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A B S T R A C T   

Severe acute respiratory syndrome - coronavirus 2 (SARS-CoV-2) continues to effect communities across the world. One way to combat these effects is to enhance our 
collective ability to remotely monitor community spread. Monitoring SARS-CoV-2 in wastewater is one approach that enables researchers to estimate the total 
number of infected people in a region; however, estimates are often made at the sewershed level which may mask the geographic nuance required for targeted 
interdiction efforts. In this work, we utilize an apportioning method to compare the spatial and temporal trends of daily case count with the temporal pattern of viral 
load in the wastewater at smaller units of analysis within Austin, TX. We find different lag-times between wastewater loading and case reports. Daily case reports for 
some locations follow the temporal trend of viral load more closely than others. These findings are then compared to socio-demographic characteristics across the 
study area.   

Introduction 

It has been over two years since the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 
2019 (COVID-19), caused a worldwide lockdown (WHO, 2020). Unlike 
previous outbreaks of human pathogenic viruses (e.g., SARS-CoV-1 in 
2003, H1N1 in 2009, and the Middle East respiratory syndrome [MERS] 
coronavirus epidemic between 2012 and 2015), the high transmissivity 
rate of SARS-CoV-2 made this outbreak unique (Fauci et al., 2020; Godri 
Pollitt et al., 2020; Petersen et al., 2020; Rodpothong and Auewarakul, 
2012). At least part of the high transmissivity is attributable to the lag 
between viral shedding and the onset of physical symptoms (Petersen 
et al., 2020). This lag, coupled with the substantial hurdles associated 
with large-scale testing early in the pandemic, made quarantine mea-
sures less effective in reducing transmission (Kucharski et al., 2020). 
Although many countries have implemented (and continue to imple-
ment) physical distancing requirements, mask mandates, and re-
strictions on indoor and outdoor gatherings, more than 532 million 
COVID-19 cases have been confirmed worldwide (JHU, 2021). Howev-
er, many scientists believe the reported cases underestimate the actual 
count due to problems with testing (availability, false negatives), 
asymptomatic individuals, and a reluctance for testing by some symp-
tomatic individuals (Alwan, 2020; Tanne, 2020; Wu et al., 2020). Alwan 
(2020) suggests that one of the main factors contributing to testing 

reluctance is the financial impact of missing work for those without paid 
time off or sick leave. 

The ability to work remotely influences the financial impact of a 
positive COVID-19 test. For people who cannot work remotely after a 
positive COVID-19 test, the financial impacts could be devastating, 
while those who can work remotely likely feel much less of an impact. 
Remote work is not an option for many industries focusing on service (e. 
g., restaurants, hotels, janitorial services), construction, or the gig- 
economy (e.g., Instacart, Uber), among many others. A positive 
COVID-19 test for such a worker could mean that they go without pay. 
For most people, losing income is not a viable option. This potential loss 
means that many individuals choose to work, regardless of COVID-19 
status. Compounding these challenges is that employees in these 
aforementioned industries skew towards lower-income minority groups 
(Goldman et al., 2021). As a result, recent research finds a dispropor-
tionate representation of minority populations in COVID-19 cases, 
hospitalizations, and deaths (S. J. Kim and Bostwick, 2020; Muñoz-Price 
et al., 2020; Wadhera et al., 2020). 

Due to testing difficulties (e.g., availability), reluctance to test, 
asymptomatic individuals, and the lag between viral shedding and 
physical symptoms, it is challenging to accurately identify COVID-19 
community case counts (Wu et al., 2020). This uncertainty has made 
mounting an appropriate response strategy problematic (Noh and 
Danuser, 2021). To that end, a growing number of researchers are 
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turning to wastewater epidemiology to assess viral loads in a sewershed 
(Larsen and Wigginton, 2020). This work has primarily focused on 
developing surveillance tools to test for SARS-CoV-2 RNA (Ahmed et al., 
2020; La Rosa et al., 2020), identify ideal sampling points within a sewer 
network (Balboa et al., 2021; Yeager et al., 2021), and compare 
SARS-CoV-2 concentrations in wastewater with reported cases 
(Medema et al., 2020; Randazzo et al., 2020). Results from these studies 
highlight the value of wastewater in monitoring the prevalence of 
COVID-19 within a sewershed and the assocaited communities. How-
ever, from a response and mitigation perspective, the size of a sewershed 
makes it difficult to pinpoint specific sub-communities for treatment, 
testing, and supplies without supplementing sampling at the wastewater 
treatment plant with sampling of key manholes in the sewershed. 

Increasingly, studies are exploring the efficacy of wastewater moni-
toring to provide actionable insights for COVID-19 response. This in-
cludes the recent work by Scott et al. (2021) who utilized gene markers 
to monitor the spread of COVID-19 on a U.S. college campus, Pillay et al. 
(2021) who provided a unique perspective on wastewater monitoring in 
South Africa, and Saththasivam et al. (2021) who were the first to 
measure SARS-CoV-2 RNA fragments in wastewater in Qatar. This work 
continues to evolve with some of the most recent studies taking place 
internationally, such as in Madrid (Lastra et al., 2022). For more infor-
mation on the state of the art in monitoring we recommend the recent 
review by Lahrich et al. (2021). In this study, we aim to contribute to this 
growing body of research by exploring the spatial variation in 
SARS-CoV-2 loading at wastewater treatment plants and daily reported 
COVID-19 cases at the ZIP code level in Austin, Texas. To do this, we 
begin by exploring the spatio-temporal variation of daily COVID-19 
cases for each ZIP code falling within two sewershed catchment areas. 
We then compare the temporal relationship of SARS-CoV-2 wastewater 
loading (N-gene copies/day) and daily reported COVID-19 cases to un-
cover the temporal dynamics of viral shedding and case reporting at a 
more granular spatial scale. Our cross-correlation time-series analysis 
identifies the presence of lead periods between spikes in SARS-CoV-2 
loading and reported cases when considering the aggregate number of 
cases in the sewershed and wastewater loadings. However, when we 
disaggregate and apportion cases to the individual ZIP codes based on 
the population within the sewershed, the lag periods are generally the 
same, but variation in the strength of correlations between ZIP code case 
reports and loading levels become clear. The results of this paper support 
the use of wastewater analysis as a surveillance tool and highlight how 
case disaggregation and geospatial analysis can enhance surveillance. 

