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Microbial megacities fueled by methane oxidation in
a mineral spring cave
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Massive biofilms have been discovered in the cave of an iodine-rich former medicinal spring in
southern Germany. The biofilms completely cover the walls and ceilings of the cave, giving rise to
speculations about their metabolism. Here we report on first insights into the structure and function
of the biofilm microbiota, combining geochemical, imaging and molecular analytics. Stable isotope
analysis indicated that thermogenic methane emerging into the cave served as an important driver of
biofilm formation. The undisturbed cavern atmosphere contained up to 3000 p.p.m. methane and was
microoxic. A high abundance and diversity of aerobic methanotrophs primarily within the
Methylococcales (Gammaproteobacteria) and methylotrophic Methylophilaceae (Betaproteobacteria)
were found in the biofilms, along with a surprising diversity of associated heterotrophic bacteria. The
highest methane oxidation potentials were measured for submerged biofilms on the cavern wall.
Highly organized globular structures of the biofilm matrix were revealed by fluorescent lectin
staining. We propose that the extracellular matrix served not only as an electron sink for nutrient-
limited biofilm methylotrophs but potentially also as a diffusive barrier against volatilized iodine
species. Possible links between carbon and iodine cycling in this peculiar habitat are discussed.
The ISME Journal (2018) 12, 87–100; doi:10.1038/ismej.2017.146; published online 26 September 2017

Introduction

Natural microbiota often organize as biofilms, where
structural features and microbial interactions give
rise to an enhanced ability of biofilm microbiota to
be active and persist under challenging environ-
mental conditions. Extensive biofilm production has
been previously reported mostly for energy-rich
surface water systems dominated by phototrophic
primary production (Battin et al., 2016) or in
engineered water systems (Boltz et al., 2017). In
subsurface and groundwater systems, biofilms are
largely considered oligotrophic (Griebler and
Lueders, 2009; Ortiz et al., 2014). Nonetheless, a
number of caves and karstic systems have been
reported to host biofilms rich in microbial diversity
and with elevated, mostly lithotrophic biogeochem-
ical activities (Holmes et al., 2001; Engel et al., 2010;
Jones et al., 2010; Rusznyák et al., 2012; Barton et al.,
2014; Riquelme et al., 2015).

In this study, we report on an exceptionally
extensive and massive biofilm formation that has
recently been discovered in a semiartificial cave of a
historic medicinal spring in Sulzbrunn (Schott,
1858), situated in prealpine southern Germany.
Subaerial and submersed microbial biofilms com-
pletely cover the walls and ceiling of this semina-
tural cave (Figure 1), giving rise to extensive
pendulous, mucous structures of up to 15 cm in
length also known as snottites (Hose and Pisarowicz,
1999). To date, microbial snottites have mostly been
described to harbor low-diversity communities of
lithotrophs in acidophilic, thermophilic or sulfidic
habitats (Bond et al., 2000; Holmes et al., 2001;
Northup et al., 2003; Jones et al., 2010; Ziegler et al.,
2013). Such extreme conditions do not seem to
prevail in Sulzbrunn. Thus our objective was to
understand the primary biogeochemical drivers of
this peculiar microbial habitat.

The Sulzbrunn cave is located in the Allgäu Alps
(Bavaria, Germany) at an altitude of 875m above sea
level. The cave lies in a well-jointed sandstone of the
Weissach-Schichten of the subalpine Lower Fresh-
water Molasse. Within a radius of 18 km from
Sulzbrunn, natural gas has been repeatedly observed
to emerge from deep drill holes that reach Tertiary
formations of the subalpine Molasse. The porous
sandstone of Bausteinschichten from the Lower
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Marine Molasse is identified as a reservoir for
migrating hydrocarbons. The subjacent organic-rich
clays are a potential source of brines with high
iodine concentrations (Hesse and Schmidt-Thomé,
1975).

Water enters the cave in the form of upwelling
mineral spring water, as well as percolating seepage
water. Under normal hydraulic regimes, this semi-
artificial cave is approximately half-filled with
water, with the water level controlled by a simple
overflow system. Historic (Schott, 1858), as well as
recent water analyses (LfU—Bavarian Environment
Agency, personal communication 2014), report high
iodine loads of up to 23mg l− 1 emerging with the
mineral spring water, which mixes with recent
meteoric groundwater in the spring cavern. These
high iodine levels, which exceed regular freshwater
concentrations by a thousand-fold (Whitehead,
1984), as well as elevated salinity in the mineral
spring water, are an indicator of upwelling formation
water, which has been in contact with oil- and gas-
laden sediment deposits (Lu et al., 2015). The
sources of hydrocarbons in the subalpine Molasse
basin are autochthonic, originating from mesozoic

sediments (Hiltmann et al., 1999) overthrusted by
Molasse formations during the alpine orogeny.
Fossilized algal biomass is typically highly enriched
in iodine, which has been found at concentrations of
up to 150mg l− 1 in a drilled artesian well in the area
(LfU, personal communication 2014). In Sulzbrunn,
the sediments of the Lower Marine Molasse are
situated 41000m below the surface. It can be
assumed that the upwelling of iodine-rich waters
occurs together with natural gases seeping from
deeper hydrocarbon formations along deeply pene-
trating fault systems.

Although the microbiota of marine gas seeps have
been intensively investigated (Ruff et al., 2015; Paul
et al., 2017), comparably little information is avail-
able about such systems in the terrestrial subsurface.
Aerobic methanotrophs and biofilms have been
previously found in groundwater and drinking water
systems, where they can be involved in the oxidation
of methane or methylated compounds (Newby et al.,
2004; Stoecker et al., 2006). The Movile Cave in
Romania, receiving deep thermal waters rich in
hydrogen sulfide (Sarbu et al., 1996), also hosts
microbial mats of active methanotrophs (Hutchens
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Figure 1 (a) Conceptual cross-section of the Sulzbrunn spring cavern and its water flows (not to scale). Inset images: (b) Collecting natural
gas seeping from the spring pool in an inverted glass bottle using a funnel. (c) Natural bedrock and the emptied spring pool during biofilm
and mineral spring water sampling. (d) The filled spring pool with surrounding natural bedrock and man-made gallery covered with
biofilms. (e) The three distinct biofilm compartments sampled in this study: submersed and subaerial wall biofilms, snottites at the ceiling.
(f) Close-up of thick, slimy snottites. (g) Close-up of subaerial biofilms at upper wall and ceiling. (h) Close-up of submersed wall biofilms.
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et al., 2004; Chen et al., 2009). Recently, the role of
microbial methane oxidation within cave and karst
ecosystems has been addressed globally (Fernandez-
Cortes et al., 2015; McDonough et al., 2016; Lennon
et al., 2017). Methane-driven communities can
comprise a multitude of interactions between metha-
notrophs, methylotrophs and heterotrophs (Beck
et al., 2013; Kalyuzhnaya et al., 2013; Oshkin et al.,
2015; Paul et al., 2017). Energetic constraints
imposed by the various pathways of carbon assim-
ilation under low concentrations of oxygen and
methane have been shown to trigger substantial
exopolysaccharide production in methanotrophs
(Linton et al., 1986; Strong et al., 2015), which could
potentially explain such massive biofilm production.

