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Numerous EEG-based brain-computer interface (BCI) systems that are being developed focus on novel feature extraction
algorithms, classification methods and combining existing approaches to create hybrid BCIs. Several recent studies demonstrated
various advantages of hybrid BCI systems in terms of an improved accuracy or number of commands available for the user. But
still, BCI systems are far from realization for daily use. Having high performance with less number of channels is one of the
challenging issues that persists, especially with hybrid BCI systems, where multiple channels are necessary to record information
from two or more EEG signal components. Therefore, this work proposes a single-channel (C3 or C4) hybrid BCI system that
combines motor imagery (MI) and steady-state visually evoked potential (SSVEP) approaches. This study demonstrates that
besides MI features, SSVEP features can also be captured from C3 or C4 channel. The results show that due to rich feature
information (MI and SSVEP) at these channels, the proposed hybrid BCI system outperforms both MI- and SSVEP-based
systems having an average classification accuracy of 85.6± 7.7% in a two-class task.

1. Introduction

A brain-computer interface (BCI) establishes a human-to-
device communication channel by translating the brain
signals into machine codes to control external devices or
applications [1, 2]. Over the decade, unprecedented advances
were made in the field of BCI trying to bring laboratory stud-
ies to real-world applications [3]. Numerous techniques for
feature extraction methods [4–6], classification algorithms
[7, 8], and experimental paradigms [9, 10] have been devel-
oped. The majority of these systems were based on a single
modality of EEG, that is, they either use motor imagery
(MI) [9], P300 [10], or steady-state visually evoked potential
(SSVEP) [11]. Recently, hybrid BCI systems started gaining
importance due to their promising benefits in terms of classi-
fication accuracy or the number of user commands available
for the user [12, 13]. A hybrid BCI system is a combination of
a primary BCI system with another communication channel,

which can be a BCI or another system based on a physiolog-
ical signal recognition like electromyography (EMG) and
electrooculography (EOG). Examples of EEG-based hybrid
BCI systems include MI+ SSVEP [14–17], SSVEP+P300
[18, 19], and SSVEP+EMG [20]. It has been shown that it
is even possible to create a vision-independent hybrid BCI
system combining an auditory and tactile P300 recognition
[21]. In this study, we focus on technological progression of
a hybrid BCI system using MI and SSVEP.

Although SSVEP is an efficient BCI method with a variety
of applications, adding MI features is a convenient way to
improve it, since an implementation of MI does not require
providing of any additional visual stimulus to the operator,
just a cognitive task. In recent years, a few studies made a
significant contribution towards the hybrid BCI develop-
ments combining MI and SSVEP: a five-channel hybrid sys-
tem utilized C3, Cz, C4, O1, and O2 channels [22], and a
four-channel hybrid system utilized C3, C4, O1, and O2
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[23]. The choice of both central and occipital regions is based
on the fact that EEG signals from the motor and visual corti-
ces have to be processed to extract MI and SSVEP features,
respectively. Despite their high accuracy and no need for spe-
cial training, SSVEP-based BCI systems are strongly limited
to the need for the placement of EEG electrodes in the occip-
ital area, which can be problematic in some real cases. For
example, it may happen if a BCI operator is lying face up, sits
in a seat with a headrest, or the used EEG system simply does
not have electrodes in the occipital area. It has been shown
that it is possible to measure SSVEP signal even from non-
hair-bearing areas [24], but the degraded signal-to-noise
ratio can be an obstacle for the development of an accurate
BCI. In our previous work, we demonstrated that SSVEP
information could also be extracted from central EEG chan-
nels [25, 26] and addition of MI features was an effective way
to compensate the declined SSVEP performance [27]. As it is
important to obtain good BCI accuracy, it is also necessary to
have a few channel systems for practical use depending on
the application. It has been demonstrated that MI-related
features can be extracted from a single EEG channel using
short-time Fourier transform (STFT) and common spatial
pattern (CSP) [28].

With these developments, this work aims to develop a
hybrid BCI system by adopting a combination of MI and
SSVEP using a single channel from the central region
(either C3 or C4). For EEG recording, subjects were asked
to perform three different tasks, namely, (1) right hand
(RH) and left hand (LH) MI, (2) visually focus on 15Hz
or 20Hz SSVEP flicker, and (3) perform MI and SSVEP
simultaneously. Due to the presence of both MI’s event-
related desynchronisation (ERD) feature and SSVEP’s
prominent peak at the flicker frequency, the hybrid BCI is
expected to show better performance in comparison with
a single mode BCI. Details of the experimental design are
further discussed in Section 2. In the proposed single-
channel system, we applied the short-time Fourier trans-
form (STFT) and common frequency pattern (CFP) method
for feature extraction. Linear discriminant classifier (LDC)
was used to estimate the classification accuracy. Results

show that due to the rich of feature information from
central channels in the hybrid condition, the proposed
hybrid BCI system can achieve high classification accuracy
of 85% utilizing a single EEG channel. See Section 3 for
more details on the results.