Background 

The concept of community vulnerability connects to anthropogen-
ically induced or natural hazards – typically large pollution releases, 
hurricanes, tornados, and other events with the potential to cause sig-
nificant damage to the built and natural environment. In this context, 
vulnerability is defined as a community’s susceptibility to harm or the 
potential for loss within the community (Cutter, 1996; Weichselgartner, 
2001). Building a deeper understanding of the link between community 
vulnerability and hazard risk is critical for minimizing the damage 
caused by disasters – whether anthropogenic or natural. 

The ongoing COVID-19 pandemic, by any standard, is a disaster. 
Millions of people have died (JHU, 2021), the pandemic continues to 
cripple economies (Bauer et al., 2020), and the ripple effects of the 
pandemic will manifest for many years (British Academy, 2021; Hor-
owitz et al., 2021). Simply put, the world was woefully underprepared 
for an event of this magnitude, as evidenced by a general reluctance to 

act on early information about the virus (Caduff, 2020), the rampant 
spread of misinformation (H. K. Kim et al., 2020), lack of testing 
(Caduff, 2020), scarcity of medical supplies (Ranney et al., 2020), and 
general supply-chain problems (Guan et al., 2020). Moreover, the virus 
exposed many inadequacies associated with our collective ability to 
respond to this type of event, highlighting how the most vulnerable 
communities face the highest risk of COVID-19 illness and death, due, in 
part, to difficulties associated with monitoring community spread and 
prevalence (S. J. Kim and Bostwick, 2020). 

Socioeconomic health inequities of COVID-19 

Post-hoc research on COVID-19 case rates reveals patterns of effects 
between COVID-19 and socio-demographics that parallel similar 
research on other environmental and social inequities. The burdens 
fueled by COVID-19 have fallen disproportionately on vulnerable and 
marginalized communities. This finding appears to be scale agnostic, 
with research confirming these patterns across cities (DiMaggio et al., 
2020), counties (Liao and De Maio, 2021), states (Karaca-Mandic et al., 
2021), and regions (Strully et al., 2021). These burdens range from 
higher percentages of positive tests to increased hospitalizations and 
mortality. 

More specifically, recent work in Louisiana found that Black Amer-
icans made up 70.6% of the COVID-19 hospitalizations and 76.3% of 
COVID-19 deaths, even though only 36% of the population for the study 
area is Black (Price-Haywood et al., 2020). Likewise, in Milwaukee, 
Wisconsin, a cross-sectional analysis revealed that Black males were at 
higher risk of testing positive for COVID-19 and being hospitalized due 
to COVID-19 complications than were their racial and ethnic counter-
parts (Muñoz-Price et al., 2020). Almagro & Orane-Hutchinson (2020) 
reported similar results, identifying a significant, positive relationship 
between low-income majority-minority areas and the percentage of 
positive COVID-19 tests in New York City. Furthermore, Mahajan & 
Larkins-Pettigrew (2020) and Karmakar et al. (2021) both show the 
existence of significant racial inequities in COVID-19 mortality using 
data from across the United States. 

Many medical professionals point to the health inequities in the 
United States as the underlying reason for some of the racial disparities 
in COVID-19-related health outcomes (Bibbins-Domingo, 2020). For 
example, pre-existing conditions can make the risk of COVID-19 illness 
greater. Because minority communities are disproportionately affected 
by diabetes, hypertension, obesity, and other ailments (Towne et al., 
2017; Zarefsky, 2020), their mortality risk for COVID-19 is much higher. 
In addition to comorbidities, members of minority groups are more 
likely to be part of the low-wage essential workforce, such as bus drivers, 
custodians, service workers, and other front-line industry workers 
(Bibbins-Domingo, 2020). Indeed, Almagro & Orane-Hutchinson (2020) 
tested and confirmed that working in transportation, construction, and 
other service industry occupations was positively and significantly 
associated with positive COVID-19 tests. Because these workers typi-
cally do not have paid time off or sick leave (Schneider and Harknett, 
2021), they might feel less inclined to be tested or stay home from work 
following a positive test or symptom onset. As a result, the actual 
COVID-19 case count might be much higher in such communities. Thus, 
even though free COVID-19 testing is available, testing is unlikely to be 
the most reliable means for monitoring COVID-19 prevalence within a 
community. 

Finally, recent research suggests that commercial activity, specif-
ically the movement of people between work and home, is an important 
explanatory factor in the spread of COVID-19 (Bontempi et al., 2021; 
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Grubesic et al., 2021). Indeed, recent studies have demonstrated an 
interesting link between COVID-19 transmission in communities where 
individuals are likely to work at “risky” facilities with the potential for 
high infection rates (Towers et al., 2022). In short, individuals who 
commute to and from jobs that place them at higher risk of infection are 
in-essence two-way vectors for transmission. They may transport the 
virus to and from the locations where they work and live. 