The appearance and uniform distribution of the
snottites (Figure 1) pointed toward the use of a gaseous
substrate for growth. Thus we posit that deep gaseous
energy inputs emerging with the upwelling water,
possibly light alkanes or methane, could be a major
driver of biofilm formation in the Sulzbrunn cavern.
We hypothesize that the snottites, as well as subaerial
and submersed biofilms, on the wall should be
dominated by a low diversity of autotrophs capitaliz-
ing on the available energy inputs. The compartmen-
talization of the cave and possible distinctions in
substrate supply should be reflected in distinct biofilm
subtypes, substrate turnover rates and isotopic signa-
tures. Finally, we ask whether possible links between
methane and iodine cycling can be inferred for this
peculiar microbial habitat.

Materials and methods
Site and sampling
The semiartificial Sulzbrunn cave (47.67° N; 10.39° E)
is accessible by descending 8m via a metal ladder
(Figure 1). Entering the cave without breathing
equipment is only possible during cold seasons, as
limited air exchange through the chuted entrance
causes microoxic conditions, especially during war-
mer outside temperatures. Biofilms from both the
man-made cemented gallery and the distal bedrock
walls were sampled in 2 consecutive years (Novem-
ber 2012 and December 2013) for molecular ana-
lyses. In October 2015, additional biofilm samples
were taken for microscopy. In order to sample
biofilms and mineral spring water from rock fissures
at the end of the cave, water filling the gallery was
pumped out (Figure 1b). Biofilm samples were
collected from three different compartments: sub-
mersed biofilms (~30 cm from the bottom of the
wall), subaerial biofilms (~20 cm below ceiling), and
snottites taken from the ceiling (Figures 1e and f). At
each sampling time point, the three compartments
were sampled in replicates along a horizontal
transect spanning 16m of the cave gallery. Biofilm
samples were directly transferred by scraping into
sterile polypropylene tubes (Falcon, Becton
Dickinson, Franklin Lakes, NJ, USA), and all samples

were frozen (−20 °C) within 6 h after sampling for
molecular analyses.

Water samples of percolating seepage water,
mineral spring water and the mixed cave water were
collected in sterile, 1-liter glass bottles for microbio-
logical and physicochemical analyses. Mineral spring
water was repeatedly taken (November 2012, Decem-
ber 2013) from a stainless-steel sampling flume
installed at a fissure at the back of the spring cave,
whereas seepage water was collected (December 2013)
with a sterile glass funnel from the ceiling. Mixed cave
water (Figure 1d) was collected during several occa-
sions (October 2012, November 2013, December 2014,
October 2015) using a Ruttner sampler (KC Denmark
A/S, Silkeborg, Denmark). Water samples were filtered
using sterile filter tops (0.2 μm; Corning, Corning, NY,
USA). Microbial cells within the water samples were
counted using SybrGreen for DNA staining on a flow
cytometer (Beckmann Coulter FC 500, Beckmann
Coulter, München, Germany) as previously described
(Bayer et al., 2016).

Physicochemical analyses
Temperature, pH, dissolved oxygen and specific
conductivity of water samples were measured with
calibrated field sensors (Hach, Düsseldorf,
Germany). Water samples were analyzed for dis-
solved organic carbon (DOC) using a TOC-V (Shi-
madzu, Neufahrn, Germany). Prior to injection, DOC
samples (0.45 μm filtered) were automatically acid-
ified (pH o2), sparged with oxygen to remove
inorganic carbon and analyzed by high-temperature
combustion (Mathis et al., 2007). Major cations
(calcium, magnesium, potassium, ammonium,
sodium) and anions (nitrite, nitrate, chloride, bro-
mide, sulfate) were measured on a DX-100 (Dionex,
Germering, Germany) ion chromatograph as
described (Stoewer et al., 2015). Total iodine con-
centrations in water samples were analyzed by ion
chromatography–inductively coupled plasma mass
spectrometry (Michalke and Witte, 2015). Analysis
of water stable isotopes was carried out by cavity
ring-down spectrometry (Picarro L2120-I, Picarro,
Santa Clara, CA, USA) for 2H and 16O and with liquid
scintillation counting for 3H and was used to
estimate water mixing ratios (Stoewer et al., 2015).

Gas samples were either taken directly by collect-
ing gas bubbles emerging from the distal spring pool
into water-filled, inverted bottles or by pumping
from the undisturbed cave atmosphere to the outside
of the cavern via tubing installed at the ceiling.
Tubing volume was flushed 5× before sample collec-
tion. Methane and CO2 were quantified within 24 h
after gas sampling, while gas for isotope analysis was
kept in the dark at 4 °C in appropriate glass contain-
ers until measurement. CH4 and CO2 were quantified
by injecting 250 μl of gas via a HayeSep D column
(80–100mesh, 6m×1/8') to a gas chromato-
graph (GC) equipped with helium ionization and
thermal conductivity detectors (SRI Instruments,
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Bad Honnef, Germany). Methane dissolved in water
was quantified using the headspace equilibration
method (Kampbell and Vandegrift, 1998). 13C and 2H
abundance of gases was measured by separation on a
RT –QPLOT (30m×0.32, Restek, Bad Homburg,
Germany) column and measured using a TRACE
GC Ultra (Thermo Fisher Scientific, München,
Germany), coupled to a Finnigan MAT 253 IRMS
(Thermo Fisher Scientific) via a Finnigan GC
Combustion III Interface as previously described
(Bergmann et al., 2011).

