→ (𝑆

2
𝑇)

(3)

can be neglected. We also assume there are the initial
conditions where 𝑆

1
and 𝑆
2
are added to the external solution,

thus 𝑥
1
= 𝑆
10
and 𝑥

2
= 𝑆
20
. In that case (see Appendix C.2),

(1)

𝜐
𝑥1
= 𝑘
12
𝐾
1

𝑆
10
[𝑇
0
]

1 + 𝐾
1
𝑆
10
+ 𝐾
2
𝑆
20

, (4)

𝜐
𝑥2
= 𝑘
22
𝐾
2

𝑆
20
[𝑇
0
]

1 + 𝐾
1
𝑆
10
+ 𝐾
2
𝑆
20

(5)

are analogous to the Michaelis-Menten formulation
for a two-substrate system. If 𝑆

20
= 0, we obtain the

exactMichaelis-Menten formula for the first substrate
velocity, and if 𝑆

10
= 0, we obtain the exact Michaelis-

Menten formula for the second substrate velocity.
Note also that the term 𝑘

12
[𝑇
0
] can be interpreted as

𝑉1max, and 𝑘22[𝑇0] as 𝑉2max.
(2) The constants 𝑘

12
, 𝐾
𝑀1

, 𝑘
22
, and 𝐾

𝑀2
can be deter-

mined experimentally similar to the standard proce-
dures used in the Michaelis formulation. There are
some important equations:

(i) if 𝑆
10
≫ 𝐾
𝑀,2

and 𝑆
10
≫ 𝛼𝑆
20
:

𝜐
1,𝑠
= 𝑘
12
[𝑇
0
] , the velocity at maximum, 𝑉1max,

𝜐
𝑥2
= 𝑘
22

𝛼𝑆
20
[𝑇
0
]

𝑆
10

.

(6)

(ii) If 𝑆
10
≪ 𝛼𝑆
20
and 𝛼𝑆

20
≫ 𝐾
𝑀,1

:

𝜐
󸀠

𝑥1
=
𝑑𝑥
1

𝑑𝑡
= 𝑘
12

𝑆
10
[𝑇
0
]

𝛼𝑆
20

,

𝜐
󸀠

2,𝑠
= 𝑘
22
[𝑇
0
] , the velocity at maximum, 𝑉2max

𝜐
1,𝑠
𝜐
2,𝑠
= 𝑘
12

𝑆
10
[𝑇
0
]

𝛼𝑆
20

𝑘
22

𝛼𝑆
20
[𝑇
0
]

𝑆
10

= 𝑘
12
𝑘
22
[𝑇
0
]
2

(see Appendix C) .

(7)

2.3. Effect of the Equilibrium Reverse Bias for a First Substrate
When a Second One is Added to the System. If previously
the equilibrium was established for a first substrate between
outside concentration of the substrate and the inside con-
centration, the addition of a second substrate will produce
a reverse bias (equilibrium shift). In the beginning, at initial
time, some of the transporter molecules in the outside bind
to the second substrate while inside there is still no second
substrate. That means the availability of outside transporter
for a first substrate becomes reduced. Thus equilibrium for a
first substrate starts to break down; that is, the velocity of first
substrate transport to outside (release) becomes bigger than
its transport to the inside. At initial times during the start of
the process and far from equilibrium for a second transporter,
(8) allows the calculation of the velocity of the first substrate
release due to transport reversal (See Appendix C.3):

𝜐
𝑥1
= 𝐴[1 −

𝐾
𝑀,2

𝑆
20
+ 𝐾
𝑀,2

] , (8)

where 𝐾
𝑀,2

is Michaelis constant for a second substrate and
𝑆
20
is initial concentration of a second substrate,

𝐴 =
𝑘
󸀠

11
𝑆
10

𝐾
0
+ 1
𝑦
0
,

𝑦
0
=
[𝑇
0
] (𝐾
11
𝐾
12
+ 1)

𝐾
11
𝑆
10
+ 𝐾
11
𝐾
12
+ 1

=
[𝑇
0
]

𝐾
𝑆
𝑆
10
+ 1
,

(9)

where

𝐾
𝑆
=

𝐾
11

(𝐾
11
𝐾
12
+ 1)

. (10)

Thus, finally we have

𝐴 =
𝑘
󸀠

11
𝑆
10

𝐾
0
+ 1

[𝑇
0
]

𝐾
𝑆
𝑆
10
+ 1
. (11)

Taking into consideration the relation (8) we have calculated
the dependence of the velocity of first substrate release on
the concentration of a second substrate, at initial times after
it was added to the system. Functional dependence (8) is
represented in Figure 2.

It can be seen from (8) and Figure 2 that the velocity
of reversed transport (release) of a first substrate is 0 if
𝑆
20
= 0, because there is equilibrium between the velocities

of inward and outward flow of the first substrate through the
transporter. Thus, the “net” velocity, is equal to zero. Also,
from (8) and as seen in Figure 2, with increase of a second
substrate concentration, when 𝑆

20
≫ 𝐾
𝑀,2

, the velocity of a
first substrate release becomes saturated and can be calculated
as

𝜐
𝑥1,𝑆

= 𝐴 =
𝑘
󸀠

11
𝑆
10

𝐾
0
+ 1

[𝑇
0
]

𝐾
𝑆
𝑆
10
+ 1
. (12)
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Release velocity depends on the first substrate concentration
𝑆
10
, and at given value of 𝑆

10
the value of 𝐴 is a constant.

Thus, (8) for the velocity at half maximal value at a certain
concentration of second substrate 𝑆

20
can be written as

𝜐
𝑥1
= 𝐴[1 −

𝐾
𝑀,2

𝑆
20,1/2

+ 𝐾
𝑀,2

] =
𝐴

2
, (13)

and because of this equation it can be calculated as

𝐾
𝑀,2

= 𝑆
20,1/2

. (14)

There is similarity between the formula of velocity of
transporter reversal due to second substrate addition and
Michaelis-like formulas for the velocity of substrate uptake.

The formula that predicts the velocity of substrate uptake
(see Appendix C (C.54) or Appendix B (B.10)) can be written
as

𝜐
𝑥2
=
𝑘
22
𝑆
20
[𝑇
0
]

𝑆
20
+ 𝐾
𝑀,2

, (15)

where the maximum velocity is represented by

𝜐
𝑥2,max = 𝑘22 [𝑇0] . (16)

Thus, for the half maximal velocity,

𝜐
𝑥2,max

2
=
𝑘
22
𝑆
20,1/2

[𝑇
0
]

𝑆
20,1/2

+ 𝐾
𝑀,2

=
𝑘
22
[𝑇
0
]

2
. (17)

Thus we can write

𝐾
𝑀,2

= 𝑆
20,1/2

. (18)

To say in plain words, the Michaelis constant for a second
substrate can be determined in two ways: (i) from the stan-
dard Michaelis formulas at transport velocity measurements
for the second substrate, or (ii) from the release velocity
measurements of a first substrate, from our formula, where
a second substrate produces release of the first one.

In the most important case, if 𝐾
𝑆
𝑆
10
≫ 1 (8)

𝐴
𝑆
=

𝑘
󸀠

11

𝐾
0
+ 1

[𝑇
0
]

𝐾
𝑆

= Const.,

𝜐
𝑥1,𝑆01

= 𝐴
𝑆
[1 −

𝐾
𝑀,2

𝑆
20
+ 𝐾
𝑀,2

] ,

(19)

then 𝐴
𝑆
can be interpreted as the release force for a first

substrate after the addition of a second one. In the case of
𝐾
𝑆
𝑆
10
≪ 1, the release force can be written as

𝐴 (𝑆
10
) ≈ 𝐴

𝑆
𝑆
10
=

𝑘
󸀠

11

𝐾
0
+ 1

[𝑇
0
]

𝐾
𝑆

𝑆
10
; (20)

that is, in this case the release force for a first substrate after
the addition of a second one has a linear dependence on the
first substrate concentration.