Proactive monitoring 

Proactive monitoring is essential for preparedness and effective 
resource allocation (Lin Moe and Pathranarakul, 2006). Due to the 
concern regarding underestimation of the actual case count and level of 
community spread of COVID-19, scholars have been advancing 
SARS-CoV-2 monitoring in wastewater. Farkas et al. (2020) detailed that 
viral concentrations in wastewater can provide an essential indicator of 
viral disease prevalence in a community. While the methods for 
concentrating and detecting SARS-CoV-2 in wastewater continue to be 
developed, many researchers have successfully extracted SARS-CoV-2 
RNA from untreated sludge samples or other bulk wastewater sam-
pling points (Balboa et al., 2021; Palmer et al., 2021). Quantifying the 
viral concentration in wastewater samples typically involves 
reverse-transcription, quantitative, real-time polymerase chain reaction 
(RT-qPCR), digital PCR, or digital-drop PCR (ddPCR) methods. For 
example, Ahmed et al. (2020) employed RT-qPCR to determine the 

SARS-CoV-2 concentration in wastewater to estimate the prevalence of 
COVID-19 among those who lived within the target Australian sew-
ershed, while (Liu et al., 2020) reported that the ddPCR test returned 
fewer false negatives in low viral load specimens than did RT-qPCR 
methods. The results from Suo et al. (2020) also suggest that ddPCR 
might be better than RT-qPCR for minimizing false negatives. 

Wastewater-based epidemiology lends itself to an early-warning and 
preparedness system for decision-makers and health officials. For 
example, several recent studies document the presence of SARS-CoV-2 in 
wastewater weeks before the first case was actually reported (La Rosa 
et al., 2020; Medema et al., 2020; Randazzo et al., 2020). Moreover, 
results from other studies suggest that one can use wastewater moni-
toring to track the prevalence of the virus as it ebbs and flows within a 
community over time. For example, Ahmed et al. (2020) explored this 
temporal dynamic and found some initial alignment between the decline 
in the first COVID-19 case wave and wastewater loading. Kumar et al. 
(2021) also published promising results, graphically depicting a corre-
lation between wastewater SARS-CoV-2 concentrations and reported 
COVID-19 cases with a wastewater lead time of 1–2 weeks. Weidhaas 
et al. (2021) report a similar wastewater lead time. 

Interestingly, Nemudryi et al. (2020) documented an even more 
dynamic relationship that varied depending on a waning (decreasing) or 
waxing (increasing) of COVID-19 case numbers. During the waning 
period (decrease in cases after initial surge), patient-reported symptom 
onset preceded detectable levels of SARS-CoV-2 in the wastewater by 

Fig. 1. Austin study area with the two wastewater treatment service areas highlighted.  
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eight days,3 with a spike in positive COVID-19 tests two days after 
wastewater detection. Conversely, during a waxing phase (resurgence), 
symptom onset was found to precede wastewater detection by five days, 
with positive tests following four days after SARS-CoV-2 was detected in 
the wastewater. Given that this analysis was performed in the relatively 
small city of Bozeman, Montana, the lag between symptom onset and 
wastewater detection might be longer than expected due to the difficulty 
in detecting SARS-CoV-2 in wastewater for the small COVID-19-positive 
population. 

These studies highlight the potential for wastewater monitoring as an 
early-warning system and method for estimating the prevalence of 
COVID-19 within the communities served by a given sewershed. How-
ever, one drawback of current approaches is the lack of explicitly ac-
counting for the number of people or facilities that are contributing to 
the wastewater. For example, consider the equation to estimate viral 
gene copies used in this analysis: 

CoV − 2 loading =

(
gene copies

L wastewater

)

∗

(
L wastewater

day

)

(1) 

Eq. (1) can then be transformed to estimate the number of ill in-
dividuals within the sewershed (Weidhaas et al., 2021) with some as-
sumptions about how much effluent each individual contributes. That 
said, the estimate of total number of infected individuals based on 
SARS-CoV-2 concentration critically depends on knowing the size of the 
population contributing wastewater in the sewershed. 

Unfortunately, sewersheds rarely align with administrative bound-
aries; instead, they often bisect locations where the population is known 
(e.g., census tracts, counties, ZIP codes). This is because many sewer 
systems are designed for gravity wastewater collection systems (GWCS) 
or pressure collection. The former relies heavily on the elevation 
changes across the landscape to control where and how wastewater 
flows through the system (Islam, 2017). The latter depends on a series of 
pumps to move the water through the system. To make the system as 
efficient as possible, they are designed and modified to optimize flow, 
which will not always conform to administrative boundaries (Mis-
zta-Kruk, 2016). There also are reporting challenges with COVID-19 
cases. Agencies typically assign COVID-19 case counts to each admin-
istrative unit (e.g., tract or ZIP code). As a result, researchers interested 
in estimating case counts or positive case rates based on gene copies of 
SARS-CoV-2 in wastewater must apportion the population and the 
number of cases to match the service area of the sewershed. If one has 
information about the population with sufficient granularity, it is 
possible to geocode (i.e., add latitude and longitude coordinates) 
household addresses to provide a highly accurate estimate of the pop-
ulation within the sewershed (Weidhaas et al., 2021). However, this 
level of granularity is not always available, leading to the use of rough 
population estimates based on large regional areas (Ahmed et al., 2020). 

While wastewater-based epidemiology provides an initial indication 
of COVID-19 community prevalence, it remains challenging to identify 
and effectively direct intervention resources to sub-communities that 
might be more vulnerable to COVID-19 and actively experiencing 
community spread. These challenges are especially acute when the 
sewersheds bisect administrative units, which is the case for Austin, 
Texas (Fig. 1). This work explores an approach that will help facilitate a 
more spatially granular assessment of COVID-19 cases and SARS-CoV-2 
loading in wastewater. To accomplish this task, we utilize daily reported 
COVID-19 cases in Austin, Texas, and SARS-CoV-2 wastewater data from 
the two major sewersheds in Austin (Fig. 1). We begin by calculating 
space-time clusters of COVID-19 case prevalence across the ZIP codes in 
Austin, TX. Then, we perform a cross-correlation analysis between 

SARS-CoV-2 loading in wastewater and daily reported COVID-19 cases 
for the proportion of each ZIP code that falls within the sewershed of 
interest. Not only does this allow us to determine the lead time between 
viral shedding and reported cases, but it also allows us to determine 
whether the reported cases in some ZIP codes follow the wastewater 
loadings more closely than others. If so, it would provide a more 
nuanced understanding of which communities are experiencing more 
extensive community spread and require more response resources. 