For isotopic and elemental analysis, biofilms were
lyophilized and ground to powder. 13C and 15N
abundance was measured on an elemental analyzer
(EA; Euro Vector SPA, Redavalle, Italy) with a
combustion unit (Hekatech, Wegberg, Germany)
connected to a Mat 253 IRMS as previously
described (Bernstein et al., 2010). Trace element
analysis of lyophilized biofilms was carried out for
total iodine, phosphorous, iron and sulfur by
inductively coupled plasma–optical emission spec-
trometry (Hou et al., 2006). Further details on the
physicochemical and isotopic analyses are available
in Supplementary Information.

Activity measurements
Methane oxidation rates were measured for triplicates
of fresh biofilm samples taken from the three different
compartments. For this, ~6 g of biofilm samples were
dispersed in 20ml of nitrate mineral salt methano-
troph medium (Whittenbury et al., 1970) filled into
250ml glass bottles and sealed with butyl rubber
stoppers. In all, 16 000 p.p.m. of CH4 (Linde,
München, Germany) was added to the air-filled bottles
and methane oxidation was followed over time using
GC measurements described above. The incubations
were continuously shaken (150 r.p.m.) and kept in the
dark at 12 °C. Gas analyses were carried out after 0, 24,
48 and 72 h of incubation. Methane uptake rates were
normalized to biofilm fresh weight (gFW).

Biofilm visualization
Structural features of the biofilms were examined by
confocal laser scanning microscopy of extracellular
polymeric substances and glycoconjugates with
fluorescently labeled lectins as described (Zhang
et al., 2015). Biofilms were used fresh, fixed in
paraformaldehyde or embedded in O.C.T. compound
(Tissue-Tek, Sakura GmbH, Staufen, Germany).
Samples were cut into thin sections using a razor
blade or a CM 3050 S cryotome (Leica, Wetzlar,
Germany). Various nucleic acid-specific stains, for
example, SybrGreen, Syto 9 and Syto 60 (Molecular
Probes, Leiden, The Netherlands) were used for
staining of bacterial cells. Glycoconjugates were
contrasted with fucose-specific AAL lectin (Vector
Laboratories, Burlingame, CA, USA) labeled with
Alexa-488, Alexa-568 or Alexa-633 fluorochromes
(Molecular Probes). A confocal laser scanning micro-
scope (TCS SP5X, Leica) equipped with a super

continuum light source and controlled by the LAS
AF software (ver. 2.6.1., Leica) was used for imaging.
Images were collected at 1 μm sectioning intervals
using the 25× NA 0.95 wi and 63× NA 1.2 wi
objective lenses. Signal-to-noise-ratios were opti-
mized using the glow-over-under lookup table.
Multichannel image data sets were projected by
using the Imaris software (ver. 8.2.0, Bitplane,
Zürich, Switzerland).

DNA extraction and molecular analyses
DNA was extracted from biologically replicated
samples (n=2–4). Frozen biofilms were re-
suspended in 1× phosphate-buffered saline buffer
and disrupted by sonication (Cury and Koo, 2007).
Repetitive (3 × ) sonication (35 kHz, Sonorex RK102;
Bandelin Electronic GmbH & Co., Berlin, Germany),
shaking and spinning (5500 g for 10min at 4 °C) was
used to interrupt the extracellular matrix. DNA from
cell pellets and filters from water sampling was
extracted following the previously published proto-
cols (Pilloni et al., 2012).

Quantitative PCR of bacterial rRNA genes in DNA
extracted from biofilm and water samples was
performed as published (Pilloni et al., 2011). In
addition, a preliminary screening of the diversity of
methanotroph marker genes in biofilms was carried
out by terminal restriction fragment length poly-
morphism fingerprinting as described in
Supplementary Methods and Supplementary Table
S1. Barcoded amplicons of bacterial 16S rRNA
genes, covering the V1–3 region, were generated
and sequenced on a FLX+ Genome Sequencer (454
Life Sciences, Roche, Indianapolis, IN, USA) as
previously described (Pilloni et al., 2012; Karwautz
and Lueders, 2014) but analyzed and classified using
the SILVAngs data analysis platform (Pruesse et al.,
2012; Quast et al., 2013). Default settings were used
for quality control, de-replication, operational taxo-
nomic unit (OTU) clustering and classification on a
97% sequence identity level. Taxonomic assign-
ments were based on the SILVA database release
123 (24 July 2014). The sequencing data set was
further processed using the phyloseq package
(McMurdie and Holmes, 2013) within the R environ-
ment version 3.1.2 (R Development CoreTeam,
2013). Mean abundance of the most prevalent taxa
(43% relative abundance) from replicate samples
were plotted as Krona plots (Ondov et al., 2011).
Further details on molecular analyses are available
in Supplementary Information. All sequencing data
have been deposited with the EBI sequence read
archive under the BioProject ID PRJEB14605.

Results

Geochemical characterization of cave water,
atmosphere and biofilms
The mineral spring water was saline, microoxic and
carried only low amounts of DOC, nutrients,
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phosphate and alternative electron acceptors, such
as nitrate or sulfate (Table 1). Total iodine concen-
tration was ~ 20mg l− 1 in the spring water and
diluted to ~ 3mg l−1 in the mixed cave water. The
temperature of the mixed cave water was between 8
and 11 °C depending on the time points of sampling,
while the mineral spring seemed constant at ~ 7 °C.
The pH of the mixed cave water was circumneutral
(pH ~7.5). Analysis of the water stable isotopes (δ18O
and δ2H) allowed estimation of ratios of mixing
between deep spring water and recent meteoric
water in the cavern, based on end member mixing
calculations. On two of the water sampling dates, the
contribution of meteoric seepage water from the
surface was estimated to be at 58 ± 17% or 54± 18%
of the mixed cave water, respectively.

