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Abstract

Background

Ossification of the posterior longitudinal ligament (OPLL) of the spine is considered a multi-

factorial and polygenic disease. We aimed to investigate the association between four sin-

gle nucleotide polymorphisms (SNPs) of pre-miRNAs [miR-146aC>G (rs2910164),miR-
149T>C (rs2292832),miR-196a2T>C (rs11614913), andmiR-499A>G (rs3746444)] and

the risk of cervical OPLL in the Korean population.

Methods

The genotypic frequencies of these four SNPs were analyzed in 207 OPLL patients and

200 controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-

RFLP) assay.

Findings

For four SNPs in pre-miRNAs, no significant differences were found between OPLL patients

and controls. However, subgroup analysis based on OPLL subgroup (continuous: continu-

ous type plus mixed type, segmental: segmental and localized type) showed thatmiR-
499GG genotype was associated with an increased risk of segmental type OPLL (adjusted

odds ratio = 4.314 with 95% confidence interval: 1.109–16.78). In addition, some allele com-

binations (C-T-T-G, G-T-T-A, and G-T-C-G ofmiR-146a/-149/-196a2/-499) and combined

genotypes (miR-149TC/miR-196a2TT) were associated with increased OPLL risk, whereas

the G-T-T-G and G-C-C-G allele combinations were associated with decreased OPLL risk.
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Conclusion

The results indicate that GG genotype ofmiR-499 is associated with significantly higher

risks of OPLL in the segmental OPLL group. ThemiR-146a/-149/-196a2/-499 allele combi-

nations may be a genetic risk factor for cervical OPLL in the Korean population.

Introduction
Ossification of the posterior longitudinal ligament (OPLL) of the spine is a common disease char-
acterized by growth of the PLL, development of ossification centers and eventual calcification
and formation of mature ectopic bone. It generally occurs in the aging population, affecting 0.8–
3.0% of eastern Asians [1–3]. OPLL presents with myelopathy and/or radiculopathy due to
chronic compression of the spinal cord and nerve roots. It is a multi-factorial disease influenced
by genetic and environmental factors. Several lines of evidence suggest that genetic factors con-
tribute to its etiology and pathogenesis. Affected sibling-pair linkage studies, candidate gene asso-
ciation studies, and a genome-wide association study identified a number of genes or loci that are
linked to OPLL susceptibility [1–11]. To date, however, no genetic study has been designed to
identify microRNA (miRNA) polymorphisms that may be associated with OPLL risk.

miRNAs are small, single-stranded, non-protein-coding RNAs that pair with sites in 30-
untranslated regions (30-UTR) of messenger RNAs (mRNAs) to downregulate their expression
[12]. Recently, several studies demonstrated that single nucleotide polymorphisms (SNPs)
present in miRNA genes can alter miRNA expression and/or maturation and can cause a wide
variety of pathology. Several SNPs have been reported in pre-miRNA (miRNA precursor)
sequences with documented effects on the miRNA expression and function. Four well-known
SNPs in pre-miRNA sequences (miR-146a C>G [rs2910164],miR-149 T>C [rs2292832],
miR-196a2 T>C [rs11614913], andmiR-499 A>G [rs3746444]) have been extensively studied
in various types of cancer [13–17], ischemic stroke [18], moyamoya disease [19], premature
ovarian failure [20], and spontaneous abortion [21] by our group and by others. Among these
four SNPs, themiR-149 rs2292832 SNP is the only one located outside the mature region of
pre-mir-149. However,miR-146a C>G [rs2910164],miR-196a2 T>C [rs11614913] andmiR-
499 A>G [rs3746444]) polymorphisms occurs in the 3p strand in mature miRNA regions (Fig
1), and they may have influence on both the binding of target mRNAs to 3p mature miRNAs
and pre-miRNA maturation of 5p and 3p miRNAs [14, 22–26]. In addition, the SNPs in the
pre-miRNA region ofmiR-146a,miR-196a2, andmiR-499 not only influences mature miRNA
expression, but also affects target gene expression [14, 22–26].