Data and methods 

Data collection 

We obtained case information from the City of Austin’s COVID-19 
dashboard (APH, 2021). Reported cases are laboratory-confirmed, offi-
cial city numbers and are reported at the ZIP code level. We gathered 
case data from May 2020 through January 2021 for each ZIP code in 
Austin. We transformed the reported cumulative cases to reflect the new 
daily cases by subtracting the previous day’s cumulative case count (t-1) 
from the current day’s cumulative case count (t). 

Wastewater collection 

Flow-weighted, 24-hour composite samples of primary clarifier 
effluent (500–1000 mL) were collected from May 2020 – January 2021 
from the two major wastewater treatment plants in Austin, Texas: 
Walnut Creek (WC) and South Austin Regional (SAR) wastewater 
treatment plants (Fig. 1). The WC sewershed covers 169.2 sq. miles and 
processed approximately 53 million gallons per day (MGD) during the 
study period. The SAR sewershed covers 251.2 sq. miles and processed 
approximately 43 MGD during the study period (Palmer et al., 2021). 
Samples generally were collected three times per week at the WC 
wastewater treatment plant and two times per week at the SAR waste-
water treatment plant. Samples were transported on ice to the labora-
tory at the University of Texas at Austin, mixed, divided into 50-mL 
aliquots, and stored at − 20 ◦C. 

Sample processing and RNA extraction 

The wastewater samples were processed and RNA extracted ac-
cording to the recommended protocol in Palmer et al. (2021). Briefly, 
triplicate 50-mL aliquots for each wastewater sample were placed in a 
room temperature water bath for 1.5 h to thaw. Aliquots were then 
pasteurized at 60 ◦C for 1.5 h. Two-phase centrifugation at 4500 xg for 
5 min at 4 ◦C resulted in a pellet that was subsequently resuspended in 
the lysis buffer provided in the MagMax Microbiome Ultra Nucleic Acid 
Isolation kit (ThermoFisher, Waltham, Massachusetts). Homogenization 
was conducted in the lysing tubes of the kit via four rounds of disruption 
in a FastPrep-24 (MP Biomedicals; Santa Ana, California) at 4.0 m/s for 
20 s and centrifugation at 13,000 xg for 15–20 s. 

RNA was extracted with the MagMax Microbiome Ultra Nucleic Acid 
Isolation kit according to the manufacturer’s instructions utilizing the 
KingFisher Flex system (ThermoFisher, Waltham, Massachusetts). 
Extracted RNA was stored at − 20 ◦C. The nucleic acid concentration was 
measured spectrophotometrically with the Synergy Neo 2 Hybrid Multi- 
Mode Reader (BioTek; Winooski, Vermont). 

SARS-CoV-2 quantification by RT-qPCR 

The SARS-CoV-2 concentrations of aliquots were determined via 

3 All laboratory confirmed cases of COVID-19 were contacted via telephone 
and asked a series of questions, including the date they first started to feel 
symptoms. 
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triplicate RT-qPCR reactions on each RNA extract, using a ViiA7 Real- 
Time PCR System (ThermoFisher; Waltham, Massachusetts) and the 
CDC nCOV_N2 primer/probe set (Integrated DNA Technologies [IDT], 
Coralville, Iowa). A standard curve (20,000, 2000, 200, 20, and 2 N gene 
copies/µL) was prepared via a serial dilution of the 2019-nCoV_N_Posi-
tive Control (IDT). RT-qPCR reactions had a total volume of 20 µL, and 
contained: 5 µL of TaqMan™ Fast Virus 1-Step Master Mix (Thermo-
Fisher; Waltham, Massachusetts), 1.49 µL of the CDC nCOV_N2 primer/ 
probe set mix (for a final concentration of 500 nM of each primer and 
125 nM of probe), 8.51 µL of PCR-grade water, and 5 µL of RNA extract. 
The thermal cycler conditions recommended by the CDC were used: 
50 ◦C for 5 min, 95 ◦C for 20 s, and 40 cycles of 95 ◦C for 15 s and 60 ◦C 
for 60 s. The limit of detection (LOD) of triplicate N2 assays was 
determined to be 7.5 N gene copies per reaction via six serial dilutions 
(100,000 to 1 copy per reaction) of the 2019-nCoV_N_Positive Control 
SARS-CoV-2 plasmid standard and subsequent 20 replicates of standards 
with 10, 5, 2.5, and 1 copy per reaction. Because we utilized 50-mL 
sample aliquots and 200-µL elution buffer, the LOD translates to 
6000 N gene copies/L of wastewater. RT-qPCR reactions that did not 
yield amplification were not assigned a concentration value, and the 
lack of amplification was noted per the protocol followed by Ahmed 
et al. (2020a). Samples that did not yield an average concentration of the 
N gene above the LOD were not included in the correlational analyses. 
The validity of RT-qPCR results was ensured by including positive 
controls (2019-nCoV_N_Positive Control, IDT) and negative controls 
(PCR-grade water) in every RT-qPCR plate. The SARS-CoV-2 concen-
tration in each extract was calculated in units of N gene copies/µL 
extract by averaging the triplicate reactions for each extract. The 
average SARS-CoV-2 concentration of each wastewater sample in units 
of N gene copies/L wastewater was calculated by using the aliquot 
volume (50 mL), the volume of elution buffer (200 µL), and the con-
centrations of the extracts. Finally, the average concentration of 
SARS-CoV-2 is calculated for each wastewater sample and multiplied by 
the plant’s wastewater flowrate for that day (L/d) to obtain the loading 
of SARS-CoV-2 (N gene copies/d) (Appendix A). 