Natural gas directly bubbling from rock fissures
into the distal spring pool was captured and
characterized by GC-isotope ratio mass spectrome-
try. Isotopic signatures identified it as thermogenic
methane, indicated by its δ13C and δ2H values of
− 43.6 ± 0.2‰ (Figure 2) and -164.9 ± 2.2‰, respec-
tively. High methane concentrations of up to 50%
were measured in the emerging gas. Average
methane concentrations in the mixed cave water

and in the cave atmosphere were 6000 and 3000 p.p.
m., respectively. The carbon isotope signature of CH4

in the undisturbed cave atmosphere was
� 36.8 ±0.1‰ δ13C. Mean carbon dioxide concentra-
tions of 8000 p.p.m. in the cave air were also clearly
elevated compared with ambient backgrounds. The
δ13C of CO2 in the seeping gas and in the cave
atmosphere was − 33.2 ± 0.1‰ and − 25.2 ±0.1‰,
respectively (Figure 2). Dissolved oxygen concentra-
tions in the spring water and mixed cave water were
3.2% and 4.3% in average, respectively (Table 1).
Sampling of the undisturbed cave atmosphere via
gas tubes indicated microoxic conditions (O2:
15.1 ± 4%, n=5) under steady state.

The pH of biofilm samples was similar to that of
the water (pH ~7.5). Elemental analysis of freeze-
dried biofilms recovered a light carbon isotope
signature (−44.4‰), directly corresponding to the
seeping methane itself, especially for the submersed
biofilms (Figure 2). Snottites and subaerial biofilms
showed a significantly heavier δ13C (−30.7 ± 1.1‰).
This was in between the signatures of CH4 and CO2

in the cave atmosphere, rather than directly reflect-
ing seeping CH4. A similar pattern of isotope
signatures, albeit less pronounced, was recovered

Table 1 Water physicochemistry and microbial cell counts for different water bodies in the cave

Mixed cave water Mineral spring water Meteoric seepage water

Median Min.–max. Median Min.–max. Median Min.–max.

Physicochemistry
Temperature 7.9 7.2 to 11.7 7.2 8.6a

EC (μS cm− 1) 2100 2020 to 2200 6200b 5890 to 6900b 526a

pH 7.5 7.2 to 7.6 7.6b 7.2 to 8.3b 8.3a

O2 (mg l−1) 4.3 2.3 to 5.5 3.2 2.3 to 3.4 8.5a

Nutrients, electron acceptors
DOC (mg l−1) 1.2 0.8 to 1.4 0.7b 0.5 to 0.9b 0.6a

NO3
− (mg l− 1) 1.9 0.8 to 3.4 bd bd to 0.2 5.6 4 to 5.6

PO4
3− (mg l− 1) bd bd bd bd to 0.02 0.01 0.01 to 0.02

SO4
2− (mg l− 1) 2.1 1.1 to 3 bd bd to 1.7 4.2 3.4 to 4.2

FeTotal (mg l−1) NA 0.87c 0.46 to 1c NA

Water mineralization
Na+ (mg l−1) 93.9 51.9 to 328.6 649.8 581.3 to 1131.1 5 5 to 18.8
K+ (mg l− 1) 1.6 1.2 to 3 4.6 4.2 to 8.6 1 1 to 1.4
Mg2+ (mg l−1) 22.8 20.7 to 140.7 24.4 23.1 to 55.3 23 22.2 to 23.3
Ca2+ (mg l−1) 97.2 62.1 to 205.1 51.5 50.2 to 111.9 82.2 76.9 to 82.5
Cl− (mg l− 1) 154 77.5 to 606.6 1301.7 1237.9 to 2248.3 1.1 1.1 to 4.6
Br− (mg l−1) 1.3 0.7 to 4.6 19.2 16.1 to 29.4 0.01 0.01 to 0.03
I (mg l−1)c 3.2 0.9 to 5 20.5 20 to 30.7 NA

Water isotopes
δ18Od −10.5 −10.8 to −10.2 −8 −9.6 to −7.7 − 11 −11.8 to −10
δ2Hd −73.9 −74.7 to −73.2 −67.2 −69.1 to −66.5 −75.4 −82.3 to −68
TU 7.1 4.8 8.3a

Cell counts
1.6 × 106 3.7 × 105 to 1.9 × 106 3.1 × 103 2.7 × 103 to 1.9 × 106 6.7 × 103 6.6 × 103 to 2.4 × 105

Abbreviations: bd, below detection limit; DOC, dissolved organic carbon; EC, electric conductivity; NA, not analyzed; TU, tritium units defined as
ratio of 1 3H atom to 1018 H atoms.
aSingle measurement in December 2012.
bThis study (n=4) and routine monitoring data from LfU (n=4).
cLfU monitoring data (n=4) from October 2011 to April 2012.
dThis study (n=3) and LfU monitoring data (n=4).
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also for nitrogen stable isotopes (Figure 2). Nitrate
was the most prevalent nitrogen species in the water
(Table 1), whereas ammonium and nitrite were
below detection limits. Total nitrogen content within
the biofilms decreased toward the ceiling (Table 2).
However, distinct nitrogen species in water and
biofilms were not independently analyzed.

A high total carbon content of ~ 372mg gDW− 1 on
average was measured for the snottites (Table 2).
Nitrogen and phosphorus concentrations were low,
especially for snottites on the ceiling, resulting in an
elemental composition of 37% C, 0.6% N and 0.01%
P and high C:N (61), C:P (4727) and N:P (82) ratios.
These nutrients, plus iron and sulfur, were compar-
ably more abundant in submersed biofilms. In
contrast, total iodine concentrations of biofilms were
highest at the ceiling but varied substantially
throughout sampling locations and were
482.1 ± 197.6 μg gDW− 1 on average (Table 2).

Methane oxidation potentials in laboratory biofilm
incubations
Potential methane oxidation rates were quantified
for biofilms of the three compartments to substanti-
ate our hypothesis of methane as an important driver

of biofilm formation. Fresh biofilm samples dis-
persed in nitrate mineral salt medium were amended
with 16000 p.p.m. CH4 in headspace. For all biofilm
samples, substantial methane oxidation rates were
recorded under laboratory conditions. They were
~3 μmol gbiofilm FW

− 1 day− 1 for the subaerial biofilms
and snottites and almost an order of magnitude
higher (~26 μmol gbiofilm FW

−1 day− 1) for the submersed
biofilms (Table 2).

Visualization of biofilm structures
First structural insights into the biofilm matrices
were generated by confocal laser microscopy in
combination with lectin staining of glycoconjugates
(Figure 3). Image data revealed unusually large
capsule-like structures, which seemed to embed
small numbers of cells and which were partly
connected (Figure 3a). Often these glycoconjugates
formed larger multilayer strands with voids (non-
lectin-stained zones) in between (Figure 3b). Glyco-
conjugate structures appeared evenly distributed
with single embedded bacterial cells in some images
(Figures 3a and b), whereas only part of the cells
formed AAL-specific glycoconjugates in others
(Figure 3c). Multilayer globular features with clusters
of capsule-like structures, as well as globules with
higher levels of organization, were also observed
(Figure 3d).