miR-146a has been found to be involved in the regulation of osteogenesis [27,28], inflamma-
tion [29], and human chondrocyte apoptosis [30]. It has been reported that the expression of
the methylenetetrahydrofolate reductase (MTHFR) gene may be regulated bymiR-149 and a
common polymorphism (C677T) in the gene encoding MTHFR may be associated with bone
mineral density [31,32].miR-196a2 can target annexin A1 (ANX A1), which is related to anti-
inflammation [33].miR-499 can influence the inflammatory reaction by modulating C-reactive
protein (CRP) [34,35]. Considering that OPLL is considered to result from progressive inflam-
mation of the ligaments [36] and an enhanced potential for osteogenesis [37], the four miRNAs
targets may play a role in the pathogenesis of OPLL by modulating inflammation pathways
and osteogenic differentiation. However, there is limited literature critically examining the role
of miRNA polymorphisms in determining the risk of OPLL. Herein, we investigated the
genetic association between four these SNPs in pre-miRNAs and cervical OPLL risk in the
Korean population.
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Materials and Methods

Study population
Subjects were recruited from the populations of South Korean provinces of Seoul and
Gyeonggi-do between January 2014 and July 2015. This study was approved by Institutional
Review Board of CHA Bundang Medical Center (IRB number: BD2014007). We selected 207
consecutive patients with cervical OPLL, who visited CHA Bundang Medical Center. Diagno-
ses were made by computed tomography (CT) and magnetic resonance imaging (MRI) exami-
nation by two independent experienced neurosurgeons. Dual-energy X-ray absorptiometry
(DEXA) scan was performed on the lower spine and hips for measuring bone mineral density.
All patients met the following eligibility criteria: 1) no metabolic diseases; such as diffuse idio-
pathic skeletal hyperostosis, pituitary diseases, and hyperparathyroidism; 2) no treatment
interfering with bone metabolism or coagulation, including anticoagulants, oral contraceptives,
hormones replacement therapy, glucocorticoids, calcium, or vitamin D; 3) no ankylosing spon-
dylitis and spondylosis deformans; 4) normal bone mass (BMD: T-score, -1.0 through +1.0); 5)
no prior stroke or ischemic heart disease. The ossified lesions were classified into four types (1)
continuous type, which involves a long lesion extending over several vertebral bodies; (2) seg-
mental type, which involves a few or several separate lesions behind the vertebral bodies; (3)
mixed type, which is a combination of the first two, and (4) localized type, which involves a
lesion at the level of intervertebral disc [38].

Clinical studies on OPLL revealed that patients with continuous and mixed type OPLL have
a higher risk of progression of the ossification area and a worse prognosis, compared to patients

Fig 1. Structures and the locations of single nucleotide polymorphisms of pre-miR-146a,miR-149,
miR-196a2, andmiR-499.

doi:10.1371/journal.pone.0159756.g001
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with segmental and localized type [39]. There are genetic differences in the osteogenic differen-
tiation potency between the OPLL continuous (continuous and mixed type) and segmental
(segmental type plus localized type) groups [40]. Therefore, we categorized the four types of
cervical OPLL into two groups: the OPLL segmental group (segmental and localized types) and
the OPLL continuous group (continuous and mixed types).

We recruited 200 control subjects who underwent cervical CT due to persistent posterior
neck pain after a rear-end motor vehicle collision. Control subjects had no neurological signs,
including radiculopathy and/or myelopathy, and did not have a recent history of cerebrovascu-
lar disease or myocardial infarction. Cervical CT did not show any evidence of OPLL, cervical
spinal stenosis, and spondylosis deformans. We utilized similar exclusion criteria as that was
used in patient group, as described above. Demographic features and comorbidities such as
hypertension, diabetes mellitus (DM), and cerebro-and cardiovascular diseases were investi-
gated in all subjects. Hypertension was defined as systolic blood pressure was>140 mmHg, or
a diastolic pressure>90 mmHg on more than one occasion, including those patients taking
antihypertensive medications. DM was defined as a fasting plasma glucose level�126 mg/dL,
including in patients taking insulin or oral hypoglycemic agent. Written consents were
obtained for all the participants.

