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Inflation of test accuracy due to 
data leakage in deep learning-
based classification of OCT images
Iulian Emil Tampu  1,2 ✉, Anders Eklund  1,2,3 & Neda Haj-Hosseini  1,2

In the application of deep learning on optical coherence tomography (OCT) data, it is common to 
train classification networks using 2D images originating from volumetric data. Given the micrometer 
resolution of OCT systems, consecutive images are often very similar in both visible structures and 
noise. Thus, an inappropriate data split can result in overlap between the training and testing sets, with 
a large portion of the literature overlooking this aspect. In this study, the effect of improper dataset 
splitting on model evaluation is demonstrated for three classification tasks using three OCT open-access 
datasets extensively used, Kermany’s and Srinivasan’s ophthalmology datasets, and AIIMS breast 
tissue dataset. Results show that the classification performance is inflated by 0.07 up to 0.43 in terms 
of Matthews Correlation Coefficient (accuracy: 5% to 30%) for models tested on datasets with improper 
splitting, highlighting the considerable effect of dataset handling on model evaluation. This study 
intends to raise awareness on the importance of dataset splitting given the increased research interest 
in implementing deep learning on OCT data.

Introduction
The evaluation of deep learning models, and machine learning methods in general, aims at providing an unbi-
ased description of model performance. Given a pool of data suitable for studying a hypothesis (e.g., classifica-
tion, regression or segmentation), different splits of the data are commonly created for model training, model 
hyper-parameter tuning (validation set) and model assessment (testing set). This translates to having a part of 
the data used to fit model parameters and tune model hyperparameters, and another set to assess model gener-
alization on unseen data1. Disregarding the choice of having separate validation and testing splits2, the strategy 
used to generate the testing set from the original pool of data can have a large impact on the assessment of 
the model’s final performance. Several studies have investigated the effect of the relative size between training, 
validation and/or testing sets1,3 on model performance, as well as how training and validation sets can be used 
via resampling techniques, such as cross-validation, during model training1,4. More importantly, it is widely 
accepted that no overlap should exist between the samples used for model fitting and hyperparameter tuning, 
and those belonging to the testing set. If overlap is present, the model performance will be biased and uninform-
ative with respect to the generalization capabilities of the model to new samples. However, although trivial, when 
implementing data splitting strategies, the overlap between training and testing sets can be easily overlooked. 
This is specifically more common in those applications where, due to hardware limitations or model design 
choices, the data from one subject (or acquisition) is used to obtain multiple dimensionally smaller samples used 
for model training and testing. An example of such a scenario is the slicing of a 3D volume into 2D images. In 
these cases, the overlap between training and testing sets results from having 2D images from the same subject 
(or acquisition) belonging to both sets. A proper splitting must therefore be performed on the volume or subject 
level and not on the slice level.

Nowadays, machine learning methods, especially convolutional neural networks (CNNs) and deep learning 
algorithms, are widely used in research to analyze medical image data. A plethora of publications describe CNN 
implementations on a variety of both 2D and 3D medical data5–7. Reliable evaluation of such methods is para-
mount since this informs the research community on the models’ performance, allows meaningful comparison 
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between methods, and to a greater extent indicates which research questions might be worth further investiga-
tion. In this regard, many medical image analysis challenges were established that aim at providing an unbiased 
platform for the evaluation and ranking of different methods on a common and standard testing dataset. Despite 
the many limitations of the medical image analysis challenges, including missing information regarding how 
the ground truth was obtained, their contribution towards a more transparent and reliable evaluation of deep 
learning methods for medical image applications is valuable8.

However, not all implementations can be evaluated through dedicated challenges and unbiased datasets. 
Thus, when such third-party evaluation platforms are not available, it is the responsibility of the researchers per-
forming the investigation to evaluate their methods thoroughly. As for the case of many of the reviewed medical 
image analysis challenges8, one aspect that is sometimes missing or not well described is how the testing dataset 
is generated from the original pool of data. Moreover, there are examples where the preparation of the testing 
dataset was described, but its overlap with the training set was not considered9–13, undermining the reliability 
of the reported results. Focusing on deep-learning applications for OCT, depending on the acquisition set-up, 
volumes are usually acquired with micrometer resolution in the x, y and z directions in a restricted field of view, 
with tissue structures that are alike and affected by similar noise. This results in consecutive slices having a high 
similarity, in both structure and noise. Figure 1 shows a schematic of an OCT volume along with examples of 
two consecutive slices from OCT volumes from three open-access datasets14–16.