3. Discussion and Conclusions

We have studied the extended kinetic model for a secondary
transporter simultaneously dealing with two substrates,
which includes direct (outside-in) and reverse transport
(inside-out). The model was solved in different equilibrium
conditions (See Appendices C.1, C.2, and C.3). We have
shown that when both substrates are in equilibrium, addition
of one of them leads to reequilibrium and release of the
second substrate (Appendix C.1). This was emphasized in
Appendix C.3, when the system was studied for conditions
where a first substrate is in equilibrium (inside-outside
concentrations) and a second one is just added and is far
from equilibrium. This situation is of a special interest as
it has been studied experimentally [19, 20]. Also, this is
what probably happens when methamphetamine, ephedrine,
or other similar substances induce dopamine (and other
monoamine) release frommonoamine neurons primarily via
membrane transporters, reversing the dopamine transporter
(DAT), norepinephrine transporter (NET), and/or serotonin
transporter (SERT) [23–27] and also reversing VMAT vesic-
ular transport [28]. In addition, it has been recently shown
that astrocytes and other glial cells accumulate polyamines
[2, 3] while lacking the enzymes for their synthesis [4–6],
and OCT type of transporters (that are expressed in glia)
take up different polyamines [7]. Polyamines are released in
brain from glial cells, but the mechanisms of such release are
unknown [29].

Actually, as we understand now from formula (8) it can
be ANY transportable substrate. This formula allows us to
classify experimental measurements of a “heteroexchange”
related substrate release for substrate-transporter pairs, using
standard Michaelis coefficients.

The special term for the release of the (tracer) substrate by
the same substrate, a process named “transacceleration,” can
be explained by changes in equilibrium according to formula
(8). There is no fundamental thermodynamic difference if
the system has two chemically distinct substrates for the
same transporter or there are radiolabelled and unlabelled



Journal of Biophysics 5

chemically similar substrates. Thus, a new added substrate
produces the release of a similar tracer substrate (labelled,
e.g., with radioactive isotope) by equilibrium shift as shown
in Appendix C.3.

We also have shown that if we assume both substrates are
far away from equilibrium, and transporter reversal can be
neglected (Appendix C.2), the formulas for the uptake veloc-
ity of both substrates become the same as in the Michaelis-
Menten scheme (see Appendix C.2, (C.53) and (C.54)), with
the respective inhibitory coefficients.

We suggest that formula (8) will be especially useful in
the study of polyspecific transporters with known multiple
substrates, such as the organic cation transporters (OCT) that
participate in the transport of different monoamines [30], as
well as polyamines [7].

Appendices

A. Classical Energy Based Calculations

Similar to the analysis of ion channels, substrate flux through
transporters can be determined by the transmembrane elec-
trochemical potential (Δ𝜇) which is the sum of the electrical
potential (ΔΨ) and chemical potential (Δ𝐺). For a single
molecule𝑋, the driving force is quantified as

Δ𝜇
𝑥
= ΔΨ
𝑥
+ Δ𝐺
𝑥
= 𝑧
𝑥
⋅ 𝐹 ⋅ 𝐸

𝑚
+ 𝑅𝑇 ⋅ ln [𝑋]in

[𝑋]out
, (A.1)

where 𝑧
𝑥
= the valence of 𝑋, 𝐹 = Faraday’s constant, 𝐸

𝑚
=

membrane potential, 𝑅 = universal gas constant, and 𝑇 =
temperature. It should be noted that when Δ𝜇 = 0 (i.e., if𝑋 is
at equilibrium), this equation reduces to the Nernst equation.

For the glial glutamate transporter GLT1, for example,
all of the cotransported ions are coupled to each other as
they cross the membrane (i.e., they are not independent).
Therefore, the total electrochemical driving force for GLT1 is
the sumof the linked contributions from each co-transported
ion. Because one thermodynamic reaction cycle for GLT-
1 involves coupled translocation of three sodium ions, one
proton and one negative glutamate molecule and counter-
transport of one potassium ion are quantified as

Δ𝜇GLT-1 = 3 × (ΔΨNa + Δ𝐺Na) + 1 × (ΔΨK + Δ𝐺K)

+ 1 × (ΔΨGlu + Δ𝐺Glu) + 1∑(ΔΨH + Δ𝐺H) .

(A.2)

In equilibrium, when Δ𝜇GLT1 = 0 and knowing that the K+
term must be negative as it is going in the opposite direction,
this equation reduces to

𝐸
𝑚
= −

𝑅𝑇

(3𝑍Na + 𝑍H − 𝑍Glu − 𝑍K) 𝐹

× [ln
[Glu−]in
[Glu−]out

+ 3 ln
[Na+]in
[Na+]out

− ln
[K+]in
[K+]out

+ ln
[H+]in
[H+]out

]

󳨐⇒ 𝐸
𝑚
= −

𝑅𝑇

2𝐹
⋅ ln[

[Glu−]in[Na
+
]
3

in[H
+
]in[K
+
]
−1

in

[Glu−]out[Na+]
3

out[H
+
]out[K

+
]
−1

out

]

(A.3)

which defines the reversal potential for the transporter.
It should be noted that this latter equation has a very
similar form to the Goldman-Hodgkin-Katz equation for ion
channels. The only difference is that ion fluxes are coupled
unlike the fluxes for ion channels. The calculated driving
force for a transporter can be viewed in the same way as
the driving force for an ion channel; thus, there will be no
net substrate flux when membrane potential is equal to the
reversal potential [12, 13].This last equation can be rearranged
also like this, clearly showing the substrate gradient produced
by the transporter:

[Glu−]out
[Glu−]in

=
[Na+]3in[H

+
]in[K
+
]
−1

in

[Na+]3out[H
+
]out[K

+
]
−1

out

exp−𝐸𝑚(2𝐹/𝑅𝑇). (A.4)

B. Derivation of Michaelis-Menten
Equation for the Transporter

Kinetic concept takes into account only steady-state velocities
of transport that can be divided in adhesion, transport, and
release of substrate on other side of the membrane. Let the
transporter 𝑇 and the substrate 𝑆 first form the complex 𝑆𝑇
in the outer membrane, and then substrate is transported to
the inner membrane and released. The reversal is not taken
into consideration. This can be written as follows:

𝑇 + 𝑆out
𝑘
1

⇐⇒
𝑘
−1

𝑇𝑆
𝑘
2

⇐⇒
𝑘
−2

𝑇 + 𝑆in. (B.1)

Formation of 𝑇𝑆 complex is proportional to the concentra-
tion of substrate and the free transporter:

Formation = 𝑘
1
⋅ 𝑇 ⋅ 𝑆, (B.2)

when the complex transports the substrate and releases it
inside the cell proportionally to the concentration of 𝑇𝑆, and
also some 𝑇𝑆 complex just releases substrate again without
transporting it. Thus, the removal of 𝑇𝑆 from the system is

Removal = 𝑘
−1
⋅ 𝑇𝑆 + 𝑘

2
⋅ 𝑇𝑆. (B.3)
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After 𝑇𝑆 complex formation the quantity of free transporter
left is

𝑇 = 𝑇total − 𝑇𝑆. (B.4)

At steady state (at equilibrium), formation and removal of 𝑇𝑆
became the same:

𝑘
1
⋅ 𝑇 ⋅ 𝑆out = 𝑘−1 ⋅ 𝑇𝑆 + 𝑘2 ⋅ 𝑇𝑆 (B.5)

󳨐⇒ 𝑘
1
⋅ (𝑇total − 𝑇𝑆) ⋅ 𝑆out = (𝑘−1 + 𝑘2) ⋅ 𝑇𝑆 (B.6)

󳨐⇒ 𝑘
1
⋅ 𝑇total ⋅ 𝑆out = (𝑘−1 + 𝑘2 − 𝑘1 ⋅ 𝑆out) ⋅ 𝑇𝑆 (B.7)

󳨐⇒ 𝑇𝑆 =
𝑘
1
⋅ 𝑇total ⋅ 𝑆out

𝑘
−1
+ 𝑘
2
− 𝑘
1
⋅ 𝑆out

󳨐⇒
𝑇total ⋅ 𝑆out

((𝑘
−1
+ 𝑘
2
) /𝑘
1
) + 𝑆out

.