Genetic analyses
DNA was extracted from leukocytes using the G-DEXTM II Genomic DNA Extraction kit
(iNtRON Biotechnology, Seongnam, South Korea), according to the manufacturer’s instruc-
tions. The polymerase chain reaction -restriction fragment length polymorphism (PCR-RFLP)
was used to genotype themiR-146aC>G,miR-149T>C,miR-196a2T>C, andmiR-499A>G
SNPs as described previously [16–21]. Briefly, one microliter from each sample was used to
amplifymiR-146a,miR-196a, andmiR-499 genes. PCR primers were designed using Primer-
QuestTM (Integrated DNA Technologies, Coralville, IA, USA). The actual concentration of the
DNA was 100ng/μl and all DNA samples were normalized to 100ng/μl for use in PCR. The
primer sequences used for amplification were as follows:miR-146a C>G: forward 50-CAT GGG
TTG TGT CAG TGT CAG AGC T-30 and reverse 50-TGC CTT CTG TCT CCA GTC TTC
CAA-30;miR-149 T>C: forward 50-CTG GCT CCG TGT CTT CAC TC-30 and reverse 50-TGA
GGC CCG AAA CAC CCG TA-30;miR-196a2 T>C: forward 50-CCC CTT CCC TTC TCC
TCC AGA TA-30 and reverse 50-CGA AAA CCG ACT GAT GTA ACT CCG-30; andmiR-
499A>G: forward 50-CAA AGT CTT CAC TTC CCT GCC A-30 and reverse 50-GAT GTT TAA
CTC CTC TCC ACG TGA TC-30 (Fig 1). The underlined bases represent mismatches with the
complementary sequence. ThemiR-146aC>G,miR-149T>C,miR-196a2T>C, andmiR-
499A>G polymorphisms were detected by digesting the PCR products with SacI, AluI,MspI,
and BclI, respectively (New England BioLabs, Beverly, MA, USA). The reaction products (12 μl)
were run on a 3.0% ethidium bromide-stained agarose gel and directly visualized under ultravio-
let illumination. For each of the miRNA polymorphisms, approximately 10% of the PCR assays
were randomly selected for a second PCR assay to validate the RFLP analysis, followed by DNA
sequencing [16–21]. DNA sequencing was performed with an automatic sequencer (ABI3730x I
DNA analyzer; Applied Biosystems, Foster City, CA, USA). The concordance of the quality con-
trol sample was 100%.

We analyzed gene-gene interaction among the four miRNAs loci using the multifactor
dimensionality reduction (MDR) method (MDR software package, v.2.0, www.epistasis.org)
[18, 20, 41–45]. The MDR consists of two main steps. First, the best combination of multifac-
tors are selected. Second, the genotype combinations are divided into high- and low-risk
groups [46]. Using MDR method, we constructed all possible allele combinations of the four
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SNPs. The HAPSTAT software (v.3.0, www.bios.unc.edu/~lin/hapstat/) was used to estimate
the frequencies of allele combinations for the polymorphisms selected by MDR analysis with
strong synergistic effects.

Statistical analyses
Data analysis was performed using STATSDIRECT software version 2.4.4 (StatsDirect Ltd.,
Altrincham, UK) and GRAPHPAD PRISM 4.0 (GraphPad Software, Inc., San Diego, CA,
USA). The odds ratio (OR) and confidence interval (CI) were calculated to estimate the relative
risk of the four SNPs for cervical OPLL. Variableare presented as mean ± standard deviation
compared using a Student t test for continuous variables and the Chi-square test for categorical
variables between case abd control groups. Logistic regression analyses were to adjust possible
confounders, including age, gender, hypertension and DM. A probability (P) value of 0.05 was
considered to indicate statistical significance.

Results

Study population
The clinical characteristics of OPLL and control subjects are summarized in Table 1. There was
no statistically significant difference for age and gender. Additionally, the prevalence of hyper-
tension and DM did not differ between controls and patients with OPLL (Table 1). All OPLL
patients underwent surgery during their admission due to severe myelopathy. In patients with
an occupying rate (area occupied by OPLL/area of the total spinal canal) less than 50% and no
more than three ossified segments, anterior approach (corpectomy and resection of OPLL) was
chosen. Patients with massive OPLL with an occupying rate 50% or more and more than three
levels were treated by posterior approach (laminectomy and lateral mass fusion, or lamino-
plasty) or combined anterior and posterior approach. One hundred and twenty six patients
(60.9%) underwent a posterior-only approach, and 76 (36.7%) underwent an anterior-only
approach and 5 (2.0%) underwent the combined approach. Of the 207 OPLL patients, 134
were part of the OPLL continuous group (continuous type; n = 62 and mixed type; n = 72) and
73 constituted the OPLL segmental group (segmental type; n = 38 plus localized type; n = 35).

Genotype frequencies of miRNA polymorphisms
We investigatedmiR-146aC>G,miR-149T>C,miR-196a2T>C, andmiR-499A>G polymor-
phisms (S1 Table). Table 2 shows their genotype distributions in patients with OPLL and con-
trol subjects. The four studied miRNA polymorphisms were in complete Hardy-Weinberg
equilibrium. There were no significant difference in genotypic frequencies ofmiR-146a,miR-
149,miR-196a2, andmiR-499 SNPs between OPLL patients and controls. We calculated the

Table 1. Baseline characteristics in patients and control subjects.