Molecular analysis of water and biofilm microbiota
Microbial abundances as determined by flow cyto-
metry were ~ 3.1 × 103 cells ml− 1 in the mineral
spring water and a much higher ~ 1.6 × 106 in the
mixed cave water (Table 1). Mixed cave water cell
counts were largely consistent with 16S rRNA gene
quantification (Supplementary Figure S1), but quan-
titative PCR counts for the spring water were higher
than cell counts. Gene quantification revealed a high
abundance of up to ~ 3.6 × 109 bacterial 16S rRNA
genes gbiofilm FW

− 1 for the submersed biofilms.
PCR screening for functional marker genes indica-

tive of methanotrophs or methylotrophs was con-
ducted as a first qualitative test for the presence of
such microbes in the system. All tested water and
biofilm samples were PCR positive (data not shown)
for genes encoding the methanol dehydrogenase
(mxaF) and particulate methane monooxygenase
(pmoA) but not for soluble methane monooxygenase.
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Figure 2 Carbon and nitrogen stable isotope ratios measured for
distinct biofilm compartments. Stable isotope signatures of
methane and carbon dioxide either in gas bubbles seeping from
the spring pool or in the cave atmosphere are indicated in gray
shading. The length of the boxplots depicts the quartiles and the
crosshair the range (min., max.) of isotope measurements for
snottites.

Table 2 Elemental composition of dried biofilms and potential methane oxidation rates of fresh biofilms at 12 °C in the laboratory

Biofilm C
(mg g− 1)

N
(mg g−1)

P
(mg g− 1)

Fe
(mg g−1)

S
(mg g− 1)

I
(μg g− 1)

CH4 ox.a

(μM g− 1 day− 1)

Snottitesb 372.3± 80 6.1± 1 0.1± 0.1 1.7 ± 1.1 1.9 ± 0.6 0.5 ± 0.2 3
Subaerialc 283.8 8.7 0.2 18.1 4.4 0.2 3.1
Submersedc 183 11.9 0.5 80 5.6 0.4 25.7

an=3. bn=6. cn=2.
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Terminal restriction fragment length polymorphism
fingerprinting of the pmoA gene pool revealed a
considerable diversity of pmoA T-RFs in all biofilms.
In total, 13 of the 30 detected pmoA fragments
overlapped between samples, while 14 appeared
unique for the mixed cave water (not shown).

Bacterial community composition in water and biofilms
Replicate amplicon sequencing libraries were gener-
ated for the three biofilm compartment and water
samples (Figure 4). Data processing resulted in 482
OTUs affiliated with the bacteria (Supplementary
Table S2). Out of these, 363 OTUs were found in
biofilm samples and 297 OTUs in water, with an
overlap of 178 OTUs. Besides the Proteobacteria
(especially Alphaproteobacteria, Betaproteobacteria
and Gammaproteobacteria), Planctomycetes, Bacter-
oidetes and Verrucmicrobia also contributed sub-
stantially to the communities. A total of 8 phyla were
present at 41% abundance in at least 1 of the
samples. Betaproteobacteria were especially abun-
dant (59%) directly in the spring water, detectable at
notable abundance in mixed cave water and

submersed biofilms (44% and 25%, respectively),
but almost absent from subaerial biofilms and
snottites. In contrast, members of the Alphaproteo-
bacteria, Planctomycetes, Bacteroidetes and Verru-
comicrobia were generally more abundant in
subaerial biofilms compared with submersed sam-
ples (Figure 4).

In-depth taxonomic analysis revealed many
known methylotrophic and methanotrophic popula-
tions (Knief, 2015) within the biofilms. Potential
methylotrophic Alphaproteobacteria were apparent
as Beijerinckiaceae, Hyphomicrobiaceae, Rhodobac-
teraceae, Erythrobacteraceae and Sphingomonada-
ceae, detected especially in subaerial biofilms
(Figure 4). Several facultative methanotrophs within
the Alphaproteobacteria, such as Methylocella,
Methylorosula and Methylobacterium spp. were also
identified but only at low abundance (all o1%).

Within the Betaproteobacteria, members of the
Methylophilaceae (many of them obligate methylo-
trophs) were abundant in submersed biofilms (14%)
but were also found in mineral spring water (4%)
and mixed cave water (8%) samples. Dominant taxa
within this group were affiliated to Methylotenera

20 μm 20 μm

20 μm40 μm

Figure 3 Visualization of biofilm structures in snottites by laser microscopy in combination with lectin staining. (a) Globular
glycoconjugate signals (green) surrounding individual bacterial cells (red) (67 sections). (b) Strands of glycoconjugate signals (red) with
bacterial cells (green) and interspersed voids (58 sections). (c) Biofilm section where only part of the bacterial cells (green) are shown to be
associated with glycoconjugate signals (red) (62 sections). (d) Multilayer glycoconjugates (triple-stained AAL) indicating three orders of
organization in snottites: glycoconjugate capsules surrounding individual bacterial cells, embedded clusters of capsules, and higher-order
spheres of glycoconjugate clusters (59 sections). The selected 3D image series are shown as 2D maximum intensity projections. Samples
were stained with AAL lectin (a–d), as well as nucleic acid-specific stains (a–c).
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spp. Most notably, a dominance of Hydrogenophila-
ceae (27%) and Gallionellaceae (14%) was observed
in the spring water, while they were almost absent
from all other samples. The Rhodocyclaceae also
contributed to the bacterial community of the spring
water and mixed cave water and submersed biofilms.