(B.8)

As velocity of substrate transport is proportional to 𝑘
2
and

𝑇𝑆 : 𝜐 = 𝑘
2
⋅ 𝑇𝑆out, we can write

𝜐 =
𝑘
2
⋅ 𝑇total ⋅ 𝑆out

(𝑘
−1
+ 𝑘
2
) /𝑘
1
+ 𝑆out

. (B.9)

As in abundance of the substrate all velocity depends only on
transporter 𝑇total , maximal velocity of the transport (𝑉max) is
𝑘
2
∗ 𝑇total and the constant (𝑘

−1
+ 𝑘
2
)/𝑘
1
= 𝐾
𝑚
, we can write

𝜐 =
𝑉max ⋅ 𝑆out
𝐾
𝑚
+ 𝑆out

. (B.10)

The formula allows determination of 𝐾
𝑚
from the experi-

mental curve: 𝐾
𝑚
+ 𝑆out = ((𝑉max ⋅ 𝑆out)/𝜐) ⇒ 𝐾

𝑚
=

((𝑉max ⋅ 𝑆out)/𝜐) − 𝑆out = 𝑆out((𝑉max/𝜐) − 1), which means
𝐾
𝑚
becomes equal to 𝑆out if ((𝑉max/𝜐) − 1) = 1, and it happens

when 𝜐 = (𝑉max/2).
So, when the speed of transport is saturated and becomes

𝑉max it is simple to find half of 𝑉max that is equal to 𝐾
𝑚
.

Michaelis constant𝐾
𝑚
= (𝑘
−1
+ 𝑘
2
)/𝑘
1
are used as a measure

of substrate affinity to the transporter. Please, note that 𝐾
𝑚

does not include the𝐾
−2
constant, reflecting unidirectionality

of transporters in the Michaelis-Menten approach.

Competitive Inhibition from the Michaelis-Menten Point of
View. Transporters can have another substrate 𝐼. It can bind
to the transporter, whether it is transported or not

𝑇 + 𝐼 ⇐⇒ 𝑇𝐼. (B.11)

The constant of dissociation of this complex can be written as
follows:

𝐾diss = 𝐾𝑖 =
𝑇 ⋅ 𝐼

𝑇𝐼
󳨐⇒ 𝑇𝐼 =

𝑇 ⋅ 𝐼

𝐾
𝑖

. (B.12)

On the other hand, from the equation

𝑑 [𝑇𝑆]

𝑑𝑡
= 𝑇 ⋅ 𝑆out ⋅ 𝑘1 − 𝑇𝑆 ⋅ (𝑘−1 + 𝑘2) = 0

󳨐⇒
𝑇 ⋅ 𝑆out
𝑇𝑆

=
𝑘
−1
+ 𝑘
2

𝑘
1

= 𝐾
𝑚
󳨐⇒ 𝑇 =

𝐾
𝑚

𝑆out
⋅ 𝑇𝑆,

(B.13)

if we replace 𝑇 from (B.7) with the last formula, we will get

𝑇𝐼 =
𝑇 ⋅ 𝐼

𝐾
𝑖

󳨐⇒ 𝑇𝐼 =
𝐾
𝑚

𝑆out
⋅
𝐼

𝐾
𝑖

𝑇𝑆. (B.14)

The transporter can be in free form or can be occupied by
inhibitor or by substrate; therefore, one can write

𝑇total = 𝑇 + 𝑇𝐼 + 𝑇𝑆,

𝑇total =
𝐾
𝑚

𝑆out
⋅ 𝑇𝑆 +

𝐾
𝑚

𝑆out
⋅
𝐼

𝐾
𝑖

𝑇𝑆 + 𝑇𝑆

󳨐⇒ 𝑇𝑆 =
𝑇total ⋅ 𝑆out

𝐾
𝑚
(1 + 𝐼/𝐾

𝑖
) + 𝑆out

.

(B.15)

This means the velocity of the transport of the main substrate
𝑆 will be

𝜐 = 𝑘
2
⋅ 𝑇𝑆 =

𝑘
2
⋅ 𝑇total ⋅ 𝑆out

𝐾
𝑚
(1 + 𝐼/𝐾

𝑖
) + 𝑆out

=
𝑉
𝑚
⋅ 𝑆out

𝐾
𝑚
⋅ 𝛼 + 𝑆out

.

(B.16)

C. Kinetic Scheme with Two-Substrate Uptake-
Release by the Same Transporter

In a general case, the simplest representation of the two-
substrate scheme can be determined by set of elementary
steps, characterized by their kinetic coefficients:

(1) 𝑆
1
+𝑇 → (𝑆

1
𝑇) : 𝑘

11
;—formation of the intermediate

complex “first substrate-transporter” (𝑆
1
𝑇) outside

the cell;
(2) (𝑆

1
𝑇) → 𝑆

1
+ 𝑇 : 𝑘

−11
—(𝑆
1
𝑇) dissociation outside

the cell;
(3) (𝑆

1
𝑇) → 𝑆

󸀠

1
+𝑇 : 𝑘

12
—dissociation of (𝑆

1
𝑇) complex

inside of cell, with substrate 𝑆󸀠
1
released inside;

(4) 𝑆󸀠
1
+ 𝑇 → (𝑆

1
𝑇) : 𝑘

−12
—formation of the first

substrate complex with transporter inside the cell;
(5) 𝑆
2
+𝑇 → (𝑆

2
𝑇) : 𝑘

21
—formation of the intermediate

complex “second substrate-transporter” (𝑆
2
𝑇) outside

the cell;
(6) (𝑆

2
𝑇) → 𝑆

2
+𝑇 : 𝑘

−21
—dissociation of (𝑆

2
𝑇) complex

outside of cell;
(7) (𝑆

2
𝑇) → 𝑆

󸀠

2
+𝑇 : 𝑘

22
—dissociation of (𝑆

2
𝑇) complex

inside of cell;
(8) 𝑆󸀠
2
+ 𝑇 → (𝑆

2
𝑇) : 𝑘

−22
—formation of the second

substrate complex with transporter inside the cell.
Let us introduce notations of

[𝑆
1
] = 𝑥
1
, [𝑇] = 𝑦,

[𝑆
1
𝑇] = 𝑧

1
, [𝑆

󸀠

1
] = 𝑠
1
,

[𝑆
2
] = 𝑥
2
, [𝑆

2
𝑇] = 𝑧

2
,

[𝑆
󸀠

2
] = 𝑠
2
.