Most of the reviewed literature implementing deep learning on OCT data used 2D images from scanned 
volumes, where two methods were commonly used to split the pool of image data into training and testing sets: 
per-image or per-volume/subject splitting (Table 1). In the per-volume/subject splitting approach, the random 
selection of data for the testing set is done on the volumes (or subjects) ensuring that images from one volume 
(or subject) belong to either one of the training or testing sets. It is important to notice that even a per-volume 
split might not be enough to avoid overlap between the training and testing set. In fact, if multiple volumes are 
acquired from the same tissue region, the tissue structures will be very similar among the volumes. In such 
scenarios, a per-subject split is more appropriate. Overall, assuming that volumes are acquired from different 
tissue regions, splitting the dataset per-volume or per-subject (here called per-volume/subject) ensures that overlap 

Fig. 1 Schematic of an OCT volume with examples of consecutive slices (b-scans) from the three open-access 
OCT datasets used in this study. In (a) consecutive 2D b-scans rendering a 3D OCT volume are pictured. Here 
an example from the AIIMS dataset14 is used for illustrative purposes. In (b) the consecutive b-scans separated 
by ~18 micrometers are examples of healthy breast tissue (Patient 15, volume 0046, slices 0075 and 0076) from 
the AIIMS dataset14. In (c) images of healthy retina from Srinivasan’s dataset16 (folder NORMAL5 slices 032 and 
033) can be seen. In (d) consecutive images of retina affected by choroidal neovascularization (CNV 81630-33 
and 81630-34) from the Kermany’s OCT2017 version 2 dataset15 are shown. Note that the b-scans from both 
Kermany’s and Srinivasan’s datasets are given with data augmentation originally applied.
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between training and testing is not present. In the per-image approach, 2D images belonging to the same volume 
are considered independent: thus, the testing set is created by random selection from the pool of images without 
considering that images from the same volume (or subject) might end up in both the training and testing sets. 
Even if this approach clearly results in an overlap between the testing and training sets, several of reviewed studies 
as well as an earlier version of one of the most downloaded open-access OCT datasets employed a per-image split.

The aim of this study is to demonstrate the effect of improper dataset splitting (per-image) on model evalua-
tion using three open-access OCT datasets, AIIMS14, Srinivasan’s16 and Kermany’s OCT2017 (version 2 and 3)15.  
These were selected among the other open-access datasets for several reasons: (1) they are examples of OCT 
medical images belonging to different medical disciplines (ophthalmology and breast oncology) and showing 
different tissue structures and textures, (2) they are used in literature to evaluate deep learning-based classi-
fication of OCT images, with Kermany’s dataset15 extensively used for developing deep learning methods in 
ophthalmology (over 14,500 downloads)17, and (3) the datasets are provided in two different ways, subject-wise 
for the AIIMS and Srinivasan’s datasets, and already split for both versions of the Kermany’s datasets. The latter 
is an important aspect to consider since many of the studies using Kermany’s version 2 dataset overlooked the 
overlap between the training and the testing data.

Results
LightOCT model classification performance on the three datasets and for the different dataset split strategies 
is summarized in Table 2, with results presented as mean ± standard deviation (m ± std) over the ten-times 
repeated five-fold cross validation. In addition, Fig. 2 shows the Matthews Correlation Coefficient (MCC) distri-
bution as box plots. For all datasets, the per-image split strategy results in a higher model performance compared 
to the per-volume/subject strategy. Looking at both the AIIMS and Srinivasan’s datasets, a model trained using 
a per-image strategy had a higher mean MCC by 0.08 and 0.43, respectively, compared to the one trained on a 
per-volume/subject split. A similar trend can be seen for both versions of Kermany’s dataset, with an increase in 
mean MCC by 0.12 and 0.07 for version 2 and version 3, respectively, when shifting from a per-volume/subject 
to a per-image split strategy. Moreover, results on the original splits for both versions of Kermany’s dataset are 
higher compared to the corresponding per-volume/subject splits, with a difference in MCC of 0.30 and 0.04 for 
the version 2 and version 3 datasets, respectively.