2. Materials and Methods

2.1. Participants. Seventeen subjects (12 male, age: 23.1± 2.6
years) with no history of any health ailments were recruited
for this study. All the subjects have normal or corrected
to normal vision. Each participant was informed of the
experimental procedure, and a written consent form was
taken. All the participants had no prior experience with
BCI. The experiment was performed in accordance with
the country’s laws and approved by the institutional review
board (IRB) of the National Chiao Tung University
(NCTU), Hsinchu, Taiwan.

2.2. Experiment Paradigm. During the experiment, each of
the participants of this study was seated in a comfortable
position and performed three different tasks as follows:

(1) MI task: This task consists of two classes, left hand-
and right hand-imagined movements. After initial
training, three sessions of MI data were recorded. In
each session, 15 trials per class were recorded.
Combining three sessions, this task comprises of 45
trials per class. See Figure 1(a) for the paradigm
overview of this task. For MI stimulus, a left cue was
presented as an indication for the subject to perform
the left handMI and a right cue for the right handMI.

(2) SSVEP task: In this task, the subjects were asked to
focus visually on a flickering black/white stimulus
presented on the screen (21″LCD, 60Hz refresh rate,
1920× 1080 screen resolution). The frequencies used
for the stimulus presentation were 15Hz and 20Hz
(see Figure 1(b)). Three sessions of SSVEP data
were recorded, with each session containing 10 trials
per class.

0 s 2 s 4 s 8 s

Blank Fixation MI cue

OR

(a)

0 s 2 s 4 s 8 s

SSVEP cue

OR

(b)

0 s 2 s 4 s 8 s

MI + SSVEP cue

OR

(c)

Figure 1: The experimental paradigm for (a) MI task, (b) SSVEP task, and (c) hybrid (MI + SSVEP) task. Only one visual target appeared on
the screen in a single trial. The gray boxes represent 20Hz (light gray, left) and 15Hz (dark gray, right) flickering black/white stimuli for
SSVEP induction. The subjects were instructed to perform the tasks constantly while the cues were displayed.
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(3) Hybrid task: In this task, the subjects were instructed
to focus visually on the flickering SSVEP stimulus
and simultaneously perform the right hand (RH)
MI or the left hand (LH) MI. The two classes include
the following: (1) RH-MI+ 15Hz-SSVEP and (2)
LH-MI+ 20Hz-SSVEP. See Figure 1(c) for the over-
view of this task. A left cue was presented (which
was programmed to flicker at 20Hz) to indicate to
the user to perform LH MI and fixate on the flicker.
Similarly, a right cue (flickering at 15Hz) indicated
to the users to perform RH MI and fixate on the
stimulus. Three sessions of hybrid task were recoded
for each subject, with each session comprising 15
trials per class.

All the above tasks followed the similar procedure with a
blank for 2 seconds, then a fixation (indicated by plus sign)
for 2 seconds, and a stimulus cue for 4 seconds. The subjects
were asked to perform a task during the entire duration of
the cue display. No feedback was provided to the subjects
during the experiment, and all analyses were done offline.
Each subject performed the three above-mentioned tasks
in a random order.

2.3. Data Acquisition and Preprocessing. A 32-channel (with
EEG electrodes placed according to the 10–20 international
system, see Figure 2) system fromNeuroscan was used in this
study for EEG recording. The data were acquired at a sam-
pling rate of 500Hz, and the impedances of all the channels
were kept below 5 kΩ. All the preprocessing and analysis
steps were done offline in MATLAB 2014b and using
EEGLAB [29], a MATLAB toolbox for EEG data process-
ing. The recorded EEG data were filtered using a 1~50Hz
bandpass filter to remove power line noise (60Hz) and other
high-frequency noises. And then, epochs were extracted for
further analysis.

2.4. Short-Time Fourier Transform (STFT). STFT divides a
signal (channel data) into many segments and then computes
the Fourier transform for each segment individually. With
STFT, the time series signal from an EEG channel was trans-
formed into time-frequency domain with a window segment
size of 500ms and an overlap of 250ms. MATLAB function
spectrogram from signal processing toolbox was used for
implementing the STFT.