Characteristics Control (%) Case (%) P

Patient number 200 207

Male (%) 114 (57.0) 142 (68.6) 0.264

Age (years, mean ± SD) 53.58 ± 9.45 54.63 ± 9.70 0.268

Hypertension 81 (40.5) 89 (43.0) 0.611

DM 29 (14.5) 38 (18.4) 0.273

Values are the mean ± standard deviation or n (%) of participants. DM, diabetes mellitus. P-values are chi-square test for the categorical data, and the

Student t test for the continuous data

doi:10.1371/journal.pone.0159756.t001

MicroRNA Polymorphism and Cervical OPLL

PLOSONE | DOI:10.1371/journal.pone.0159756 July 25, 2016 5 / 14

http://www.bios.unc.edu/~lin/hapstat/


adjusted OR (AOR) from logistic regression analyses on age, gender, hypertension, and DM.
There was no significant difference between groups even after AOR from logistic regression
analyses (Table 2). A subgroup analysis showed a significantly increased risk of OPLL for sub-
jects with themiR-499A>G polymorphism (AA+AG vs GG: AOR, 4.314; 95% CI, 1.088–
26.293, P = 0.035) in the segmental OPLL subgroup (Table 3). However, we did not find any
significant association between the control and patients groups in the continuous OPLL
subgroup.

To explore the possible gene-gene interaction, we constructed possible allele combinations
ofmiR-146a,miR-149,miR-196a2, andmiR-499 as described previously [18,20,41–46]. Inter-
estingly, there was significant difference in several allele combination frequencies in patients
with OPLL in comparison to control subjects (Table 4). When patients with OPLL were com-
pared to control subjects,miR-146aC/-149T/-196a2T/-499G (AOR, 2.346, 95% CI, 1.084–
5.075, P = 0.037),miR-146aG/-149T/-196a2T/-499A (AOR, 2.231, 95% CI, 1.345–3.699,
P = 0.003), andmiR-146aG/-149T/-196a2C/-499G (AOR, 37.040, 95% CI, 2.170–632.500,

Table 2. AOR values of OPLL prevalence among four microRNAs genotypes in samples.

Characteristics Controls (n = 200) OPLL (n = 207) COR (95% CI) P AOR (95% CI)a Pb

miR-146aC>G

CC 70 (35.0) 74 (35.7) 1.000 (reference) 1.000 (reference)

CG 97 (48.5) 103 (49.8) 1.005 (0.654–1.542) 0.984 1.038 (0.673–1.601) 0.866

GG 33 (16.5) 30 (14.5) 0.860 (0.475–1.556) 0.618 0.808 (0.442–1.476) 0.487

Dominant (CC vs CG+GG) 0.968 (0.645–1.453) 0.875 0.976 (0.647–1.470) 0.906

Recessive (CC+CG vs GG) 0.858 (0.501–1.469) 0.576 0.801 (0.465–1.381) 0.424

HWE P 0.950 0.543

miR-149T>C
TT 104 (52.0) 98 (47.3) 1.000 (reference) 1.000 (reference)

TC 74 (37.0) 94 (45.4) 1.348 (0.894–2.033) 0.154 1.309 (0.862–1.989) 0.207

CC 22 (11.0) 15 (7.2) 0.724 (0.355–1.475) 0.373 0.652 (0.316–1.346) 0.247

Dominant (TT vs TC+CC) 1.205 (0.817–1.778) 0.348 1.160 (0.782–1.721) 0.460

Recessive (TT+TC vs CC) 0.632 (0.318–1.257) 0.191 0.589 (0.294–1.180) 0.136

HWE P 0.118 0.237

miR-196a2T>C

TT 57 (28.5) 60 (29.0) 1.000 (reference) 1.000 (reference)

TC 95 (47.5) 101 (48.8) 1.010 (0.639–1.597) 0.966 1.025 (0.645–1.630) 0.916

CC 48 (24.0) 46 (22.2) 0.910 (0.529–1.567) 0.735 0.861 (0.496–1.493) 0.594

Dominant (TT vs TC+CC) 0.977 (0.636–1.500) 0.914 0.968 (0.628–1.494) 0.884

Recessive (TT+TC vs CC) 0.905 (0.571–1.435) 0.671 0.849 (0.532–1.357) 0.495

HWE P 0.497 0.777

miR-449A>G

AA 143 (71.5) 146 (70.5) 1.000 (reference) 1.000 (reference)