(C.1)
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Series of kinetics equations describing dynamics of the
system of interest can be represented as follows:

𝑑𝑥
1

𝑑𝑡
= −𝑘
11
𝑥
1
𝑦 + 𝑘
−11
𝑧
1
, (C.2)

𝑑𝑦

𝑑𝑡
= −𝑘
11
𝑥
1
𝑦 + 𝑘
−11
𝑧
1
+ 𝑘
12
𝑧
1

− 𝑘
−12
𝑦𝑠
1
− 𝑘
21
𝑥
2
𝑦 + 𝑘
−21
𝑧
2

+ 𝑘
22
𝑧
2
− 𝑘
−22
𝑦𝑠
2
,

(C.3)

𝑑𝑧
1

𝑑𝑡
= 𝑘
11
𝑥
1
𝑦 − 𝑘
−11
𝑧
1
− 𝑘
12
𝑧
1
+ 𝑘
−12
𝑦𝑠
1
, (C.4)

𝑑𝑠
1

𝑑𝑡
= 𝑘
12
𝑧
1
− 𝑘
−12
𝑦𝑠
1
, (C.5)

𝑑𝑥
2

𝑑𝑡
= −𝑘
21
𝑥
2
𝑦 + 𝑘
−21
𝑧
2
, (C.6)

𝑑𝑧
2

𝑑𝑡
= 𝑘
21
𝑥
2
𝑦 − 𝑘
−21
𝑧
2
− 𝑘
22
𝑧
2
+ 𝑘
−22
𝑦𝑠
2
, (C.7)

𝑑𝑠
2

𝑑𝑡
= 𝑘
22
𝑧
2
− 𝑘
−22
𝑦𝑠
2
. (C.8)

Summarizing (C.3), (C.4), and (C.7), we will obtain

𝑑 (𝑦 + 𝑧
1
+ 𝑧
2
)

𝑑𝑡
= 0,

𝑦 + 𝑧
1
+ 𝑧
2
= const. = 𝑇

0
,

𝑦 = 𝑇
0
− 𝑧
1
− 𝑧
2
.

(C.9)

As well as we can write

𝑆
10
= 𝑥
1
+ 𝑧
1
+ 𝑠
1
,

𝑠
1
= 𝑆
10
− 𝑥
1
− 𝑧
1
,

𝑆
20
= 𝑥
2
+ 𝑧
2
+ 𝑠
2
,

𝑠
2
= 𝑆
20
− 𝑥
2
− 𝑧
2
.

(C.10)

Therefore, the equation system represented above can be
rewritten as follows:

𝑑𝑥
1

𝑑𝑡
= −𝑘
11
𝑥
1
𝑇
0
+ (𝑘
11
𝑥
1
+ 𝑘
−11
) 𝑧
1
+ 𝑘
11
𝑥
1
𝑧
2
,

𝑑𝑧
1

𝑑𝑡
= 𝑘
11
𝑥
1
(𝑇
0
− 𝑧
1
− 𝑧
2
) − 𝑘
−11
𝑧
1
− 𝑘
12
𝑧
1

+ 𝑘
−12
(𝑇
0
− 𝑧
1
− 𝑧
2
) (𝑆
10
− 𝑥
1
− 𝑧
1
) ,

𝑑𝑥
2

𝑑𝑡
= −𝑘
21
𝑥
2
𝑇
0
+ (𝑘
21
𝑥
1
+ 𝑘
−21
) 𝑧
2
+ 𝑘
21
𝑥
2
𝑧
1
,

𝑑𝑧
2

𝑑𝑡
= 𝑘
21
𝑥
2
(𝑇
0
− 𝑧
1
− 𝑧
2
) − 𝑘
−21
𝑧
2
− 𝑘
22
𝑧
2

+ 𝑘
−22
(𝑇
0
− 𝑧
1
− 𝑧
2
) (𝑆
20
− 𝑥
2
− 𝑧
2
) .

(C.11)

C.1. Equilibrium Conditions for Both Substrates. In equilib-
rium conditions, we can write

𝐾
11
=
𝑧
1

𝑥
1
𝑦
=

𝑧
1

𝑥
1
(𝑇
0
− 𝑧
1
− 𝑧
2
)
,

𝐾
12
=
𝑦𝑠
1

𝑧
1

=
(𝑇
0
− 𝑧
1
− 𝑧
2
) (𝑆
10
− 𝑥
1
− 𝑧
1
)

𝑧
1

,

𝐾
21
=
𝑧
2

𝑥
2
𝑦
=

𝑧
2

𝑥
2
(𝑇
0
− 𝑧
1
− 𝑧
2
)
,

𝐾
22
=
𝑦𝑠
2

𝑧
2

=
(𝑇
0
− 𝑧
1
− 𝑧
2
) (𝑆
20
− 𝑥
2
− 𝑧
2
)

𝑧
2

,

(C.12)

where

𝐾
11
=
𝑘
11

𝑘
−11

, 𝐾
12
=
𝑘
12

𝑘
−12

,

𝐾
21
=
𝑘
21

𝑘
−21

, 𝐾
22
=
𝑘
22

𝑘
−22

(C.13)

are equilibrium constants of processes of interest. Taking
into account relations (C.12) for equilibrium constants, we
can form combinations of such constants, which may be
represented as follows:

𝐾
11
𝐾
12
=
𝑆
10
− 𝑥
1
− 𝑧
1

𝑥
1

,

𝐾
21
𝐾
22
=
𝑆
20
− 𝑥
2
− 𝑧
2

𝑥
2

.

(C.14)

Let us consider the case, when 𝑇
0
≫ 𝑦,—all transporter is

coupled to complexes of (𝑆
1
𝑇) and (𝑆

2
𝑇). In this case, we can

write with a fair approximation the relations of

𝑧
1
= [𝑇
0
] − 𝑧
2
,

𝐾
11
𝐾
12
=
𝑆
10
− 𝑥
1
− [𝑇
0
] + 𝑧
2

𝑥
1

,

𝐾
11
𝐾
12
𝑥
1
= 𝑆
10
− 𝑥
1
− [𝑇
0
] + 𝑧
2
.

(C.15)

From the last relationship, the 𝑧
2
concentration can be

represented as follows:

𝑧
2
= 𝐾
11
𝐾
12
𝑥
1
− 𝑆
10
+ 𝑥
1
+ [𝑇
0
] . (C.16)

Applying the same approach to equations related to the
second substrate and taking into account the last relationship
for concentration of 𝑧

2
we can write

𝐾
21
𝐾
22
=
𝑆
20
− 𝑥
2
− (𝐾
11
𝐾
12
𝑥
1
− 𝑆
10
+ 𝑥
1
+ [𝑇
0
])

𝑥
2

=
𝑆
20
− 𝑥
2
− 𝐾
11
𝐾
12
𝑥
1
+ 𝑆
10
− 𝑥
1
− [𝑇
0
]

𝑥
2

,

𝑥
2
=
𝑆
20
− 𝐾
11
𝐾
12
𝑥
1
+ 𝑆
10
− 𝑥
1
− [𝑇
0
]

1 + 𝐾
21
𝐾
22

.

(C.17)
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If relationship of

𝑆
10
+ 𝑆
20
≫ [𝑇
0
] (C.18)

is satisfied, we can write

𝑥
2
=
𝑆
20
+ 𝑆
10

1 + 𝐾
21
𝐾
22

−
1 + 𝐾
11
𝐾
12

1 + 𝐾
21
𝐾
22

𝑥
1
, (C.19)

and finally we can write

(1 + 𝐾
11
𝐾
12
) 𝑥
1
+ (1 + 𝐾

21
𝐾
22
) 𝑥
2
= 𝑆
10
+ 𝑆
20
,

𝛼𝑥
1
+ 𝛽𝑥
2
= 𝑆
10
+ 𝑆
20
,

(C.20)

where

𝛼 = (1 + 𝐾
11
𝐾
12
) ,

𝛽 = (1 + 𝐾
21
𝐾
22
) .