Case data preparation 

The area served by each treatment plant and each ZIP code in the 
Austin area is shown in Fig. 1. It is important to note that several ZIP 
codes on the periphery of Austin only partially overlap with the sew-
ersheds. Therefore, an essential first step in analyzing the correspon-
dence between SARS-CoV-2 wastewater loading and COVID-19 case 
count is to apportion cases to each ZIP code based on the percent of the 
population in each ZIP code that falls within the sewershed area. Several 
alternative approaches can facilitate this apportionment. First, one 
could take a purely area-based approach. This approach scales cases by 
the percent area of each ZIP code that overlaps with the sewershed. 
However, this simplistic approach fails to account for locations with 
sparsely (or densely) populated areas. Second, one could use the popu-
lation of nested administrative units (e.g., block groups or tracts within a 
ZIP code) that fall within the sewershed to apportion cases. This alter-
native is more accurate than the area-based approach but will likely face 
similar issues as the first approach if the sewershed bisects the smaller 
administrative units, if the administrative unit is sparsely populated, or 
if the population concentrates in a small area of a larger administrative 
unit. Third, one could utilize the locations of structures in the admin-
istrative unit. Here, the cases are scaled to reflect the proportion of 
structures within each administrative unit for the sewershed. This 
approach provides a more accurate representation of population loca-
tions while also directly accounting for wastewater sources. 

We employed the third approach and began by clipping each ZIP 
code area to match the spatial bounds of the sewershed. Next, we used a 
comprehensive structure shapefile to identify the count of structures 
within each ZIP code and the sewershed boundaries. Next, we divided 
the number of structures falling within the sewershed portion of the ZIP 
code (Sstruct) by the total number of structures in the ZIP code (Stotal) to 
build a scaling factor for case counts. Specifically, we multiplied this 
proportion by the total daily case count reported for each ZIP code (2), 
then, after scaling the cases, we calculated the daily case rate for each 
ZIP code (or ZIP code portion overlapping the sewershed area) at time 
(t) for each ZIP code (i) per 10,000 residents (3). 

apportioned cases =
Sstruct

Stotal
∗ daily case count (2)  

COVID − 19 Case Ratet
i =

(
daily casest

i

populationi

)

∗ 10, 000 (3) 

The case rate (3) for each time period (t) for each ZIP code (i) was 
used for the space-time cluster analysis to facilitate a more objective 
comparison of COVID-19 cases across areas with different populations. 

Daily cases – wastewater correlation analysis 

Sewershed level 
We performed cross-correlations between the wastewater loading at 

each treatment plant (N gene copies/day) and the apportioned new daily 
cases4 in aggregate (total for all ZIP codes in the sewershed area) and to 
each ZIP code individually. Where the wastewater data are concerned, 
the WC wastewater treatment plant contained three dates (10/13/20, 
10/14/20, 10/15/20) with two loading values. For these cases, we took 
an average of the two values. In addition, loading data from 11/23/20 – 
12/2/20 and 12/9/20 – 12/30/20) were omitted from both wastewater 
datasets because the samples collected on these days had a holding time 
at 4 ◦C that exceeded 7 days. We used loading and case data collected 
between 7/1/20 and 1/11/21 for the SAR sewershed and 5/17/20 to 1/ 
6/21 for WC sewershed. 

For the sewershed area analysis, we plotted SARS-CoV-2 loading data 
for WC and SAR against new daily reported cases. We applied a temporal 
lag (t + 1, t + 2,…t + 10) to the reported date for the loading data in 
order to shift it forward in time because SARS-CoV-2 detection in 
wastewater often precedes symptom onset and case reporting. Next, we 
used case data corresponding to the date of the lagged loading values 
and calcualted a Pearson correlation to compare. For example, when 
analyzing a lag of one day, the COVID-19 case data from 7/2/20 would 
be paired with the 7/1/20 loading data. 

ZIP code analysis 
We began the ZIP code level analysis by z-score standardizing both 

the COVID-19 case counts and SARS-CoV-2 wastewater loadings. We 
then fit smoothing curves to both datasets using the locally weighted 
scatterplot smoothing (LOWESS) technique (Nemudryi et al., 2020). The 
model uses a local weighting value to determine the influence that 
surrounding points have when determining the value of the smoothed 
estimate. After several iterations utilizing different weights, we deter-
mined that 0.20 offered a good balance between over and underfitting 
for the wastewater data and 0.166 for the case data. Next, the waste-
water data was iteratively lagged relative to the case data in one-day 
increments beginning at t-15 days and ending and t + 15 days. Next, 
we calculated a Pearson cross-correlation value between wastewater 
loading and daily case numbers for each lag period, subsequently 
recording the lag at which the highest cross-correlation value (max 
synchrony) was found. Finally, we added both of these measures as an 
attribute of the ZIP code shapefile for mapping. The lag at which max 

4 Hereafter any reference to cases is related to the apportioned numbers. 
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synchrony occurs provides a general measure of how far ahead waste-
water loading preceded case reporting, while the max synchrony value 
itself will measure how strong the relationship between wastewater 
loading and reported cases is for each ZIP code. 

Space-time analysis 

We also performed a space-time cluster analysis of the daily COVID- 
19 case rates using apportioned case numbers to identify the spatial and 
temporal clusters of COVID-19 across the sewershed ZIP codes. We 

employed a space-time variation of the local Moran’s I statistic, which 
determines the percentage of time that each ZIP code was a member of a 
hotspot (high case numbers surrounded by areas of similarly high case 
numbers), cold spot (low case numbers surrounded by areas of similarly 
low case numbers), or outlier (low cases surrounded by high cases, or 
vice versa) throughout our study period. The local Moran’s I is defined 
as follows: 

Ii =
xi − X

S2
x

∑n− 1

j=1,j∕=i

wi,j
(
xj − X

)
(4) 

Fig. 2. Correlation between SARS-CoV-2 wastewater loading and apportioned aggregate case count for each sewershed at different time lags. Lag time indicates how 
far wastewater data precedes case data. 