AG 53 (26.5) 53 (25.6) 0.980 (0.628–1.529) 0.927 0.984 (0.628–1.542) 0.944

GG 4 (2.0) 8 (3.9) 1.959 (0.577–6.650) 0.281 2.064 (0.598–7.129) 0.252

Dominant (AA vs AG+GG) 1.048 (0.683–1.609) 0.830 1.057 (0.686–1.629) 0.801

Recessive (AA+AG vs GG) 1.970 (0.584–6.648) 0.275 2.049 (0.600–6.999) 0.252

HWE P 0.721 0.260

a Adjusted by age, gender, hypertension and diabetes mellitus.
b False positive discovery rate-adjusted P-value.

OPLL: Ossification of posterior longitudinal ligament, COR: crude odds ratio, AOR: adjusted odds ratio

doi:10.1371/journal.pone.0159756.t002
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P< 0.0001) were significantly associated with an increased OPLL risk. In addition,miR-
146aG/-149T/-196a2T/-499G (AOR, 0.044, 95% CI, 0.003–0.752, P = 0.001) andmiR-146aG/
-149C/-196a2C/-499G (AOR, 0.061, 95% CI, 0.004–1.057, P = 0.006) were significantly associ-
ated with a decreased OPLL risk (Table 4). We further compared the combined genotype
distributions ofmiR-146a,miR-149,miR-196a2, and miR-499 in patients with OPLL to con-
trols (Table 5). The combined genotype analysis showed a significant association between

Table 3. AOR values of continuous OPLL subgroup and segmental OPLL subgroup prevalence among four microRNAs genotypes in samples.

Characteristics Controls
(n = 200)

Continuous +mixed
(n = 135)

AORa (95% CI) Pb Segmental +localized
(n = 65)

AORa (95% CI) Pb

miR-146aC>G

CC 70 (35.0) 45 (33.3) 1.000 (reference) 23 (35.4) 1.000 (reference)

CG 97 (48.5) 69 (51.1) 1.171 (0.714–
1.921)

0.531 33 (50.8) 1.071 (0.576–
1.990)

0.829

GG 33 (16.5) 21 (15.6) 0.893 (0.451–
1.767)

0.745 9 (13.8) 0.866 (0.356–
2.108)

0.752

Dominant (CC vs CG
+GG)

1.108 (0.694–
1.771)

0.667 1.029 (0.569–
1.859)

0.925

Recessive (CC+CG vs
GG)

0.850 (0.463–
1.561)

0.601 0.811 (0.363–
1.813)

0.609

miR-149T>C

TT 104 (52.0) 66 (48.9) 1.000 (reference) 28 (43.1) 1.000 (reference)

TC 74 (37.0) 60 (44.4) 1.197 (0.749–
1.914)

0.452 33 (50.8) 1.565 (0.864–
2.832)

0.139

CC 22 (11.0) 9 (6.7) 0.551 (0.234–
1.295)

0.172 4 (6.2) 0.588 (0.184–
1.878)

0.370

Dominant (TT vs TC
+CC)

1.048 (0.671–
1.637)

0.836 1.342 (0.757–
2.378)

0.315

Recessive (TT+TC vs
CC)

0.509 (0.224–
1.159)

0.108 0.514 (0.169–
1.566)

0.242

miR-196a2T>C

TT 57 (28.5) 40 (29.6) 1.000 (reference) 18 (27.7) 1.000 (reference)

TC 95 (47.5) 59 (43.7) 0.925 (0.544–
1.572)

0.773 38 (58.5) 1.277 (0.665–
2.451)

0.463

CC 48 (24.0) 36 (26.7) 0.999 (0.546–
1.831)

0.998 9 (13.8) 0.612 (0.248–
1.508)

0.286

Dominant (TT vs TC
+CC)

0.954 (0.585–
1.556)

0.850 1.061 (0.565–
1.993)

0.853

Recessive (TT+TC vs
CC)

1.073 (0.643–
1.789)

0.789 0.497 (0.227–
1.089)

0.081

miR-449A>G
AA 143 (71.5) 96 (71.1) 1.000 (reference) 45 (69.2) 1.000 (reference)

AG 53 (26.5) 36 (26.7) 0.998 (0.603–
1.651)

0.993 15 (23.1) 0.865 (0.442–
1.693)

0.673

GG 4 (2.0) 3 (2.2) 1.189 (0.252–
5.603)

0.827 5 (7.7) 4.298 (1.079–
17.127)