(C.21)

Let us consider an additional relationship, which can be
formed by multiplication of all equilibrium constants, that is,
by multiplication of relationships of

𝐾
11
𝐾
22
=
(𝑆
20
− 𝑥
2
− 𝑧
2
) 𝑧
1

𝑥
1
𝑧
2

,

𝐾
12
𝐾
21
=
𝑧
2
(𝑆
10
− 𝑥
1
− 𝑧
1
)

𝑥
2
𝑧
1

.

(C.22)

In this case, we will obtain relationship of

𝐾
11
𝐾
22
𝐾
12
𝐾
21
=
(𝑆
20
− 𝑥
2
− 𝑧
2
) (𝑆
10
− 𝑥
1
− 𝑧
1
)

𝑥
1
𝑥
2

≈
(𝑆
20
− 𝑥
2
) (𝑆
10
− 𝑥
1
)

𝑥
1
𝑥
2

,

𝐾
11
𝐾
22
𝐾
12
𝐾
21
𝑥
1
𝑥
2
≈ (𝑆
20
− 𝑥
2
) (𝑆
10
− 𝑥
1
) ,

(C.23)

where with respect to relationship (C.18), wemay assume that
the relationships of

𝑆
10
≫ 𝑧
1
,

𝑆
20
≫ 𝑧
2

(C.24a)

are satisfied, and we may finally write

(𝐾
11
𝐾
22
𝐾
12
𝐾
21
− 1) 𝑥

1
𝑥
2
≈ 𝑆
10
𝑆
20
− 𝑆
20
𝑥
1
− 𝑆
10
𝑥
2
.

(C.24b)

Taking into account relationship of

𝛼𝑥
1
+ 𝛽𝑥
2
= 𝑆
10
+ 𝑆
20
, (C.25)

we can write

𝑥
2
=
𝑆
10
+ 𝑆
20
− 𝛼𝑥
1

𝛽
, (C.26)

and if we will substitute the last value to relationship (C.24b),
we will obtain

𝛾𝑥
1

𝑆
10
+ 𝑆
20
− 𝛼𝑥
1

𝛽

≈ 𝑆
10
𝑆
20
− 𝑆
20
𝑥
1
− 𝑆
10

𝑆
10
+ 𝑆
20
− 𝛼𝑥
1

𝛽

−
𝛼𝛾

𝛽
𝑥
2

1
+
𝛾

𝛽
(𝑆
10
+ 𝑆
20
) 𝑥
1
+ 𝑆
20
𝑥
1
−
𝑆
10
𝛼

𝛽
𝑥
1

− 𝑆
10
𝑆
20
+
𝑆
10

𝛽
(𝑆
10
+ 𝑆
20
) = 0,

𝑥
2

1
− [
𝑆
10
+ 𝑆
20

𝛼
+
𝛽

𝛼𝛾
𝑆
20
−
𝑆
10

𝛾
] 𝑥
1

+
𝛽

𝛼𝛾
𝑆
10
𝑆
20
−
𝑆
10

𝛼𝛾
(𝑆
10
+ 𝑆
20
) = 0,

(C.27)

𝑥
2

1
− 𝑎𝑥
1
+ 𝑏 = 0,

𝑥
1
=
𝑎

2
± √

𝑎
2

4
− 𝑏,

(C.28)

where

𝛾 = (𝐾
11
𝐾
22
𝐾
12
𝐾
21
− 1) ,

𝑎 = [
𝑆
10
+ 𝑆
20

𝛼
+
𝛽

𝛼𝛾
𝑆
20
−
𝑆
10

𝛾
] ,

𝑏 =
𝛽

𝛼𝛾
𝑆
10
𝑆
20
−
𝑆
10

𝛼𝛾
(𝑆
10
+ 𝑆
20
) .

(C.29)

Thus,

𝑥
1
=
1

2
[
𝑆
10
+ 𝑆
20

𝛼
+
𝛽

𝛼𝛾
𝑆
20
−
𝑆
10

𝛾
]

± (
1

4
[
𝑆
10
+ 𝑆
20

𝛼
+
𝛽

𝛼𝛾
𝑆
20
−
𝑆
10

𝛾
]

2

−(
𝛽

𝛼𝛾
𝑆
10
𝑆
20
−
𝑆
10

𝛼𝛾
(𝑆
10
+ 𝑆
20
)))

1/2

=
1

2
[𝑆
10
(
1

𝛼
−
1

𝛾
) +

𝑆
20

𝛼
(1 +

𝛽

𝛾
)]

± (
1

4
[𝑆
10
(
1

𝛼
−
1

𝛾
) +

𝑆
20

𝛼
(1 +

𝛽

𝛾
)]

2

+
1

𝛼𝛾
(𝑆
10
− (𝛽 − 1) 𝑆

20
)
2

−
𝑆
2

20

𝛼𝛾
(𝛽 − 1)

2

)

1/2

,
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𝑥
1
=
1

2
[𝑎
1
𝑆
10
+ 𝑎
2
𝑆
20
]

± (
1

4
[𝑎
1
𝑆
10
+ 𝑎
2
𝑆
20
]
2

+ 𝑎
3
(𝑆
10
− 𝑎
4
𝑆
20
)
2

− 𝑎
3
𝑎
2

4
𝑆
2

20
)

1/2

,

𝑎
1
= (

1

𝛼
−
1

𝛾
) ,

𝑎
2
= (1 +

𝛽

𝛾
) ,

𝑎
3
=
1

𝛼𝛾
,

𝑎
4
= (𝛽 − 1) ,

𝑥
2
=
𝑆
10
+ 𝑆
20

𝛽
−
𝛼

𝛽

× {
1

2
[
𝑆
10
+ 𝑆
20

𝛼
+
𝛽

𝛼𝛾
𝑆
20
−
𝑆
10

𝛾
]

± (
1

4
[
𝑆
10
+ 𝑆
20

𝛼
+
𝛽

𝛼𝛾
𝑆
20
−
𝑆
10

𝛾
]

2

−(
𝛽

𝛼𝛾
𝑆
10
𝑆
20
−
𝑆
10

𝛼𝛾
(𝑆
10
+ 𝑆
20
)))

1/2

} ,

𝑥
2
=
𝑆
10
+ 𝑆
20

𝛽
−
𝛼

𝛽

× {
1

2
[𝑎
1
𝑆
10
+ 𝑎
2
𝑆
20
]

±√
1

4
[𝑎
1
𝑆
10
+ 𝑎
2
𝑆
20
]
2

+ 𝑎
3
(𝑆
10
− 𝑎
4
𝑆
20
)
2

−𝑎
3
𝑎
2

4
𝑆
2

20
} .