Fig. 3. The max synchrony value represents the highest correlation between wastewater loading and case count for each ZIP code. The reported time lag indicates the 
day (lag) associated with the highest correlation between wastewater loading values and case data. Sewersheds are outlined in green and blue. 
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Where xi is the attribute for feature i, X is the global average of 
attribute x, wi,j is the weight between feature i and j, and S2

x is the 
variance for attribute x. We classify a feature (i.e., ZIP code area) as part 
of a hotspot, cold spot, outlier, or not significant based on the value of I 
and its associated z-score and p-value. In addition to spatial neighbors j, 
the space-time variation of the local Moran’s I considers temporal 
neighbors (z) at a lag of two-time steps, allowing us to evaluate the 
persistence of clusters across both space and time. We evaluate these 
results in light of several socioeconomic measures, including a social 
vulnerability index calculated by the Centers for Disease Control (CDC).5 

Results 

Once we apportioned the new daily cases to each ZIP code, we 
conducted cross-correlations between cases and wastewater loading at 
the aggregate sewershed level and at the ZIP code level. Both of these 
were performed according to the respective sewershed. When using case 
data aggregated to the sewershed level, the cross-correlations revealed a 
significant positive correlation between loading and new daily cases for 
both sewersheds (WC: r = 0.697, p-value <0.001; SAR: r = 0.648, p- 
value <0.001). Fig. 2 displays the lag time plot and correlation co-
efficients. The results indicate a significant positive correlation (p-value 
< 0.05) for all lag times (Appendix B); however, the correlation coeffi-
cient was the highest when wastewater was shifted backwards in time by 
1–2-days for WC and 1-day for SAR. Both treatment plants had a second 

local maxima in correlation coefficient when wastewater data preceded 
cases by 7- and 8-days (Fig. 2). These maxima align with previous 
findings, which reported SARS-CoV-2 trends in wastewater appearing 
2–8 days before reported COVID-19 cases (Karthikeyan et al., 2021). 

We then performed a similar cross-correlation analysis but used the 
apportioned case data for each ZIP code. Using the ZIP code as the unit 
of analysis allowed us to map the correlation value for each ZIP code and 
the lag when max synchrony occurred (Fig. 3). The results reveal vari-
ation in the strength of the correlation and the lag when the correlation 
is strongest. Overall, the correlation between wastewater loading and 
new daily reported cases for each ZIP code was generally high, with an 
average Pearson value of 0.79 (p < 0.05) and 0.85 (p<0.05) for WC and 
SAR, respectively. 

Both sewersheds share a certain degree of heterogeneity in max 
synchrony values (right panel Fig. 3). There was a more noticeable east 
to west trend associated with the max synchrony values in the WC 
compared to SAR, with the values getting smaller (less correlated) as one 
moves from the east to the west. In SAR, the synchrony values do not 
appear to show as strong of an east-west spatial trend. There are also 
several ZIP codes with low correlation values within Central Austin. This 
result is not necessarily surprising given the diurnal nature of the pop-
ulation in these areas (i.e., large daytime, commuter populations; 
smaller nighttime, residential populations) and also the high population 
of younger individuals (at UT Austin) who may have been asymptomatic 
and not tested, which may have contributed to an irregular pattern of 
wastewater loading and case reporting. 

The time lag associated with the highest correlation also varied by 
ZIP code, and interestingly, by sewershed. Recall that we lagged 
wastewater loading values against case values in 1-day intervals such 
that positive lag numbers indicate that SARS-CoV-2 wastewater loadings 
preceded COVID-19 case reporting. ZIP codes in the SAR sewershed 
generally have a shorter lag period as compared to those for the WC 
sewershed. Several ZIP codes in the SAR sewershed had a lag of 0; 
however, there were several other locations in SAR where wastewater 
loading preceded reported cases by one and four days, and one ZIP code 
where max synchrony occurred at a 13-day lag (78744). Also of note in 
the SAR sewershed were two ZIP codes with a negative lag value (78712, 
78705). A negative result indicates that COVID-19 cases precede SARS- 
CoV-2 wastewater loadings. Although this result is possible, the likeli-
hood that it is spurious increases due to these ZIP codes again being 
associated with the University of Texas at Austin which was a COVID-19 
testing hub and has a large young-adult population. 

In the WC service area, except for a few areas, most of the ZIP codes 
show a max synchrony when wastewater loading preceded positive case 
reports by seven days. The seven-day lag for WC departs from the 
aggregated analysis (Fig. 2), which found the highest correlation at a lag 
between zero and two days. That said, it should be noted that the syn-
chrony values for the 1–7 day lag calculated for each ZIP code were 
separated by roughly a few hundredths in correlation value. It is also 
worthwhile to recognize the spike in correlation at the seven-day lag 
point for the aggregate analysis in Fig. 2. This provides some support for 
the 7-day finding in the disaggregated analysis. 

Cluster analysis 

After apportioning the daily COVID-19 time-series data, we used case 
rate (cases/10,000 people) to conduct a space-time cluster analysis. The 
analysis identified which ZIP codes were associated with COVID-19 
hotspots, cold spots, and outliers as well as how long they remained 
part of each cluster throughout the study period. For illustrative 

Fig. 4. Graphical display of the spatio-temporal COVID-19 hotspot clusters for 
each ZIP code. Coloring corresponds to the amount of time that each ZIP code 
was a members of a space-time case hotspot denoted as a percent of the total 
days (320) of reported case data used in the analysis. 

5 https://www.atsdr.cdc.gov/placeandhealth/svi/index.html 
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Fig. 5. Underlying socio-demographic patterns across the Austin, TX metropolitan layer with the sewershed boundaries overlain. The diversity index (top right) 
provides an indicator of how diverse each ZIP code is with respect to the demographic makeup of the residents. Areas with higher racial and ethnic diversity receive a 
higher score while areas with more homogeneity with respect to race and ethnicity receive a lower score. Total minority population (top right) measures the size of 
the minority population within each block group. Median household income for each block group is illustrated in the bottom left, and the social vulnerability index 
(top right) provides a composite measure of vulnerability based on many variables identified as corresponding to vulnerability to exogenous shocks. 
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purposes, we focus on hotspots. Fig. 4 displays the percentage of time 
that each ZIP code was part of a hotspot cluster (if at all). 