The Methylococcales (Gammaproteobacteria)
represented the most abundant known methano-
trophic group (Knief, 2015) across all samples

(Figure 4). In total, 15 divergent lineages were found,
with the Crenotrichaceae and Methylococcaceae
being most abundant. Dominant taxa within the
mixed cave water were affiliated to Methylovulum
sp. (28%). Crenothrix and Methylobacter spp. were
abundant in submersed biofilms (13% and 10%,
respectively) but apparently replaced by Methylomi-
crobium spp. in the subaerial biofilms (4%). Mem-
bers of the Pseudomonadaceae were also abundant

Pse
udo

mon
as

Me
thy
lom
icro
biu
m

Methylovulum

Me
thy
lob
act
er

Crenothrix

1.4 %
[± 1]

2.2 %
[± 0.2]

1.9%
[± 0.2]

1.3%
[± 0.5]Deltaproteobacteria

Plan
ctom

yces

Pir
4

SM1A02

Porphyrobacter

<1 % 2.5 %
[± 1.2]

< 1 %
[± 0.6]

< 1 % < 1 %2.6 %
[± 0.5]

1.2 %
[± 0.6]

1.2 %
[± 0.04]

1.3 %
[± 0.2]

< 1 % < 1 %

SUBAERIAL
(n=2)

SNOTTITES
(n=4)

SUBMERSED
(n=3)

BIOFILM SAMPLES
MIXED CAVE WATER

(n=2)
MINERAL SPRING

(n=3)

n.d. n.d. n.d.< 1 %

%52 %050% 100%

Bacteroidetes
Cytophagales
Cytophagaceae
Flavobacteriales
Flavobacteriaceae
Sphingobacteriales
Saprospiraceae

Aren
ibac

ter

Planctomycetaceae

Phycispheraceae
Phycispherales

Planctomycetales
Planctomycetes

NC10
Methylomirabilis
Verrucomicrobia
Chthoniobacterales
Chthoniobacteriaceae
FukuN18

Alphaproteobacteria

DB1-14
Rhizobiales

Rhodobacterales

Caulobacterales

Rhodospirillales

Rickettsiales
Sphingomonadales

Hyphomonadaceae

Beĳerinckiaceae

Rhodobacteriaceae

Rhodospirillaceae

Hyphomicrobiaceae

Erythrobacteriaceae

Methylococcaceae

Legionellaceae

Crenothrichaceae
Legionellales

Pseudomonadales

Methylococcales

Xanthomonadales
Pseudomonadaceae

Gammaproteobacteria

No affiliation

Comamonadaceae

Hydrogenophilaceae

Methlyophilaceae

Gallionellaceae

Rhodocyclaceae

Betaproteobacteria

Hydrogenophilales

Methylophilales

Nitrosomonadales

Burkholderiales

Rhodocyclales

Side
roxy

dans

Ferr
ipha

selo
us

Sulfuricella

Methy
lotene

ra

Gall
ione

lla

Sulfuritalea

Fer
riba
cter
ium

WATER SAMPLES

Figure 4 Bacterial community composition in biofilm and water samples as shown by 16S rRNA gene amplicon sequencing. All
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in the snottites and subaerial biofilms (8% and 6%,
respectively). Unexpectedly, the aerial communities
appeared more diverse (Supplementary Table S1)
and less clearly dominated by known methano-
trophic or methylotrophic taxa than the submersed
biofilms and mixed cave water.

The Planctomycetes in aerial biofilms were mostly
affiliated to the Pir4 lineage and Planctomyces spp.
(Planctomycetaceae), as well as the Phycisphaera-
ceae. The recently discovered NC10 candidate
phylum, including the denitrifying, methanotrophic
Methylomirabilis spp. (Ettwig et al., 2010), was
detected only in submersed biofilms. The Bacteroi-
detes, mostly present in subaerial biofilms and
snottites, included a notable population of
Arenibacter spp.

Summing up the abundance of the most prominent
known methanotrophic and methylotrophic taxa
(Figure 5), subaerial biofilms and snottites contained
significantly fewer respective lineages than the
submersed biofilms and mixed cave water (t=3.9,
df = 2.7, Po0.05). Besides known C1-oxidizers, other
taxa of clear functional connotation were also
detected, such as Sulfuritalea (Betaproteobacteria),
Sulfurimonas (Epsilonproteobacteria) and Sulfuri-
cella spp. (Betaproteobacteria) in the mineral spring
water, all well known to be capable of sulfur
oxidation. Moreover, several putatively iron-
oxidizing taxa such as Siderooxydans, Ferriphaselus
and Gallionella spp. (all Gallionellaceae), as well as
close relatives of the the iron-reducing Ferribacter-
ium spp. (Rhodocyclaceae), were found with distinct
distribution between spring and mixed cave water
(Figure 4).

Discussion

Methane as the driver of biofilm formation
Here we provide first insights into the biogeochem-
istry and microbiology of a peculiar biofilm system
discovered in prealpine southern Germany. We

show that deep formation water enters the spring
cave together with appreciable amounts of methane,
as indicated by the elevated mixing ratios of methane
in the water and atmosphere of the cave. Carbon
isotope signatures clearly identified the methane as
thermogenic in origin (Aelion et al., 2009), consistent
with the well-established presence of fossil deposits
and gas reservoirs in this region of the subalpine
Molasse (Hiltmann et al., 1999; Etiope, 2009). In
Sulzbrunn, the seeping gas can be speculated to
actually lift up the deep briny mineral water that
ascends into the cave. Although seeping gas bubbles
have been reported to induce porewater flow
velocities of up to several meters per day in coastal
seeps (O'Hara et al., 1995), further investigations will
be necessary to delineate the hydrogeological setting
in Sulzbrunn.

End member mixing calculations based on water
isotopes showed that the influx of deep formation
water contributed roughly 40–50% to the spring
water in Sulzbrunn. It is likely that this mixing of
distinct water inputs, at least in part, contributes to
the definition of the unique biogeochemical system
in the cave. Despite the detection of low amounts of
oxygen directly in the mineral spring water (Table 1),
we assume the upwelling formation water to be
anoxic, and oxygen exposure or mixing with more
aerated surface water to take place only in the last
meters before entering the cave. Were the mineral
spring water aerated, we would have expected to
detect a high abundance of aerobic methanotrophs in
these samples, which was not the case. Apart from
methane, inputs of DOC into the cave via the
different water fluxes seemed negligible. Still,
comparably low amounts of DOC in seeping surface
water have been shown to support appreciable
populations of heterotrophic bacteria in caves
(Ortiz et al., 2014). Also, we cannot exclude potential
seasonality in DOC inputs from the surface, which
might have been missed during our time points of
sampling.