(C.30)

Solution is physically reasonable, if the relation of

1

4
[
𝑆
10
+ 𝑆
20

𝛼
+
𝛽

𝛼𝛾
𝑆
20
−
𝑆
10

𝛾
]

2

− (
𝛽

𝛼𝛾
𝑆
10
𝑆
20
−
𝑆
10

𝛼𝛾
(𝑆
10
+ 𝑆
20
)) ≥ 0

(C.31)

is satisfied. Since parameter 𝛾 = (𝐾
11
𝐾
22
𝐾
12
𝐾
21
− 1), it

can easy be shown that condition (C.31) is satisfied at all
reasonable values of 𝛼 and 𝛽 parameters. It also follows from
relationships (C.30) that at fixed concentration of 𝑆

10
and

variable concentration of 𝑆
20
, equilibrium concentration of𝑥

1

increases with increase of 𝑆
20
(effect of 𝑆

1
substrate realizing

from the cell) and decreasing of equilibrium concentration
of 𝑥
1
with decreasing of 𝑆

20
(effect of 𝑆

1
substrate transport

inside of the cell). The same behavior follows from relation-
ships of interest for equilibrium concentration of 𝑥

2
at fixed

concentration of 𝑆
2
and variable concentration of 𝑆

10
. The

respective dependences are shown in Figure 1.

Conclusions of Appendix C.1

(1) Effect of substrate realizing in case of transporta-
tion competition for two substrate system can be
observable, if in equilibrium condition most of the
transporter is coupled by both substrates of interest:
𝑇
0
≫ 𝑦.

(2) Efficiency of substrate realizing process is dependent
on equilibrium constant values describing processes
of substrate-transporter intermediate complex for-
mation.

(3) Correct sign in front of square root in relations (C.30)
is defined by the conditions of

𝑆
10
≥ 𝑥
1
≥ 0,

𝑆
20
≥ 𝑥
2
≥ 0.

(C.32)

(4) Relationships (C.30) can be used for analysis of
equilibrium substrate concentration dependence on
initial substrate concentrations.

(5) The relationship of

𝑥
2
=
𝑆
10
+ 𝑆
20
− 𝛼𝑥
1

𝛽
(C.33)

can be used to determine parameters of 𝛼 and 𝛽, if
concentration of 𝑥

1
and 𝑥

2
can simultaneously be

measured as function of 𝑆
10
and 𝑆
20
initial concentra-

tions of first and second substrates.

Procedure of Experimental Measurements of 𝑥
2
= (𝑆
10
+ 𝑆
20
−

𝛼𝑥
1
)/𝛽 Relationship

(1) Measurements of equilibrium concentrations set of
𝑥
1
, 𝑥
2
versus 𝑆

10
and 𝑆
20
.

(i) Let us choose a fixed set of concentrations 𝑆
10,1

from the interval [𝑆(0)
10
, 𝑆
(1)

10
]. For a fixed concen-

tration 𝑆
10,1

, let us measure the dependence of
concentrations 𝑥

1
and 𝑥

2
versus [𝑆

20
]. The same

procedure must be repeated for another fixed
concentration 𝑆

10,2
, the third fixed concentra-

tion 𝑆
10,3

, and so forth.
(ii) Using the equation

𝑥
2
=
𝑆
10
+ 𝑆
20
− 𝛼𝑥
1

𝛽
=
𝑆
10
+ 𝑆
20

𝛽
−
𝛼𝑥
1

𝛽
, (C.34)

it can be rewritten as

𝑆
10
+ 𝑆
20
= 𝛼𝑥
1
+ 𝛽𝑥
2
,

𝑈 = 𝛼𝑥
1
+ 𝛽𝑥
2
.

(C.35)
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We can experimentally measure {𝑈
𝑖
}, {𝑥
1𝑖
}, and {𝑥

2𝑖
},

with unknown parameters: 𝛼, 𝛽. Applying the least-squares
method, we can write

𝜕

𝜕𝑝
∑

𝑖

(𝑈
𝑖
− 𝛼𝑥
1𝑖
− 𝛽𝑥
2𝑖
)
2

= 0 𝑝 = 𝛼, 𝛽. (C.36)

Thus,

∑

𝑖

(𝑈
𝑖
− 𝛼𝑥
1𝑖
− 𝛽𝑥
2𝑖
) 𝑥
1𝑖
= 0,

∑

𝑖

(𝑈
𝑖
− 𝛼𝑥
1𝑖
− 𝛽𝑥
2𝑖
) 𝑥
2𝑖
= 0,

∑

𝑖

(𝑈
𝑖
− 𝛼𝑥
1𝑖
− 𝛽𝑥
2𝑖
) 𝑥
1𝑖

= ∑

𝑖

𝑈
𝑖
𝑥
1𝑖
− 𝛼∑

𝑖

𝑥
2

1𝑖
− 𝛽∑

𝑖

𝑥
2𝑖
𝑥
1𝑖
= 0,

∑

𝑖

(𝑈
𝑖
− 𝛼𝑥
1𝑖
− 𝛽𝑥
2𝑖
) 𝑥
2𝑖

= ∑

𝑖

𝑈
𝑖
𝑥
2𝑖
− 𝛼∑

𝑖

𝑥
1𝑖
𝑥
2𝑖
− 𝛽∑

𝑖

𝑥
2

2𝑖
= 0.

(C.37)

Main system determinants can be represented as follows:

Δ =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑖

𝑥
2

1𝑖
∑

𝑖

𝑥
2𝑖
𝑥
1𝑖

∑

𝑖

𝑥
2𝑖
𝑥
1𝑖

∑

𝑖

𝑥
2

2𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= (∑

𝑖

𝑥
2

1𝑖
)(∑

𝑖

𝑥
2

2𝑖
) − (∑

𝑖

𝑥
2𝑖
𝑥
1𝑖
)

2

,

Δ
𝛼
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑖

𝑈
𝑖
𝑥
1𝑖
∑

𝑖

𝑥
2𝑖
𝑥
1𝑖

∑

𝑖

𝑈
𝑖
𝑥
2𝑖

∑

𝑖

𝑥
2

2𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= (∑

𝑖

𝑈
𝑖
𝑥
1𝑖
)(∑

𝑖

𝑥
2

2𝑖
)

− (∑

𝑖

𝑈
𝑖
𝑥
2𝑖
)(∑

𝑖

𝑥
2𝑖
𝑥
1𝑖
) ,

Δ
𝛽
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑖

𝑥
2

1𝑖
∑

𝑖

𝑈
𝑖
𝑥
1𝑖

∑

𝑖

𝑥
2𝑖
𝑥
1𝑖
∑

𝑖

𝑈
𝑖
𝑥
2𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= (∑

𝑖

𝑥
2

1𝑖
)(∑

𝑖

𝑈
𝑖
𝑥
2𝑖
)

− (∑

𝑖

𝑈
𝑖
𝑥
1𝑖
)(∑

𝑖

𝑥
2𝑖
𝑥
1𝑖
) .

(C.38)

Therefore,

𝛼 =
Δ
𝛼

Δ

=

(∑
𝑖
𝑈
𝑖
𝑥
1𝑖
) (∑
𝑖
𝑥
2

2𝑖
) − (∑

𝑖
𝑈
𝑖
𝑥
2𝑖
) (∑
𝑖
𝑥
2𝑖
𝑥
1𝑖
)

(∑
𝑖
𝑥
2

1𝑖
) (∑
𝑖
𝑥
2

2𝑖
) − (∑

𝑖
𝑥
2𝑖
𝑥
1𝑖
)
2

,

𝛽 =
Δ
𝛽

Δ

=

(∑
𝑖
𝑥
2

1𝑖
) (∑
𝑖
𝑈
𝑖
𝑥
2𝑖
) − (∑

𝑖
𝑈
𝑖
𝑥
1𝑖
) (∑
𝑖
𝑥
2𝑖
𝑥
1𝑖
)

(∑
𝑖
𝑥
2

1𝑖
) (∑
𝑖
𝑥
2

2𝑖
) − (∑

𝑖
𝑥
2𝑖
𝑥
1𝑖
)
2

.