In general, the pattern of COVID-19 hotspots follows an east to west 
trend with values high in the east and low in the west, signifying that ZIP 
codes in the east were a spatial and temporal hotspot for COVID-19 
cases. In addition, many of the ZIP codes identified as part of a 
COVID-19 hotspot for a large percentage of the study period were the 
same ZIP codes with large synchrony values illustrated in Fig. 3. 

The east-west trend in COVID-19 space-time hotspots is similar to 
several underlying socio-demographic patterns. To provide more nuance 
to these patterns, we illustrate the underlying socio-demographic pat-
terns within Austin at the block group level in Fig. 5, with the ZIP codes 
outlined in dark gray. The figure highlights the stark east-west trend for 
most of the city. ZIP codes located in East Austin have a higher level of 
diversity (racial and ethnic makeup, top left panel), have a higher 
population of minority groups (top right), and exhibit higher social 
vulnerability (bottom right) as compared to West Austin. In contrast 
high median income areas are concentrated in West and central West 
Austin (bottom left panel). We also assess the spatial distribution of the 
percentage of the working population that commutes between 25 and 
60 min for work (Appendix C) which does appear to follow a similar 
pattern to that of the synchrony values in Fig. 4. 

In addition to the visual patterns illustrated in Fig. 5, we tested the 
correlation between each ZIP code’s max synchrony value (the corre-
lation between the SARS-CoV-2 wastewater loading data and new daily 
COVID-19 cases) and several of the socioeconomic variables and time as 
a hotspot (Table 1). Simultaneous analysis of ZIP codes yields two sig-
nificant relationships where max synchrony is positively associated with 
ZIP codes that were spatial and temporal COVID-19 hotspots and the 
number of commuters. This result is partially expected, given that hot-
spots of COVID-19 are likely to be major contributors of SARS-CoV-2 
levels in the wastewater and that areas with large commuting pop-
ulations are positively associated with synchrony values, suggesting a 
relationship between commuting and viral shedding. Median household 
income, although not significant, shows only a very small correlation for 
each sewershed, although it is negative for WC (discussed in more detail 
below). 

Interestingly, although a visual comparison of the max synchrony 
values for each ZIP code (Fig. 3) and the socioeconomic variables in the 
SAR sewershed (Fig. 5) might suggest some significant correlations, 
statistical testing revealed the contrary; only one of the relationships is 

significant. Recall that in ZIP codes with greater diversity, the index 
values are higher. With growing evidence to suggest that minority 
groups are disproportionately affected of COVID-19, we expected to see 
a large positive correlation between the max synchrony value and the 
diversity and minority index. Similarly, even though median household 
income was not significantly related to max synchrony in the SAR 
sewershed, the coefficient is positive, which is also unexpected. The 
coefficient for commuting population is both positive and significant, 
providing some evidence to suggest that commercial activity, as repre-
sented by traveling to and from work, may increase exposure and 
transmissivity. 

The ZIP codes within the WC sewershed broadly exemplify what we 
expected to see across the region. Except for median household income 
(which is in the expected direction), all of the coefficients were signifi-
cant with the expected sign. Specifically, for ZIP codes in the WC sew-
ershed, those with a larger max synchrony value (more association 
between reported daily case count and wastewater loading) are posi-
tively related to the amount of time the ZIP code was a COVID-19 hot-
spot, a higher diversity index value, and a higher social vulnerability 
index value. 

Discussion 

The work presented here demonstrates how the disaggregation and 
apportioning of COVID-19 cases to smaller units of analysis can reveal 
more nuanced information regarding community spread when used in 
conjunction with the level of SARS-CoV-2 wastewater loading measured 
via RT-qPCR. Specifically, after apportioning cases to each respective 
ZIP code within the treatment plant sewershed, our analysis revealed 
that case counts for some ZIP codes follow the peaks and troughs of 
SARS-CoV-2 wastewater loading more closely than do others. When 
assessing in which ZIP codes the case counts best match the wastewater 
loading over time, we identified some spatial patterns that align with 
more vulnerable communities. We also found that by working at the ZIP 
code level rather than the aggregate sewershed area, we can forecast 
new case reports at an earlier time. Clinical testing for SARS-CoV-2 
generally happens within 3 to 9 days after symptom onset (Freeman 
et al., 2021), with viral shedding beginning before symptom onset. 
Although the aggregated ZIP code data would provide a foreshadowing 
of case reports 1–2 days in advance, the ZIP code level analysis suggests 
that some locations wastewater loading values might precede case re-
ports by 7–10 days. There are several implications of these findings 
worth further discussion. 

First, we conducted cross-correlation analyses to examine the effect 
of disaggregating case data to a smaller unit of analysis (sewershed level 
vs. ZIP code level). For both analyses, we used the ratio of structures 
within the sewershed area for each ZIP code to total structures in order 
to apportion new daily cases to each ZIP code. Both analyses found that 
SARS-CoV-2 wastewater loading increased before the reporting of 
COVID-19 cases. However, there were differing temporal lags for the 
results. Specifically, the highest lag correlation for the aggregate anal-
ysis was between 1 and 2 days, while the highest lag correlation for the 
disaggregate analysis was generally between 3 and 7 days (and earlier 
for some), depending on ZIP code. There was a noticable second spike in 
correlation values for the aggregate analysis at the 7 day mark, although 
not as strong. These results confirm that wastewater loading is a viable 
approach for surveillance but that the sewershed-level (aggregate data) 
might not provide sufficient lead time for preparedness. Thus, the use of 
disaggregate case data could be better for an early-warning system. 

Table 1 
Pearson correlation values between the max synchrony values calculated for 
each ZIP code from the correlation between wastewater loading and new daily 
cases and several socioeconomic11 indicators of interest.22   

Time as 
Hotspot 

Diversity 
Index 

Med. HH 
Inc. 