The unambiguous δ13C signature identified ther-
mogenic methane to be the main driver of biofilm
formation, especially for the submersed biofilms. As
shown above, this had the highest methane oxidation
rates and methanotroph/methylotroph abundance.
The CH4 consumption rates of up to 25 μmol gbiofilm
FW

− 1 day− 1 were 44 orders of magnitude higher than
rates recently reported for the water column above
methane seeps in Lake Constance (Bornemann et al.,
2016) and in a similar high range as reported for
other methane-venting geothermal sites (Gagliano
et al., 2016; Lennon et al., 2017). Upscaling this for
biofilm mass estimates in the cave, a potential
methane turnover of ~ 1.6mol day− 1 (~35.8 l
CH4 day− 1) can be extrapolated for the submersed
biofilms alone. Methane oxidation rates were unfor-
tunately not determined for the mixed cave water in
this study. The high abundance of methanotrophs in
the water (Figure 5) and the reduced oxygen
concentrations compared with surface seepage water
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Figure 5 Summed relative abundance of well-known methano-
trophic and methylotrophic taxa recovered from biofilm and water
samples. Shown are members of the Beta- and Gammaproteobac-
teria and the NC10 phylum. Color coding is identical to Figure 4.
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(Table 1) suggested that at least part of the methane
oxidation could also have been allocated to the water
body itself. However, the much lower total bacterial
abundances in the water (Supplementary Figure S1)
combined with a steady discharge and thus purging
of lotic populations could still result in biofilms
being the most relevant for total methane turnover.

In contrast to submersed biofilms, the δ13C
signature of subaerial biofilms and snottites less
directly pointed toward thermogenic methane as
being their main carbon input. However, the isotopic
signatures of CH4 and CO2 in the cave atmosphere
were both substantially heavier than directly in
seeping gas (Figure 2), suggesting strong stable
isotope fractionation (Preuss et al., 2013) to occur
during oxidation between the compartments. The
placement of the aerial biofilms at approximately
−31‰ δ13C in between the signature of both gaseous
end members in the cave atmosphere indicated an
equal importance of both methanotrophy and auto-
trophic or heterotrophic CO2 fixation for biofilm
buildup, as previously inferred for other biofilms in
caves (Sarbu et al., 1996; Chen et al., 2009). Never-
theless, the lower methane oxidation rates and lower
abundance of potentially C1-oxidizing microbes both
seem to point toward a possible role of electron
donors other than methane in aerial biofilms. This
will be discussed further down.

The interpretation of observed nitrogen isotope
signatures in biofilms was not possible due to the
lack of defined input signals. The depleted δ15N
isotope values of the submersed biofilms (−11‰)
were comparable to values found in Movile Cave
biofilms (Sarbu et al., 1996). The much higher values
of aerial biofilms suggested distinct inputs, possibly
connected to the known capacity of many methano-
trophs to fix atmospheric dinitrogen (Knief, 2015).
Nevertheless, the major sources and routes of
nitrogen cycling in the cave system remain to be
specifically elucidated.

Biofilm community composition
The formation of pendulous snottites and other
macroscopic biofilm structures in caves has been
observed before but mostly under acidic or otherwise
extreme conditions. In comparison to the massive
biofilm structures (pH ~7.5) now reported for the
Sulzbrunn cave, previously discovered snottites
appeared much thinner in shape, were less densely
distributed and formed lower amounts of extracel-
lular polymeric substances (Bond et al., 2000;
Holmes et al., 2001; Northup et al., 2003; Jones
et al., 2010; Ziegler et al., 2013). Together with the
rich diversity of methylotrophs and other bacterial
lineages now discovered in the Sulzbrunn biofilms,
this points toward distinct biogeochemical and
ecophysiological drivers of biofilm formation in the
different systems.

We suggest the identified biofilm compartments to
be a function of methane influx, water submersion

and oxygen and nutrient supply within the cave. The
high abundance of methanotrophs and methylo-
trophs of up to ~ 45% in submersed biofilms and
between 10 and ~20% in the other biofilm compart-
ments was consistent with the importance of
methane as the driver of biofilm formation. An
abundance of aerobic methanotrophs of up to 40%
has been reported previously for a terrestrial
methane seep (Gagliano et al., 2016). However,
central questions remain how carbon and energy
flows are shared between the methanotrophs, other
methylotrophs and the diverse non-methylotrophic
lineages discovered in the Sulzbrunn biofilms.

Distinguishing between obligate and facultative
methanotrophs requires genomic and proteomic
information, which is not yet available for the
investigated system. However, the ecophysiology of
some of the microbes detected can be cautiously
extrapolated from the literature. For example,
Methylobacter spp. are generally considered as
obligate methanotrophs (Knief, 2015), while Methy-
lotenera spp. and other Methylophilaceae are mostly
known as obligate non-methane-utilizing methylo-
trophs (Kalyuzhnaya et al., 2012). The co-occurrence
of these methanotrophs and methylotrophs, espe-
cially in the submersed biofilms, suggest methane-
fueled cooperation (Chen et al., 2009). Members of
the Methylococcaceae and Methylophilaceae have
been previously reported to trophically interact in
methane-fueled systems under oxic and microoxic
conditions (Beck et al., 2013; Oshkin et al., 2015).
Members of theMethanococcaceae have been shown
to shunt carbon to diverse non-methylotrophic
community members in microbial mats situated at
marine hydrocarbon seeps (Paul et al., 2017). Thus,
in the Sulzbrunn biofilms, complex communities
and interaction networks can be considered to drive
methane oxidation rather than single microbial
species.

Methanotrophs are also well known as producers
of abundant extracellular polysaccharides (Linton
et al., 1986; Strong et al., 2015). Many of them
possess the ribulose monophosphate pathway to fix
methyl-group-derived carbon. The production of
extracellular polysaccharides from methanol is
balanced in terms of adenosine triphosphate and
reducing equivalents (Linton et al., 1986). The
observed exopolysaccharide production is conceiva-
ble as an energy-spilling reaction, preventing the
buildup of toxic formaldehyde under excess
methane supply, and providing methane-derived
reduced carbon to other heterotrophic members of
the biofilm community. Some methanotrophs have
been shown to ferment methane and release large
amounts of reduced carbon under oxygen-limited
conditions (Kalyuzhnaya et al., 2013). Growth
limitation by limited nitrogen or phosphorous
supply, as suggested especially for the aerial biofilms
by high C:N:P ratios, would support this scenario.
Although many methanotrophs are capable of fixing
dinitrogen (Knief, 2015), P limitation will not be
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readily complemented in aerial biofilms. The C:P
(~4700) and N:P (~80) ratios observed in biofilms are
clearly much higher than canonical Redfield ratios
or than C:N:P ratios suggested to indicate bacterial P
limitation (Vrede et al., 2002). Therefore, we propose
that the massive extracellular matrix formed in the
Sulzbrunn biofilms serves, at least in part, as an
electron sink for nutrient-limited methylotrophs.