Results on the random label experiments show that, for the original Kermany version 2 dataset, the obtained 
p-value was 0.071, with the high MCC for random labels indicating a probable data leakage. For the other data-
sets, the p-values were much larger. We conclude that using random labels during training can potentially be a 
way to automatically detect data leakage, but that it requires further research.

Ref. OCT dataset Data split strategy Model performance on testing set
9 Thyroid, parathyroid, fat and muscle samples per-image 97.12% accuracy
35 Pituitary adenoma per-image 0.96 AUC
18 Ophthalmology15* (version 2) original split 95.55% accuracy
19 Ophthalmology15* (version 2) original split 99.1% accuracy
21 Ophthalmology15* (version 3) original split 98.7% accuracy
22 Ophthalmology15* (version 3) original split 96.6% accuracy
27 Ophthalmology15* (train version 2, test version 3) original split 99.6% accuracy

23 (1) Ophthalmology15* (train version 2, test version 
3) (2) Ophthalmology16*

(1) original split
(2) per-volume/subject

(1) 99.80% accuracy
(2) 100% accuracy

36 Coronary artery per-volume/subject 96.05% accuracy
37 Kidney† per-volume/subject 82.6% accuracy
38 High and low grade brain tumors per-volume/subject 97% accuracy
39 Colon**† per-volume/subject 88.95% accuracy on 2D images
40 Breast tissue per-volume/subject 91.7% specificity
20 Ophthalmology15* (version 2) per-volume/subject 98.46% accuracy

10
(1) Ophthalmology15* (version 3)
(2) Ophthalmology16*
(3) Breast tissue14*

(1) original split  
(2) per-volume/subject  
(3) per-image

(1) ~96% accuracy
(2) >98.8% accuracy
(3) 98.8% accuracy

24

(1) Ophthalmology16*
(2) Ophthalmology41*
(3) Ophthalmology42*
(4) Ophthalmology15* (unclear version)

(1) per-volume/subject
(2) per-volume/subject
(3) per-volume/subject
(4) original split

(1) 96.66% accuracy
(2) 98.97% accuracy
(3) 99.74% accuracy
(4) 99.78% accuracy

43 Dentistry No description given 98% sensitivity 100% specificity
44 Ophthalmology No description given 99.19% accuracy

Table 1. Summary of reviewed literature with a focus on dataset split and reported test classification 
performance. Open-access datasets and the ones available upon request are marked by * and **, respectively. 
The dataset is not open-access if not specified. Datasets obtained from animal model samples are marked by †.  
The difference in performance between studies using the same datasets results from the different methods 
implemented.
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Discussion
Dataset split should be carefully designed to avoid overlap between training and testing sets. Table 1 summa-
rizes several studies on deep learning applications for OCT data, specifying the described data split strategy. 
All the works using a per-image split strategy or the original split from both versions of Kermany’s dataset 
reported accuracies >95%. The results obtained on Kermany’s original_v2 split are in accordance with reported 
accuracy18–20, where the differences in performance can be attributed to the deep learning model used and its 
optimization. However, results on the third version of the dataset were much lower compared to those in litera-
ture10,21,22, even when using the same model architecture, loss and optimizer10. Interestingly, Table 1 also shows 
that studies using multiple datasets and reporting different split strategies for each dataset10,23,24, report as high 
accuracy on the per-volume/subject split datasets as the one on the original_v2 or the per-image split datasets. 
Moreover, the drop in MCC seen when using Kermany’s original_v2 compared to the original_v3 split, high-
lights the inflation effect that leakage between training and testing data has on model performance, especially 
when the original_v2 shows to have 92% overlap between training and testing sets while original_v3 has none. In 
the light of our results, it is reasonable to question whether the high performances reported for the per-volume/
subject split datasets reflect the true high performance of the implemented methods, or are examples of inflated 
accuracy values due to data leakage between training and testing sets.