(C.39)

Earlier we had determined the parameters of interest as

𝛼 = (1 + 𝐾
11
𝐾
12
) ,

𝛽 = (1 + 𝐾
21
𝐾
22
) .

(C.40)

That is,
𝐾
11
𝐾
12
= 𝛼 − 1,

𝐾
21
𝐾
22
= 𝛽 − 1.

(C.41)

As 𝐾
12
, 𝐾
21
,𝐾
11
, 𝐾
22
:

𝐾
11
=
𝑘
11

𝑘
−11

,

𝐾
12
=
𝑘
12

𝑘
−12

,

𝐾
21
=
𝑘
21

𝑘
−21

,

𝐾
22
=
𝑘
22

𝑘
−22

,

(C.42)

we can write
𝑘
11

𝑘
−11

⋅
𝑘
12

𝑘
−12

= 𝛼 − 1,

𝑘
21

𝑘
−21

⋅
𝑘
22

𝑘
−22

= 𝛽 − 1.

(C.43)

C.2. Two-Substrate System Dynamics at the Initial Time. In
this case we will not take into account processes (4) and (8):

𝑆
󸀠

1
+ 𝑇 󳨀→ (𝑆

1
𝑇) ,

𝑆
󸀠

2
+ 𝑇 󳨀→ (𝑆

2
𝑇) .

(C.44)

In this case, the series of kinetics equations can be represented
as follows:

𝑑𝑥
1

𝑑𝑡
= −𝑘
11
𝑥
1
𝑦 + 𝑘
−11
𝑧
1
,

𝑑𝑦

𝑑𝑡
= −𝑘
11
𝑥
1
𝑦 + 𝑘
−11
𝑧
1
+ 𝑘
12
𝑧
1

− 𝑘
21
𝑥
2
𝑦 + 𝑘
−21
𝑧
2
+ 𝑘
22
𝑧
2
,

𝑑𝑧
1

𝑑𝑡
= 𝑘
11
𝑥
1
𝑦 − 𝑘
−11
𝑧
1
− 𝑘
12
𝑧
1
,

𝑑𝑥
2

𝑑𝑡
= −𝑘
21
𝑥
2
𝑦 + 𝑘
−21
𝑧
2
,

𝑑𝑧
2

𝑑𝑡
= 𝑘
21
𝑥
2
𝑦 − 𝑘
−21
𝑧
2
− 𝑘
22
𝑧
2
.

(C.45)
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For 𝑧
1
, 𝑧
2
, we may use quasi-stationary approximation:

𝑑𝑧
1

𝑑𝑡
= 𝑘
11
𝑥
1
𝑦 − 𝑘
−11
𝑧
1
− 𝑘
12
𝑧
1
= 0,

𝑑𝑧
2

𝑑𝑡
= 𝑘
21
𝑥
2
𝑦 − 𝑘
−21
𝑧
2
− 𝑘
22
𝑧
2
= 0.

(C.46)

Thus,

𝑧
1
=

𝑘
11
𝑥
1
𝑦

𝑘
−11
+ 𝑘
12

,

𝑧
2
=

𝑘
21
𝑥
2
𝑦

𝑘
−21
+ 𝑘
22

.

(C.47)

Thus,

𝑦 = [𝑇
0
] − 𝑧
1
− 𝑧
2
= [𝑇
0
] −

𝑘
11
𝑥
1
𝑦

𝑘
−11
+ 𝑘
12

−
𝑘
21
𝑥
2
𝑦

𝑘
−21
+ 𝑘
22

,

𝑦 =
[𝑇
0
]

1 + (𝑘
11
𝑥
1
) / (𝑘
−11
+ 𝑘
12
) + (𝑘

21
𝑥
2
) / (𝑘
−21
+ 𝑘
22
)
.

(C.48)

For the initial time after the start of all processes, we can
assume that 𝑥

1
= 𝑆
10
and 𝑥

2
= 𝑆
20
; that is,

𝑦 =
[𝑇
0
]

1 + (𝑘
11
𝑆
10
) / (𝑘
−11
+ 𝑘
12
) + (𝑘

21
𝑆
20
) / (𝑘
−21
+ 𝑘
22
)
.

(C.49)

Hence we can write

𝜐
𝑥1
=
𝑑𝑥
1

𝑑𝑡
= −𝑘
11
𝑥
1
𝑦 + 𝑘
−11
𝑧
1

= [−𝑘
11
+ 𝑘
−11

𝑘
11

𝑘
−11
+ 𝑘
12

]

× (𝑆
10
[𝑇
0
]) × (1 +

𝑘
11
𝑆
10

𝑘
−11
+ 𝑘
12

+
𝑘
21
𝑆
20

𝑘
−21
+ 𝑘
22

)

−1

=
𝑘
11
𝑘
12

𝑘
−11
+ 𝑘
12

× (𝑆
10
[𝑇
0
]) × (1 +

𝑘
11
𝑆
10

𝑘
−11
+ 𝑘
12

+
𝑘
21
𝑆
20

𝑘
−21
+ 𝑘
22

)

−1

= 𝑘
12
𝐾
−1

𝑀,1

𝑆
10
[𝑇
0
]

1 + 𝐾
−1

𝑀,1
𝑆
10
+ 𝐾
−1

𝑀,2
𝑆
20

= 𝑘
12

𝑆
10
[𝑇
0
]

𝐾
𝑀,1
+ 𝑆
10
+ 𝐾
𝑀,1
𝐾
−1

𝑀,2
𝑆
20

= 𝑘
12

𝑆
10
[𝑇
0
]

𝐾
𝑀,1
+ 𝑆
10
+ 𝛼𝑆
20

,

(C.50)

𝜐
𝑥2
=
𝑑𝑥
2

𝑑𝑡
= −𝑘
21
𝑥
2
𝑦 + 𝑘
−21

𝑘
21
𝑥
2
𝑦

𝑘
−21
+ 𝑘
22

= [−𝑘
21
+ 𝑘
−21

𝑘
21

𝑘
−21
+ 𝑘
22

] 𝑥
2
𝑦

=
𝑘
21
𝑘
22

𝑘
−21
+ 𝑘
22

× (𝑆
20
[𝑇
0
]) × (1 +

𝑘
11
𝑆
10

𝑘
−11
+ 𝑘
12

+
𝑘
21
𝑆
20

𝑘
−21
+ 𝑘
22

)

−1

= 𝑘
22
𝐾
−1

𝑀,2

𝑆
20
[𝑇
0
]

1 + 𝐾
−1

𝑀,1
𝑆
10
+ 𝐾
−1

𝑀,2
𝑆
20

= 𝑘
22

𝑆
20
[𝑇
0
]

𝐾
𝑀,2
+ 𝐾
−1

𝑀,1
𝐾
𝑀,2
𝑆
10
+ 𝑆
20

= 𝑘
22

𝑆
20
[𝑇
0
]

𝐾
𝑀,2
+ 𝛼−1𝑆

10
+ 𝑆
20

,

(C.51)
where

𝐾
−1

1
=

𝑘
11

𝑘
−11
+ 𝑘
12

,

𝐾
−1

2
=

𝑘
21

𝑘
−21
+ 𝑘
22

,

𝛼 =
𝐾
𝑀,1

𝐾
𝑀,2

(C.52)

are Michaelis constants for the first and second substrate,
respectively, and 𝛼—is a factor of transporter inhibition.