0.039

Dominant (AA vs AG
+GG)

1.011 (0.619–
1.651)

0.965 1.090 (0.590–
2.016)

0.783

Recessive (AA+AG vs
GG)

1.196 (0.256–
5.588)

0.820 4.314 (1.109–
16.778)

0.035

a Adjusted by age, gender, hypertension and diabetes mellitus.
b False positive discovery rate-adjusted P-value.
OPLL: Ossification of posterior longitudinal ligament, COR: crude odds ratio, AOR: adjusted odds ratio

doi:10.1371/journal.pone.0159756.t003
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miR-149TC/-196a2TT combined genotype and OPLL risk (AOR, 2.322, 95% CI, 1.043–5.171,
P = 0.039).

Discussion
In this case-control study of 407 total Korean patients, we found that themiR-499GG genotype
was associated with an increased risk of OPLL in the segmental OPLL subgroup. In addition,
some allele combinations (miR-146aC/-149T/-196a2T/-499G,miR-146aG/-149T/-196a2T/-
499A, andmiR-146aG/-149T/-196a2C/-499G) were associated with an increased OPLL risk,
whereasmiR-146aG/-149T/-196a2T/-499G andmiR-146aG/-149C/-196a2C/-499G had a pro-
tective role in OPLL pathogenesis. To the best of our knowledge, this is the first study to exam-
ine the role of miRNA polymorphisms in the pathogenesis of OPLL.

The exact mechanisms of OPLL initiation and promotion remain unclear. The endochon-
dral ossification process in OPLL is associated with degenerative changes in elastic fibers and
cartilage formation as well as with changes in vascular endothelial growth factor (VEGF)-posi-
tive metaplastic chondrocytes in the ossification front [47]. Additionally, OPLL results from
abnormal osteogenic differentiation of the ligaments, secondary to inflammation, or systemic
dysfunction of bone metabolism [2,3,5]. Thus, the susceptibility to OPLL may be mediated by
changes in the genes encoding proteins that are related to osteogenesis, inflammation, and
bone metabolism [1,3–11]. Based on the classification of OPLL, the OPLL continuous (contin-
uous and mixed type) subgroup can present a higher risk of aggravating myelopathy compared
to the OPLL segmental subgroup (segmental and localized type) [39]. Interestingly, there are
genetic differences in the osteogenic differentiation potential between the OPLL continuous
and OPLL segmental subgroups [40].

Table 4. The haplotype analysis of themiR-146aG>C,miR-149T>C,miR196a2T>C, andmiR499A>G polymorphisms between the control group
and patients with OPLL.

Characteristics Control (2n = 400) OPLL (2n = 414) OR (95% CI) P*

miR-146aG>C/miR-149T>C/miR-196a2T>C/miR-499A>G

C-T-T-A 87 (21.8) 68 (16.5) 1.000 (reference)

C-T-T-G 12 (3.0) 22 (5.2) 2.346 (1.084–5.075) 0.037

C-T-C-A 63 (15.7) 76 (18.4) 1.543 (0.974–2.447) 0.080

C-T-C-G 11 (2.7) 5 (1.2) 0.582 (0.193–1.754) 0.430

C-C-T-A 26 (6.5) 27 (6.5) 1.329 (0.711–2.483) 0.426

C-C-T-G 5 (1.2) 9 (2.2) 0.168 (0.738–7.191) 0.168

C-C-C-A 28 (6.9) 34 (8.3) 1.554 (0.859–2.810) 0.176

C-C-C-G 6 (1.5) 10 (2.5) 2.132 (0.738–6.161) 0.191

G-T-T-A 39 (9.9) 68 (16.5) 2.231 (1.345–3.699) 0.003

G-T-T-G 14 (3.4) 0 (0.0) 0.044 (0.003–0.752) 0.001

G-T-C-A 56 (14.1) 37 (8.9) 0.845 (0.501–1.426) 0.596

G-T-C-G 0 (0.0) 14 (3.5) 37.040 (2.170–632.500) <0.0001

G-C-T-A 22 (5.5) 18 (4.3) 1.047 (0.520–2.106) 1.000

G-C-T-G 4 (1.0) 9 (2.2) 2.879 (0.850–9.751) 0.090

G-C-C-A 17 (4.4) 17 (4.0) 1.279 (0.608–2.691) 0.570

G-C-C-G 10 (2.6) 0 (0.0) 0.061 (0.004–1.057) 0.006

Haplotypes of frequencies <5% and not significant were excluded.

* P-values were calculated by Fisher's exact test.