The difference in the effect of data leakage between datasets can be attributed to two reasons: (1) the way the 
dataset is provided for download and (2) the classification task that the model needs to learn. Firstly, Kermany’s 
dataset is provided already split in training, testing and validation sets (version 2 of the dataset), with over-
lap at both subject-ID level and at image level. Thus, using the original_v2 dataset as provided, highly inflates 
the model performance, with a drop in performance seen when using a per-image split (overlap only on a 
subject-ID level not on an image level) and an even larger decrease in the case of the appropriate split. AIIMS 

Dataset Split strategy
MCC [−1, 1] 
(m ± std)

AUC [0,1] 
(m ± std)

F1-score [0,1] 
(m ± std)

Accuracy [0,1] 
(m ± std)

Precision [0,1] 
(m ± std)

Recall [0,1] 
(m ± std)

AIIMS14
per-image 0.958 ± 0.038 1.000 ± 0.000 0.978 ± 0.021 0.978 ± 0.021 1.000 ± 0.000 0.978 ± 0.021

per-volume/subject 0.881 ± 0.102 0.996 ± 0.009 0.934 ± 0.063 0.935 ± 0.060 0.993 ± 0.014 0.935 ± 0.060

Srinivasan16
per-image 0.853 ± 0.039 0.985 ± 0.005 0.898 ± 0.030 0.899 ± 0.029 0.973 ± 0.009 0.899 ± 0.029

per-volume/subject 0.426 ± 0.116 0.817 ± 0.055 0.593 ± 0.088 0.603 ± 0.078 0.702 ± 0.078 0.603 ± 0.078

Kermany15 
version 2

original_v2 0.886 0.993 0.909 0.911 0.983 0.911

per-image 0.707 ± 0.021 0.953 ± 0.003 0.764 ± 0.022 0.770 ± 0.019 0.886 ± 0.007 0.770 ± 0.019

per-volume/subject 0.588 ± 0.025 0.890 ± 0.006 0.644 ± 0.033 0.669 ± 0.023 0.769 ± 0.012 0.669 ± 0.023

Kermany15 
version 3

original_v3 0.644 0.964 0.678 0.704 0.916 0.704

per-image 0.673 ± 0.021 0.950 ± 0.003 0.729 ± 0.022 0.738 ± 0.019 0.886 ± 0.007 0.738 ± 0.019

per-volume/subject 0.600 ± 0.021 0.911 ± 0.006 0.651 ± 0.028 0.671 ± 0.021 0.795 ± 0.012 0.671 ± 0.021

Table 2. LightOCT model performance on the AIIMS14, Srinivasan’s16 and Kermany’s15 datasets with training, 
validation and testing sets split using different strategies. Performance metrics are reported as mean ± standard 
deviation (m ± std) over the models trained through ten-times repeated five-fold cross validation and classes, 
for the per-image and per-volume/subject splits. For the original splits given by Kermany, results are reported for 
the single given split. AUC: area under the receiver operating characteristic curve, MCC: Matthews Correlation 
Coefficient.

Fig. 2 Comparison between Matthews Correlation Coefficient for LightOCT model trained on different dataset 
split strategies. Each box plot summarizes the test MCC for the 50 models trained through a ten-times repeated 
five-fold cross validation. Results are presented for all the four datasets with the per-image split strategy shown 
in striped-green and per-volume/subject split strategy in dotted-orange. For Kermany’s datasets, the result of 
the models trained on the original_v2 and original_v3 splits are shown as full-black circle and full-black cross, 
respectively. Outliers are shown as diamond (♦).

https://doi.org/10.1038/s41597-022-01618-6


5Scientific Data |           (2022) 9:580  | https://doi.org/10.1038/s41597-022-01618-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

and Srinivasan’s datasets are provided with data from each subject saved independently, with split being per-
formed in the reviewed studies using a per-image or per-subject/volume strategy (see Table 1). Thus, for these 
datasets the effect of inflation was measured with respect to the overlap in subject-IDs between the training and 
testing sets, and not with respect to having the exact same image in both sets. Disregarding the way the datasets 
are provided, the second reason for which the effect of data leakage was different between the datasets could be 
attributed to the difficulty of the classification task. Looking at the results for the proper split, the model per-
formance on AIIMS dataset was higher compared to the one for Kermany’s dataset, suggesting that the binary 
classification between cancer and normal breast tissue was easier compared to the four-class classification for 
Kermany’s dataset. When improperly splitting the data, the advantage given to the model in classifying the test 
data by training on samples in the testing set had a smaller impact on AIIMS dataset than for Kermany’s since 
the classification task was easier. However, it is not trivial what task can be considered easy since this is influ-
enced by a multitude of factors, including data, model architecture, and model optimization.