Conclusions for Substrate Dynamics Section
(1) Equations

𝜐
𝑥1
=
𝑑𝑥
1

𝑑𝑡
= 𝑘
12

𝑆
10
[𝑇
0
]

𝐾
𝑀,1
+ 𝑆
10
+ 𝛼𝑆
20

, (C.53)

𝜐
𝑥2
=
𝑑𝑥
2

𝑑𝑡
= 𝑘
22

𝑆
20
[𝑇
0
]

𝐾
𝑀,2
+ 𝛼−1𝑆

10
+ 𝑆
20

(C.54)

are the analogs to the Michaelis formula for a two-
substrate system. If 𝑆

20
= 0, we get the Michaelis

formula for the first substrate, and if 𝑆
10
= 0, we get

the formula for the second one.
(2) Constants 𝑘

12
, 𝐾
𝑀,1

, 𝑘
22
, 𝐾
𝑀,2

can be determined
experimentally:

(iii) 𝑆
10
≫ 𝐾
𝑀,1

and 𝐾
𝑀,2

: 𝑆
10
≫ 𝛼𝑆
20
:

𝜐
1,𝑠
= 𝑘
12
[𝑇
0
] ,

𝜐
𝑥2
= 𝑘
22

𝛼𝑆
20
[𝑇
0
]

𝑆
10

,
(C.55)

(iv) 𝑆
10
≪ 𝛼𝑆
20
: 𝛼𝑆
20
≫ 𝐾
𝑀,1

:

𝜐
󸀠

𝑥1
=
𝑑𝑥
1

𝑑𝑡
= 𝑘
12

𝑆
10
[𝑇
0
]

𝛼𝑆
20

,

𝜐
󸀠

2,𝑠
= 𝑘
22
[𝑇
0
] ,

𝜐
1,𝑠
𝜐
2,𝑠
= 𝑘
12

𝑆
10
[𝑇
0
]

𝛼𝑆
20

𝑘
22

𝛼𝑆
20
[𝑇
0
]

𝑆
10

= 𝑘
12
𝑘
22
[𝑇
0
]
2

.

(C.56)
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C.3. Effect of the Equilibrium Reverse Bias for a First Substrate
When a Second One Is Added to the System. If previously
the equilibrium was established for a first substrate between
the outside concentration of the substrate and the inside
concentration, the addition of a second substrate will produce
a reverse bias (equilibrium shift). To study this, we first
can write the equation representing the velocity of second
substrate transport:

𝜐
2
=
𝑑𝑥
2

𝑑𝑡
= −

𝑘
21
𝑆
20

𝑘
21
𝑆
20
+ 𝑘
−21
+ 𝑘
22

×
[𝑇
0
] (𝐾
11
𝐾
12
+ 1)

𝐾
11
𝑆
10
+ 𝐾
11
𝐾
12
+ 1

= −
𝑆
20

𝑆
20
+ 𝐾
𝑀,2

×
[𝑇
0
] (𝐾
11
𝐾
12
+ 1)

𝐾
11
𝑆
10
+ 𝐾
11
𝐾
12
+ 1
,

(C.57)

where

𝐾
𝑀,2

=
𝑘
−21
+ 𝑘
22

𝑘
21

. (C.58)

In the beginning, at initial time, some of the transporter
molecules in the outside bind to the second substrate while
inside there is still no second substrate. This means the
availability of outside transporter for a first substrate becomes
reduced.Thus, equilibrium for a first substrate starts to break
down; that is, the velocity of first substrate transport to
outside (release) becomes bigger than its transport to the
inside. Our model allows evaluation of the release of a first
substrate with simple approximation.

Unlike that in the Appendix C.1, where all the trans-
port molecules were available for both substrates, let us
approximate that the amount of transporter binding the first
substrate outside is reduced by the second substrate also
binding to it. Thus, using this rough approximation, the
available outside transporter is reduced to the amount:

𝑦 = 𝑦
0
− 𝑧
2
, (C.59)

where

𝑦
0
=
[𝑇
0
] (𝐾
11
𝐾
12
+ 1)

𝐾
11
𝑆
10
+ 𝐾
11
𝐾
12
+ 1
,

𝑧
2
=

𝑘
21
𝑆
20
𝑦
0

𝑘
21
𝑆
20
+ 𝑘
−21
+ 𝑘
22

,

(C.60)

while inside (the cell) the amount of transporter available for
the first substrate still remains 𝑦

0
. Consequently, the velocity

of the first substrate reverse flow can be represented as

𝜐
𝑥1
=
𝑑𝑥
1

𝑑𝑡
= −𝑘
󸀠

11
𝑥
1,𝑒
𝑦 + 𝑘
󸀠

−11
𝑠
1,𝑒
𝑦
0
, (C.61)

where 𝑘󸀠
11

and 𝑘󸀠
−12

are some effective parameters that can
be only analytically solved in more complex model that will
implicate intermediate transporter-substrate complexes and
are out of the scope of this study. Here we can only get

formulas for the initial times during the start of the process
and far from equilibrium for a second transporter. In (C.61)
we had balanced the flow disparity between the first substrate
in-flow (uptake) and out-flow (release), where 𝑥

1,𝑒
and 𝑠
1,𝑒

are
the equilibrium concentrations of the first substrate outside
and inside (the cell). Thus, these concentrations can be
approximately found using the approximation that still the
system is close to the equilibrium for a first substrate:

𝑥
1
⇐⇒ 𝑠

1
,

𝐾
0
=
𝑠
1,𝑒

𝑥
1,𝑒

=
𝑆
10
− 𝑥
1,𝑒

𝑥
1,𝑒

=
𝑘
󸀠

11

𝑘
󸀠

−11

,

𝑥
1,𝑒
=

𝑆
10

𝐾
0
+ 1
,

𝑠
1,𝑒
=
𝐾
0
𝑆
10

𝐾
0
+ 1
.
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Thus,

𝜐
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1
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𝐾
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=
𝑘
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11
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0
+ 1
𝑦
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[1 −

𝐾
𝑀,2

𝑆
20
+ 𝐾
𝑀,2
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For initial time conditions with relatively good precision, we
can accept that

𝑘
󸀠

11
𝑆
10

𝐾
0
+ 1
𝑦
0
≈ 𝐴 = Const., (C.64)

as
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󸀠
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×
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0
] (𝐾
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]
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×
1

𝐾
𝑆
𝑆
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+ 1

=
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]

𝐾
0
+ 1

× 𝐾
𝑍
≈ 𝐴 = Const.,

(C.65)
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where

𝐾
𝑆
=

𝐾
11

𝐾
11
𝐾
12
+ 1
,

𝐾
𝑍
=

1

𝐾
𝑆
𝑆
10
+ 1
,

𝜐
𝑥1
=
𝑘
󸀠

11
𝑆
10
[𝑇
0
]

𝐾
0
+ 1

× 𝐾
𝑍
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𝐾
𝑀,2

𝑆
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+ 𝐾
𝑀,2

]

= 𝐴[1 −
𝐾
𝑀,2

𝑆
20
+ 𝐾
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Thus

𝜐
𝑥1
= 𝐴[1 −

𝐾
𝑀,2

𝑆
20
+ 𝐾
𝑀,2

] . (72
∗
)

First substrate reverse flow (the release speed) velocity
dependence on the external second substrate concentration
is represented on Figure 2.

One can see that the reverse flow of the first substrate
is absent if 𝑆

20
= 0, because in that case the formula (72∗)

gives us zero velocity. When the second substrate is added
externally the second term inside square brackets becomes
reduced and the velocity augments. Thus, the velocity of
reversed transport grows with the second substrate concen-
tration and until a limit:

𝜐
𝑥1
=
𝑘
󸀠

11
𝑆
10

𝐾
0
+ 1
𝑦
0
. (C.67)
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