2.5. Common Frequency Pattern (CFP). Common spatial pat-
tern or CSP is a well-known algorithm for MI feature extrac-
tion [30]. CSP finds an optimal spatial pattern from the time
series EEG signal, and these spatial patterns are responsible
for distinguishing two classes. Similar to CSP, CFP focuses
on optimal frequency bands for distinguishing the two
classes based on the frequency domain data [26, 31]. In our
previous work, we have implemented CFP taking power
spectrum (PSD) as the input [25, 26]. Normally, the PSD
obtained from multiple channels (forming a 2D matrix) is
taken as an input for CFP. However, a single-channel system
lacks the ability to form a 2Dmatrix by adopting PSD. Imple-
menting STFT on single-channel time series data can output
a 2Dmatrix containing time-frequency information, which is

a plausible input for CFP. The features obtained by CFP are
then used for classification purpose to estimate the system’s
performance. The algorithm for CFP-based feature extrac-
tion is as follows.

Covariance of the time-frequency data (E) is calculated as
follows for each trial:

C = E E
N

1

A composite covariance is estimated by summing the
covariance of each group (averaged across all the trials in a
group):

Cc = Cl + Cr 2

A whitening transformation is applied such that all the
eigenvalues of PCcP′ are equal to one, where Uc and λc are
the eigenvector and eigenvalues of Cc, respectively, and

P = λ−1c U′c.
Cl and Cr are transformed to Sl and Sr , and they share

common eigenvectors as follows:

Sl = PClP′, Sr = PCrP′ 3

Sl = BλlB′, Sr = BλrB′, λl + λr = I 4

The sum of λl and λr is equal to one. The eigenvector
with the largest eigenvalue for Sl will have the smallest eigen-
value for Sr and vice versa. A new trial’s time-frequency data
(E) is mapped with the projection matrix as follows:

Z =WE, where W = P B 5

The first and last filters from W provide maximum
variance for one class and the lowest variance for the other
class. The feature vector f cf p is calculated as follows:

FP1 FP2

F7
F3

FZ
F4

F8

FT7 FC3 FCZ FC4
FT8

T3 C3 CZ C4 T4

TF7 CP3 CPZ CP4 TF8

T5
P3 PZ P4

T6

O1 OZ
O2

A1 A2

Figure 2: 32 EEG electrodes were placed according to the
International 10–20 system. A1 and A2 reference electrodes were
located on the earlobes.
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f cf p =
diag cov Z p

N
6

The signals Z′p (p = 1, 2,…, 2m) is formulated by select-
ing the first m and last m filters that maximize covariance’s
difference between the two classes. The feature vectors
obtained with CFP will be passed into the classification stage
for estimating the BCI system performance.

The framework of the proposed hybrid BCI system is
shown in Figure 3. In this work, all the analyses and results
are based on a single channel, using either C3 or C4 channel.

2.6. Classification. LDC classifier was applied to estimate clas-
sification accuracies in the implemented tasks using 5-fold
cross validation. In each fold, the training data were used
for generating a weight matrix by CFP, and then it was

applied on the testing data for generating the test features.
PRtool 5, a MATLAB toolbox for pattern recognition, was
used for the classification purpose. A paired t-test was
applied to validate significant differences in the performances
among the proposed hybrid BCI system with different
parameters, MI-BCI, and SSVEP-BCI. The classification
accuracies of different BCI modalities were estimated using
EEG data recorded from their respective tasks. For example,
the MI-BCI accuracy was estimated using the data recorded
from the MI task.

3. Results

3.1. Power Spectrum. Figure 4 shows the averaged (of all
subjects) power spectral density of the hybrid task’s data.
EEGLAB’s function spectopo was used for generating the

MI SSVEP

EEG (C3 or C4) STFT CFP

Classification Feature vector

Proposed system

C3 C4
Data

Recording

Figure 3: Flowchart of EEG data acquisition and processing in the proposed single-channel (C3 or C4) hybrid BCI system.
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Figure 4: Averaged power spectrum of the hybrid EEG signal at (a) C3 channel and (b) C4 channel. The gray regions represent significant
differences in the PSD (p < 0 05).
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PSDs. The legend LH and RH indicates the left hand MI
+ 20Hz SSVEP and the right hand MI+ 15Hz SSVEP cued
trials of the hybrid task. Due to the simultaneous perfor-
mance of both MI and SSVEP during this task, MI- (ERD
feature) and SSVEP- (dominant peak at stimulus frequency)
related spectral patterns can be explicitly observed from the
data recorded over central channels C3 and C4.