SVI Commuting 
population 

Combined 
Max 
Synchrony 

0.3143* 0.2085 0.1629 0.2426 .2828* 

SAR Max 
Synchrony 

0.3117 0.0636 0.3513 0.1086 .4109* 

WC Max 
Synchrony 

0.5528** 0.5124** − 0.2703 0.5219** .1783 

Significance 
(p-value): 
**<0.01, 
*<0.05       
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Second, many studies have documented the positive relationship 
between COVID-19 case rate and vulnerable communities (DiMaggio 
et al., 2020; Strully et al., 2021). We know that both low-income and 
minority communities have a higher chance of contracting COVID-19 
and suffering from COVID-19 related illness due to their higher expo-
sure rates. Unfortunately, it is also true that testing rates are lower in 
these communities for a variety of reasons. This analysis offers a new 
perspective on understanding the geography of community spread. 
Using temporal cross-correlation between SARS-CoV-2 wastewater 
loading and COVID-19 cases, we identified the ZIP codes with the 
highest correlation between COVID-19 loading and daily reported cases 
at the ZIP code level. Our ability to assess the strength of these corre-
lations is related to how we scaled cases. With a deeper understanding of 
these specific ZIP codes that are contributing more to the wastewater 
loading, responders can efficiently allocate human resources and 
response efforts. Moreover, a recent study has identified a link between 
the probability of contracting COVID-19 from surface water and areas 
where wastewater treatment plants (max capacity of >10,000 popula-
tion equivalents) discharge effluent (Wang et al., 2022). The approach 
taken in this study could further inform this type of surface water 
analysis by comparing where wastewater treatment plants are dis-
charging effluent and the case rates of the surrounding communities. 
This would be especially important for understanding whether vulner-
able groups were disproportionately exposed to COVID-19 via waste-
water treatment discharge. 

Third, an important finding from this analysis was the lack of evi-
dence (at the aggregate level) pointing to a correlation between COVID- 
19 cases in majority-minority communities and wastewater loading. It 
was only after we investigated the ZIP codes within respective sew-
ersheds that the results matched our expectations. Still, only one of the 
sewersheds (WC) showed a significant correlation between max syn-
chrony and the socioeconomic variables. These same relationships were 
not significant for the SAR sewershed or the region more broadly. One 
explanation for this result concerns the geographic concentration of 
minority communities in Austin. Comparing the distribution of the mi-
nority population and diversity scores at the block group level in Fig. 5 
to the distribution of synchrony values in Fig. 4, two important points 
are revealed. First, in SAR, the concentration of minority groups within 
any single ZIP code is not as high compared to WC. Second, the max 
synchrony values associated with each ZIP code in SAR are compara-
tively dispersed. While there does appear to be a correlation between 
minority groups in WC, the case data reported at the ZIP code level does 
not provide us with enough granularity to determine whether the same 
is true in SAR. This is the likely reason why the SAR correlations in 
Table 1 are neither significant nor in the expected direction. That said, it 
is worthwhile to remember that without disaggregating the data and 
analyzing these relationships at the ZIP code level, we would not have 
been able to say anything regarding specific relationships between 
vulnerable communities, COVID-19 loading, and daily reported cases. 
As a result, the approach of case disaggregation for sewershed analyses 
still shows promise as a mechanism for more granular hotspot moni-
toring, preparedness, and mitigation decisions. 

Limitations and future directions 

One limitation of this work is related to the reporting of COVID-19 
cases, where cases are added to the count on the COVID-19 dashboard 
on the date that test results become available rather than being added to 
the count on the date that the specimen was collected; thus, the vari-
ability with respect to the length of time for analyzing the clinical 
sample could affect the strength of the correlation analysis performed 
herein. Where the lag times are concerned, we cannot say for certain 
why we see some variation in the peak correlation time between 
wastewater loading and case reports. It may have something to do with 
the distance that each ZIP code is to the treatment plant but would need 
more data to be sure. This is a valuable avenue for future research as it 
may help disentangle when and to what extent specific communities are 
experiencing an outbreak. Another limitation of this work is the fre-
quency of wastewater testing (two samples per week at SAR and three 
samples per week at WC). We also recognize that wastewater monitoring 
is not available nor feasible in all parts of the world, and thus there are 
some limitations for the generalizability of the approach detailed here. 
To that extent, researchers should focus on where and how to place 
sensors within informal sewer systems (those without a treatment plant) 
in order to gain insight in to where and to what extent COVID-19 is 
prevalent in these communities 

It is also important to recognize the general pattern uncovered in this 
analysis compared to the location of treatment plants. With the general 
east-to-west trend of max synchrony values between SARS-CoV-2 
wastewater loading and new daily cases and the treatment plants’ 
location in East Austin, we cannot rule out the possibility that proximity 
to treatment plants had something to do with the ZIP codes that had the 
highest correspondence between cases and wastewater loading. Once 
SARS-CoV-2 enters the sewer system, it begins to degrade (Li et al., 
2021); more work is required to understand the effect of signal decay 
and distance to a treatment plant. 
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Appendix   

B: Correlation coefficients between for each lag period when comparing the aggregate new daily reported cases and SARS-CoV2 wastewater 
loading.    

SAR WC 
Lag Pearson Coefficient Pearson Coefficient 
0 0.6481** 0.6972** 
1 0.8424** 0.6817** 
2 0.4129* 0.6988** 
3 0.5790** 0.5359** 
4 0.5528** 0.3965** 
5 0.6966** 0.3513** 
6 0.6139** 0.4594** 
7 0.7741** 0.5402** 
8 0.7636** 0.5049** 
9 0.6580** 0.4975** 
10 0.5968** 0.4622** 
Significance (p-value):*<0.05, **<0.01      

Appendix A: Measured SARS-CoV-2 wastewater loading values overtime for each sewershed treatment plant.  
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