This study is limited in investigating only data leakage originating from the overlap between the training and 
testing sets. However, there are other sources of data leakage stemming from hyper-parameter optimization, 
data normalization, and data augmentation. During hyper-parameter optimization, model parameters as well as 
training strategies should not be tuned based on test performance. Similarly, in the case of data normalization, 
statistics such as mean and variance used for the normalization should only be computed on the training set, and 
not the entire dataset. Failing to do so results in biasing method design choices with information obtained from 
the testing set, thus compromising the evaluation of model generalization to new data. Finally, in leakage due to 
data augmentation, an image could be augmented multiple times, with its different augmented versions ending 
up in the training and testing set. This results in a data overlap similar to the one of a per-image split strategy, 
where images with the same structures and noise properties are in both training and testing sets. Both original 
splits in the Kermany and Srinivasan’s datasets are provided with images already augmented; however, overlap 
between training and testing with respect to data augmentation was not investigated in this work.

In conclusion, the dataset split strategy that is used can have a substantial impact on the evaluation of 
deep learning models. In this paper, it is demonstrated that, in OCT image classification applications specif-
ically, a per-image split strategy of the volumetric data adopted by a considerable number of studies, returns 
over-optimistic results on model performance and an inflation of test performance values. This calls into ques-
tion the reliability of the assessments and hindering an objective comparison between research outcomes. This 
problem has also been demonstrated in 3D magnetic resonance (MR) imaging studies13 and in digital pathol-
ogy25, where data leakage between the training and testing sets resulted in over-optimistic classification accuracy 
(>29% slide level classification accuracy in MR studies and up to 41% higher accuracy in digital pathology). 
Moreover, greater attention should be paid to the structure of datasets made available to the research community 
to avoid biasing the evaluation of different methods and undermining the usefulness of open-access datasets. 
With the increased interest of the research community in the use of deep learning methods for OCT image 
analysis, this study intends to raise awareness on a trivial but overlooked problem that can spoil research efforts 
if not addressed correctly.

Methods
Dataset description. AIIMS dataset. The AIIMS dataset is a collection of 18480 2D OCT images of 
healthy (n = 9450) and cancerous (n = 9030) breast tissue14. The images are obtained from volumetric acqui-
sitions and are provided as BMP files of size 245 × 442 pixels organized per-class and per-subject (22 cancer 
subjects and 23 healthy subjects).

Srinivasan’s dataset. The Srinivasan’s ophthalmology dataset16 collects a total of 3,231 2D OCT images of 
age-related macular degeneration (AMD), diabetic macular edema (DME), and normal subjects. For each class, 
data from 15 subjects is provided in independent folders. OCT images are given as TIFF files with 512 × 496 
pixels saved after data augmentation (rotation and horizontal flip).

Kermany’s dataset. The Kermany’s ophthalmology dataset15,22 is one of the largest open-access ophthalmology 
datasets26 and is used by an extensive number of studies (see Table 1). The dataset contains images from 5319 
patients (train = 4686, test = 633) for retina affected by choroidal neovascularization (CNV), diabetic macular 
edema (DME), and drusen as well as from normal retina. The dataset is available in different versions with ver-
sion 2 and version 3 (latest) both used in literature. The difference between the dataset versions is threefold: (1) 
the total number of available images and their organization, (2) the number of images in the given testing set and 
(3) the extent of data overlap between the given training and testing sets. For both dataset versions, images are 
given as JPEG files of sizes ranging [384 to 1536] × [496 to 512] pixels saved after data augmentation (rotation 
and horizontal flip). The version 2 of the dataset is provided with splits for training (n = 83484 images), valida-
tion (n = 32 images), and testing sets (n = 968 images), with validation and testing sets balanced with respect 
to the classes. The version 3 of the dataset is given with training (n = 108312) and testing (n = 1000, balanced 
between the four classes). In this study, the given splits are referred to as original_v2 and original_v3 splits, for 
version 2 and version 3 of the dataset, respectively. For both versions of the dataset, there is no specification on 
if the split between sets is performed before or after data augmentation as well as if the split in training and test-
ing sets was performed per-image or per-volume/subject. By performing an automatic check on the original_v2 
split (assuming that the naming convention is CLASS_subject-ID_bscan-ID), it was found that 92% of the test 
images belong to subject-IDs also found in the training set. Moreover, by visually inspecting the given splits it 
was possible to identify images in the testing set that were similar to the training set (an example of such a case 
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is training image = DRUSEN-8086850-6, testing image = DRUSEN-8086850-1). When performing the same 
automatic check on the original_v3 split, no overlap between subject-IDs was found. In Table 1 it is specified 
which version of Kermany’s dataset was used by the different studies. Among these, two studies used a mixture 
of both datasets23,27.