3.2. Classification Accuracy in Different Tasks. The classifica-
tion accuracy was estimated for C3 and C4 channels sepa-
rately and independently from each other. For C3 channel,
the highest average accuracy of 85.62± 7.67% was obtained
in the hybrid task, whereas, the accuracy was 55.15± 3.38%
in the MI task and 69.22± 8.98% in the SSVEP task.
Similarly, for C4 channel, the hybrid task resulted in 84.98
± 7.85%, whereas, an accuracy of 55.87± 4.48% was reached

in the MI task and 69.47± 10.04% in the SSVEP task. The
performance of the hybrid BCI system is significantly higher
(see Figure 5) in comparison to MI-BCI (p < 0 001, paired
t-test) and SSVEP-BCI (p < 0 001, paired t-test). Also, no
significant difference has been observed between the per-
formance of C3 channel- and C4 channel-based hybrid
BCI systems, leading to a logical conclusion that the pro-
posed single channel hybrid BCI system can work with
either C3 or C4 channel.

3.3. Classification Accuracy and Training Dataset Size. For
any BCI system, it is usual for the performance to decrease
when fewer trials are available for the classifier training. To
test the stability of the proposed hybrid BCI approach, the
number of trials in training datasets for the cross-validation
was reduced to 48, 32, and 16 trials, which simulates 5-fold
classifications using 30, 20, and 10 trials per class, respec-
tively. The average classification accuracy significantly
decreases (p < 0 05, paired t-test) from 85.62± 7.67% and
84.98± 7.58% to 79.25± 12.67% and 76.63± 10.12% for C3
and C4 channels, respectively, when 16 trials are used for
the classifier training instead of 72 (see Figure 6). No
significant differences in the classification accuracy have been
observed using 48 or 32 trials for the classifier training as
compared with 72 trials.

3.4. Classification Accuracy and Trial Duration. Longer EEG
samples allow a BCI system to achieve higher performance,
extracting more information about the brain activities, but
make it difficult to operate the system in real time. To evalu-
ate the system’s accuracy with different trial durations, differ-
ent time window segments were extracted from the recorded
original trials with the initial point set to the beginning of a
stimulus onset. For example, 2 s trial duration means that a
two-second wide time window spans across the initial two
seconds (starting from the stimulus onset). Figure 7 shows
variations in the proposed system’s accuracy depending on
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Figure 5: Mean± std classification accuracy in the proposed
hybrid, MI, and SSVEP BCIs using LDC for C3 and C4 channels
(∗∗∗p < 0 001).
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different trial durations. As the trial duration decreases from
4 s to 2 s, the classification accuracy also decreases signifi-
cantly from 85.62± 7.67% to 74.14± 7.53% at C3 channel
and 84.98± 7.58% to 74.36± 7.34% at C4 channel.

4. Discussion and Conclusion

This study demonstrates a transition of hybrid BCI systems
towards a reduction of the number of EEG channels. In our
past work [26], two different multichannel systems with 3
and 32 EEG channels were developed; both of them can out-
perform the proposed system in terms of accuracy (Figure 8).
However, there is always a trade-off between the classifica-
tion accuracy and the number of electrodes used in a system.
More EEG channels allow us to perform better feature
extraction and consequently reach higher accuracy. How-
ever, single-channel systems are convenient and suit the pur-
pose of practical daily life applications being an important
topic for further research. Combining SSVEP and MI modal-
ities to a hybrid BCI, it becomes possible to compensate the
declined performance. In addition to that, hybrid systems
can compensate the BCI illiteracy issue, when some people
cannot effectively use a particular modality of BCI. With a
hybrid system (MI+ SSVEP), a user with MI-BCI illiteracy
could still use the system just by using SSVEP alone, which
increases its universality. In our previous study [27], we com-
pared the performance of an SSVEP system utilizing two
pairs of EEG channels from the central and occipital areas.
The classification accuracy of the system in a two-class task
was 89.94± 3.94% with O1-O2 channels and 85.53± 2.69%
with C3-C4 channels. The proposed, in this study, hybrid
system demonstrates a comparable level of classification
accuracy combining important advantages of utilizing just
a single EEG channel and providing more freedom in
the channel placement as compared with a single-mode
SSVEP-based BCIs.

It has been shown that it is possible to induce an SSVEP
response in a wide frequency range [32] starting from very
low frequencies [33]. In this study, we demonstrate the

presence of both MI- and SSVEP-related changes in the
PSD during performing a combined MI+ SSVEP cognitive
task. Based on spectral characteristics of the MI and SSVEP
responses, it is reasonable to use high frequencies for the
SSVEP stimulus in MI+SSVEP hybrid systems to avoid their
overlapping (Figure 4). The MI approach requires from the
user to perform intentionally a cognitive task, which means
that the MI response appearance is delayed regarding the
MI cue onset depending on the reaction time [34]. As a
result, reducing the duration of a trial beyond a certain limit
may decrease the contribution of MI features to the hybrid
BCI performance.

The major limitation of the proposed and tested system is
a few number of classes, that is, only two output commands
are available for a user’s BCI application. Therefore, the
potential future work has to be focused on expanding the
number of user commands but retaining the priority of a
single-channel system and optimal performance.
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