OPLL: Ossification of posterior longitudinal ligament, OR: odds ratio

doi:10.1371/journal.pone.0159756.t004
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miRNAs can influence osteogenic differentiation and affect bone metabolism or the bone
healing process. Accumulating evidence recently indicated a vital role of miRNAs in the devel-
opment of various bone diseases [48–53]. miRNAs appears to regulate posttranscriptional gene

Table 5. Comparison microRNAs combined genotype between the controls and patients.

Characteristics Control (n = 200) OPLL (n = 207) AOR (95% CI) P

miR-146a/miR-149

CC/TT 40 (20.0) 38 (18.4) 1.000 (reference)

CC/TC 23 (11.5) 27 (13.0) 1.285 (0.610–2.703) 0.510

CG/TT 51 (25.5) 45 (21.7) 0.971 (0.527–1.791) 0.926

CG/TC 33 (16.5) 52 (25.1) 1.791 (0.941–3.408) 0.076

CG/CC 13 (6.5) 6 (2.9) 0.396 (0.131–1.195) 0.100

GG/TT 13 (6.5) 15 (7.2) 1.232 (0.509–2.986) 0.644

GG/TC 18 (9.0) 15 (7.2) 0.768 (0.331–1.784) 0.540

miR-146a/miR-196a2

CC/TT 25 (12.5) 19 (9.2) 1.000 (reference)

CC/TC 30 (15.0) 38 (18.4) 2.125 (0.924–4.888) 0.076

CC/CC 15 (7.5) 17 (8.2) 1.312 (0.494–3.485) 0.586

CG/TT 22 (11.0) 28 (13.5) 2.181 (0.878–5.419) 0.093

CG/TC 51 (25.5) 51 (24.6) 1.459 (0.702–3.032) 0.312

CG/CC 24 (12.0) 24 (11.6) 1.395 (0.604–3.223) 0.436

GG/TT 10 (5.0) 13 (6.3) 1.902 (0.661–5.472) 0.233

GG/TC 14 (7.0) 12 (5.8) 1.176 (0.422–3.276) 0.756

miR-146a/miR-499

CC/AA 51 (25.5) 51 (24.6) 1.000 (reference)

CC/AG 18 (9.0) 20 (9.7) 1.145 (0.530–2.474) 0.730

CG/AA 69 (34.5) 72 (34.8) 1.080 (0.643–1.815) 0.771

CG/AG 26 (13.0) 26 (12.6) 1.101 (0.554–2.186) 0.784

GG/AA 23 (11.5) 23 (11.1) 0.957 (0.472–1.940) 0.902

miR-149/miR-196a2

TT/TT 34 (17.0) 25 (12.1) 1.000 (reference)

TT/TC 46 (23.0) 57 (27.5) 1.763 (0.904–3.436) 0.096

TT/CC 24 (12.0) 16 (7.7) 0.869 (0.379–1.990) 0.739

TC/TT 19 (9.5) 30 (14.5) 2.322 (1.043–5.171) 0.039

TC/TC 36 (18.0) 38 (18.4) 1.398 (0.695–2.812) 0.348

TC/CC 19 (9.5) 26 (12.6) 1.772 (0.795–3.950) 0.162

miR-149/miR-499

TT/AA 77 (38.5) 74 (35.7) 1.000 (reference)

TT/AG 25 (12.5) 21 (10.1) 0.854 (0.434–1.680) 0.648

TC/AA 52 (26.0) 62 (30.0) 1.178 (0.715–1.940) 0.521

TC/AG 22 (11.0) 27 (13.0) 1.289 (0.669–2.484) 0.448

miR-196a2/miR-499

TT/AA 39 (19.5) 40 (19.3) 1.000 (reference)

TT/AG 17 (8.5) 17 (8.2) 0.948 (0.415–2.169) 0.900

TC/AA 70 (35.0) 74 (35.7) 1.016 (0.582–1.775) 0.956

TC/AG 23 (11.5) 23 (11.1) 1.058 (0.501–2.238) 0.882

CC/AA 34 (17.0) 32 (15.5) 0.825 (0.421–1.616) 0.575

CC/AG 13 (6.5) 13 (6.3) 0.863 (0.348–2.143) 0.751

The frequencies < 5% and not significant were excluded. OPLL: Ossification of posterior longitudinal ligament, AOR: adjusted odds ratio.

doi:10.1371/journal.pone.0159756.t005
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expression by binding to the 30-UTRs of the target mRNAs [11] and SNPs located in the gene
30-UTRs of mRNAs indeed significantly contribute to the variation in term of expression [54].
Our study demonstrated that 4 well-known SNPs in pre-miRNA sequences (miR-146a,miR-
149,miR-196a2, andmiR-499) are associated with various diseases [16–21]. As shown in Fig 1,
SNPs inmiR-146a,miR-196a2, and miR-499 are all located in their corresponding 3p mature
miRNA regions [14, 22–26], and they may impact miRNA-target interaction leading to influ-
ence mature miRNA expression and target gene expression [14, 22–26].