Besides well-known proteobacterial methano-
trophs and methylotrophs, members of the candidate
genus Methylomirabilis were also detected but
appeared restricted to submersed biofilms in Sulz-
brunn. These are known as nitrate-dependent anae-
robic methane oxidizers proposed to intra-
aerobically oxidize methane under NO dismutation
(Ettwig et al., 2010). Their detection points toward
the possible occurrence of anaerobic methane oxida-
tion in specific microniches of the Sulzbrunn
biofilms. Furthermore, we are currently investigating
whether Archaea could also possibly be involved in
methane cycling in the system. Preliminary data
suggest that a low abundance of largely uncultured
archaeal lineages can be found in the submersed
biofilms and water samples but not in aerial biofilms.
Furthermore, the abundant detection of putatively
sulfur-oxidizing (Watanabe et al., 2014) and iron-
oxidizing (Emerson et al., 2013), as well as iron-
reducing (Cummings et al., 1999), members of the
Betaproteobacteria, especially in spring and mixed
cave waters, points toward active sulfur and iron
cycling in the cave. However, these processes, as
well as their possible link to carbon cycling, could
not be further traced in the present study but will be
the subject of future work.

Possible role of iodine
The visualization of the biofilm matrix revealed
unique structural features of the biofilms. Although
large globular structures have been previously
reported for biofilms in technical systems (Okabe
et al., 1999; Weissbrodt et al., 2013), a comparably
massive embedding of single or small numbers of
cells in capsules and networks of glycoconjugates, to
the best of our knowledge, has not been observed. It
is tempting to speculate that besides a possible role
as an electron sink, the biofilm matrix could also
serve as protective barrier against harmful agents
possibly present in the Sulzbrunn system. The
concept of biofilms as a diffusive barrier against
antimicrobials is well established (Flemming et al.,
2016). In the iodine-rich waters and biofilms of the
Sulzbrunn cave, the possibility of bactericidal
activity of iodine species should be discussed.

Iodine is well known as a disinfectant, but
interestingly, the mechanisms of its toxicity are still
not fully elucidated, probably owing to its complex
chemistry (Küpper et al., 2011). Elemental iodine (I2)
is not stable in aqueous solution, where it readily
hydrolyses to iodide (I−), hypoiodous acid (HOI) and
several other iodine species (Gottardi, 1999). Under

elevated pH, the formation of iodate (IO3
−) by

chemical disproportionation is also possible. Iodide
and iodate are considered as non-toxic, while
elemental iodine, hypoiodous acid and triiodide
(I3−) are suggested as bactericidal oxidizing agents
(Gottardi, 1999). Owing to its complex behavior as a
solute, comprehensive iodine speciation is challen-
ging and has not yet been accomplished for different
Sulzbrunn samples.

Although we assume that most of the total iodine
emerging with the reduced mineral water was
iodide, this could undergo a number of microbially
driven oxidation and volatilization reactions in the
cave. The oxidation of iodide to elemental iodine in
the presence of polysaccharides has been shown for
Pseudomonas iodooxidans (Gozlan and Margalith,
1974) and distinct Alphaproteobacteria (Amachi
et al., 2005), which were even stimulated under
high iodide concentrations (Arakawa et al., 2012).
An Arenibacter sp. (Bacteroidetes) has been reported
to accumulate iodine during that process (Ito et al.,
2016). Moreover, various isolates from iodine-rich
habitats, including Erythrobacter, Pseudomonas and
Rhizobium spp., have been shown to methylate
iodide, thus volatilizing it as highly reactive iodo-
methane (CH3I) (Amachi et al., 2005; Fujimori et al.,
2012). And finally, Pseudomonas sp. SCT has been
shown capable of anaerobic growth with iodate as
sole electron acceptor or while simultaneously
reducing nitrate (Amachi et al., 2007).

The abundant detection of all of the above genera
in the Sulzbrunn biofilms, as well as the higher
iodine concentrations found in the snottites
(Table 2), imply that volatilization processes may
actually have been ongoing in the cave. The
volatilization as iodomethane and subsequent oxida-
tion by methyl halide oxidizers in aerial biofilms
(McDonald et al., 2002) seems plausible and could
establish a link between the cycling of methane and
iodine in the system. It can be cautiously speculated
that iodide released upon iodomethane oxidation by
methylotrophs in snottites could then be oxidized to
iodine by other community members, thus possibly
contributing to iodine stress and glycoconjugate
production in biofilms. As a first step to follow-up
on this, we have tried to quantify iodomethane in the
cave atmosphere by gas chromatography. Although
we were able to detect it upon several occasions
(data not shown), a consistent and reproducible
quantification was not accomplished so far, possibly
due to the highly reactive nature of this
methylating agent.

Conclusions

Here the Sulzbrunn spring cave is described as a
unique habitat for microbial biofilm growth.
Although the cave is situated just several meters
below the surface, microbial communities largely
independent from surface carbon and energy inputs
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were discovered. In contrast to our initial expecta-
tion, biofilm microbiota were surprisingly diverse,
with a host of populations closely related to well-
known methanotrophs, methylotrophs and also
potentially iodine-cycling bacteria. These findings
provide further evidence for the relevance of
subterranean methane sinks by microbes
(McDonough et al., 2016; Lennon et al., 2017). We
propose that the massive extracellular polymeric
substance production observed could serve as an
electron sink for the nutrient-limited and therefore
growth-limited methylotrophs. Although these
first insights into an apparently unique subsurface
biofilm system are very intriguing, many open
research questions remain. The application of
13C-labeled methane and methylotrophic substrates
in combination with nucleic acid-based stable isotope
probing is currently ongoing and will help to further
unravel the complex patterns of carbon and energy
sharing to be expected within the biofilms. Future
research should also address the spatial organization
and metagenomic repertoire of biofilm microbiota, as
well as the possible role of Archaea, Protozoa, phage
and fauna, in the food web of this ecosystem
apparently dominated by prokaryotes.
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