Dataset split. For all datasets, a custom split function was implemented to split the dataset per-image or 
per-volume. In either case, 1000 images from every class were assigned for testing in the case of Kermany’s and 
the AIIMS datasets. For the Srinivasan’s dataset, 250 images were selected for testing instead, given the smaller 
number of total images. Example images from AIIMS, Srinivasan’s and Kermany’s version 2 datasets are shown 
in Fig. 1b–d, respectively.

Model architecture and training strategy. The LightOCT model proposed by Butola et al.10 was used 
in this study. LightOCT is a custom, shallow and multi-purpose network for OCT image classification composed 
of a two-layer CNN encoder, and one fully connected layer with softmax activation as output layer. The first and 
second convolutional layers have 8 and 32 convolutional filters, respectively. The kernel size of the filters in both 
layers is set to 5 × 5 and the output of each layer passes through a ReLU activation function10. A max-pooling 
operation is present between the first and the second convolutional layer that cuts the spatial dimension of the 
output of the first layer in half. The two-dimensional output of the CNN encoder is then flattened to a one dimen-
sional vector, which is fed to the fully connected layer for classification. The number of nodes in the fully con-
nected layer is changed based on the number of classes specified by the classification task10.

For all of the classification tasks, the model was trained from scratch using stochastic gradient descent with 
momentum (m = 0.9) with a constant learning rate (lr = 0.0001). For all experiments, the batch size was set to 
64 and the model was trained for 250 epochs without early stopping. Note that model architecture and training 
hyperparameters were not optimized for each dataset since it was out of the scope of this work. The model archi-
tecture as well as the training hyperparameters were chosen based on the results of Butola et al.10 The model and 
the training routine were implemented in Tensorflow 2.6.2, and training was run on a computer with a 20-core 
CPU and 4 NVIDIA Tesla V100 GPUs.

Evaluation metrics. Models were trained on the original splits, if available, and on training and testing splits 
obtained using a per-image and per-volume/subject strategy. A ten-times repeated five-fold cross validation was 
run for both split strategies to ensure reliability of the presented results28. A multi-class confusion matrix was used 
to evaluate the classification performance of the model with Matthews Correlation Coefficient (MCC) obtained 
as a derived metric coherent with respect to class imbalance and stable to label randomization29–31. Accuracy, 
precision, recall and F1-score were also derived for each class using the definitions provided by Sokolova et al.32 
to allow comparison with previous studies. Additionally, receiver operator characteristic (ROC) curves were used 
along with the respective area under the curve (AUC). In an attempt to automatically detect bias due to data 
overlap, a random label experiment was carried out, where random labels were used for training a classifier and 
MCC was calculated on the test set (with original labels). To determine if the obtained MCC value was within the 
expected range, a null distribution was created for each dataset by creating 10000 test labels and prediction sets 
(also in this case random labels were used to simulate the random distribution) and calculating MCC for each 
of them. The MCC values obtained from the models trained using random labels on the different data splits (for 
which some have overlap) were compared to the respective null distribution (built without overlap) to calculate 
p-values using the one-sample Wilcoxon test (two-tailed).

Data availability
The datasets used in this study are open-access, with the AIIMS dataset14 available at https://www.bioailab.
org/datasets, Srinivasan’s at https://people.duke.edu/~sf59/Srinivasan_BOE_2014_dataset.htm, Kermany’s 
OCT201715 version 2 at  Mendeley33 https://data.mendeley.com/datasets/rscbjbr9sj/2 and version 3 
also at Mendeley34 https://data.mendeley.com/datasets/rscbjbr9sj/3.

Code availability
The code used to generate the results in this paper is available at https://github.com/IulianEmilTampu/SPLIT_
PROPERLY_OCT_DATA.git.
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