Understanding the potential roles of the four miRNAs is important to elucidate OPLL etiol-
ogies. However, we could not demonstrate in vitro functionalities ofmiR-146a, -149, -196a2,
-499 genetic variations in the present study. The several studies indicated a potential association of
four miRNAs with the pathways of osteogenesis and inflammation.miR-146amay have a role in
the regulation of osteogenesis by attenuating SMAD2 and SMAD3 function in transforming
growth factor-β (TGF-β) signaling [29]. Additionally,miR-146amay be involved in inflammation
by suppressing the effects of inflammatory factors and human chondrocyte apoptosis by increas-
ing the levels of VEGF and damaging TGF-β signaling [30]. Tumor necrosis factor (TNF)-α
enhances osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells
through nuclear factor κB (NF-κB) activation.miR-146a overexpression could suppress osteogenic
differentiation and block NF-κB activation induced by TNF-α and toll-like receptor ligands [28].
A defect in themiR-146a-mediated negative loop may provide the environment for sustained acti-
vation of NF-κB and its targets to promote cells toward inflammation, apoptosis, and subsequent
abnormalities [35,55]. MTHFRmay be a target gene ofmiR-149 [29]. Numerous studies have
reported an association between theMTHFR polymorphism and reduced bone mineral density,
but results have been inconsistent [53,56]. A recent systematic meta-analysis showed that the
MTHFR 677C>T polymorphism is associated with reduced bone mineral density in the lumbar
spine and femoral neck in Caucasians, postmenopausal women, and men, and total body bone
mineral density in women [56]. ANXA1 (annexin A1), a possible target gene ofmiR-196a2, regu-
lates bone marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation
[32,57].miR-499may be involved in autoimmune and inflammatory diseases. The possible targets
ofmiR-499 include IL-17Rβ, IL-23α, IL-2R, IL-6, IL-2, and IL-18R. IL-6 could activate the produc-
tion of CRP and fibrinogen through the liver [34,35,58]. We hypothesized that chronic inflamma-
tion and abnormal osteogenic differentiation could play a role in the initiation and progression of
OPLL and analyzed SNPs in 4 miRNAs (miR-146a,miR-149,miR-196a2, andmiR-499), which are
known to be involved in inflammation and chondrogenic differentiation. In terms of a target of
miR-499, SOX6 is one of targets of miR-499 [59], and SOX6 has been reported to play an impor-
tant role in the endochondral ossification [60]. However, our data do not prove a direct interaction
of the target gene with the 4 miRNAs and our results should be interpreted with caution.

There are several limitations to this study. (1) The study population comprised only Korean
individuals and we cannot generalize our finding to other ethnic populations. Thus, present
findings need to be replicated and validated in other ethnic groups because SNPs and haplotype
structures can vary among different ethnic groups. (2) The relatively small sample size of indi-
vidual with OPLL subtype were used in current hospital-based case-control study. (3) We
could not conclusively rule out some other potential confounders such as exposure to different
environmental factors (such as smoking) and additional genetic factors. (4) We could not
prove that SNPs in the pre-miRNA region ofmiR-146a/-149/-196a2/-499 can actually affect
miRNA binding to target genes involved in OPLL in vitro. In the future, large, community-
based random sampling and in vitro study for validation of miRNA-target interaction will be
required to run replication studies in order to resolve partially these limitations.

In conclusion, themiR-499GG genotype is associated with an increased risk of OPLL in the
segmental OPLL subgroup and that themiR-146a/-149/-196a2/-499 allele combinations may
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be a genetic risk factor for cervical OPLL in the Korean populations. This study marks the first
report of an association between cervical OPLL and miRNA polymorphisms (miR-146aC>G,
-149T>C, -196a2T>C, and -499A>G) in the Korean population. Multiple variants with small
effects and complex network underlie the pathogenesis of OPLL. Thus, additional studies on
other racial and ethnic populations regarding the biological functions of miRNAs in OPLL are
required.
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