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Altered amygdala shape trajectories and emotion recognition
in youth at familial high risk of schizophrenia who develop
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Relatives of individuals with schizophrenia have a higher risk of developing the illness compared to the general population. Thus,
youth at familial high risk (FHR) offer a unique opportunity to identify neuroimaging-based endophenotypes of psychosis. Previous
studies have identified lower amygdalo-hippocampal volume in FHR, as well as lower verbal memory and emotion recognition.
However, whether these phenotypes increase the risk of transition to psychosis remains unclear. To determine if individuals who
develop psychosis have abnormal neurodevelopmental trajectories of the amygdala and hippocampus, we investigated
longitudinal changes of these structures in a unique cohort of 82 youth FHR and 56 healthy controls during a 3-year period. Ten
individuals from the FHR group converted to psychosis. Longitudinal changes were compared using linear mixed-effects models.
Group differences in verbal memory and emotion recognition performance at baseline were also analyzed. Surface-based
morphometry measures revealed variation in amygdalar shape (concave shape of the right dorsomedial region) in those who
converted to psychosis. Significantly lower emotion recognition performance at baseline was observed in converters. Percent trial-
to-trial transfer on the verbal learning task was also significantly impaired in FHR, independently of the conversion status. Our
results identify abnormal shape development trajectories in the dorsomedial amygdala and lower emotion recognition abilities as

phenotypes of transition to psychosis. Our findings illustrate potential markers for early identification of psychosis, aiding

prevention efforts in youth at risk of schizophrenia.
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INTRODUCTION

Schizophrenia is one of the most disabling medical disorders,
affecting about seven individuals per 1000 worldwide [1-3].
Because schizophrenia is a highly heritable disorder, relatives of
individuals with schizophrenia have a higher risk of developing
the illness compared to the general population [4, 5]. Hence,
unaffected youth at familial high risk (FHR) offers a unique
opportunity to examine how phenotypic brain variations and
cognitive profiles can help predict the predisposition of develop-
ing the illness.

Structural magnetic resonance imaging (MRI) studies have
consistently shown abnormalities in the amygdala and the
hippocampus in chronic and first-episode schizophrenia [6-9], as
well as in FHR [10-17]. The amygdala and the hippocampi are
important brain structures for memory and emotion processing
[18-21]. Lower hippocampal volumes have been related to lower
verbal learning in schizophrenia [22] and dysfunction in the
amygdala to lower emotion recognition [23]. However, the role of
the amygdala and the hippocampus in the development of these

cognitive impairments is not well understood. Furthermore, little is
known about the timing of these neurobiological and cognitive
phenotypes and whether they may contribute to later conversion
to psychosis, especially in individuals at higher risk for psychosis.

Most studies investigating the abnormal volume of the
amygdala and hippocampus as predictors of conversion to
psychosis in high-risk populations were performed in adult
individuals or were conducted on clinical high-risk patients
[24-29]. These studies have found either smaller right hippocam-
pus volume in converters [26, 28] or no significant differences in
these brain structures between converters and non-converters
[24, 25, 27, 29, 30]. Variability in clinical symptomatology, age of
the sample, imaging methods, and study designs (i.e., cross-
sectional and longitudinal) may have contributed to the incon-
sistencies reported in those studies.

One hypothesis that remains to be tested is that premorbid
longitudinal changes in the amygdala and the hippocampus could
be associated with conversion to psychosis. Therefore, studies
with younger FHR samples and longer follow-up periods are
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291 Scans

69 scans excluded for

.............................. » excessive motion, artifact or

poor segmentation quality

90 Scans total
32 Baseline scans only

222 Scans
HC FHR - FHR +
n=56 n=72 n=10

114 Scans total
40 Baseline scans only

18 Scans total
3 Baseline scans only

Fig. 1 Details on scans and participants included in our analyses. From the 69 excluded scans, 4 were FHR+, 32 FHR- and 33 HC. FHR— =
familial high risk who did not convert to psychosis, FHR+ = familial high risk who converted to psychosis, HC = healthy controls.

essential in understanding the role of these brain structures in the
conversion to psychosis. Moreover, subtle but meaningful
changes in these brain structures may not be captured by their
total volume [31]. Hence, considering the shape of these
structures and their constituents (e.g., hippocampal subfields) is
not only relevant in the context of normal development [32, 33],
but can also provide an additional and novel perspective on the
nature of brain structural alterations in the development of
psychotic illness.

In the current study, we investigated longitudinal changes in
the amygdala and hippocampus in 82 FHR youth followed for a
period of 3 years. We compared those who later converted to
psychosis (FHR+, n = 10) with those who did not (FHR—, n=72)
and 56 healthy controls. We had two objectives. First, we aimed to
determine whether the amygdala and hippocampus (including
subfields) have abnormal premorbid developmental trajectories
by comparing FHR who later developed psychosis to those who
did not. Second, we investigated whether abnormalities in
emotion recognition and verbal learning at baseline were
associated with later conversion to psychosis. We hypothesized
that FHR+ would show abnormal longitudinal trajectories of both
structures, as well as lower memory and emotion recognition
performance compared to FHR- and healthy controls.

METHODS

Participants

In this longitudinal study, participants consisted of relatives of
individuals with a diagnosis of schizophrenia or schizoaffective disorder
(FHR: n = 82; 67 first-degree relatives, 15 second-degree relatives) and 56
healthy controls with no first- or second-degree relatives with a
psychotic disorder. Controls were recruited via advertisements in the
same community locations as FHR participants. FHR participants were
recruited by approaching patients with schizophrenia with eligible
relatives in outpatient clinical services at the Western Psychiatric
Institute and Clinic, Pittsburgh, or related clinical sites. The Structured
Clinical Interview for DSM-IV Disorders (SCID) [34], as well as a consensus
diagnosis based on all available health records and interviews with key
informants (parents, guardians), were used to confirm the schizophrenia
or schizoaffective diagnosis of the patients. These consensus discussions,
led by Matcheri Keshavan MD and Debra Montrose PhD yielded lifetime
diagnoses prior to enrollment in the study and ruled out the presence of
a previous psychotic disorder in FHR and control participants. For
participants under the age of 15 years old, the SCID was supplemented
by the Developmental Disorders modules of the Kiddie Schedule for
Affective Disorders and Schizophrenia (K-SADS) [35]. The raters inter-
viewing FHR and healthy controls were not blind to the parental
diagnoses (this was difficult, since the assessors were often involved in
recruiting the participants from the clinics) (for details see ref. [36]).
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Inclusion criteria for all participants were: intelligence quotient (IQ) > 80
as determined by the Revised Wechsler Adult Intelligence Scale [37], no
lifetime evidence of a psychotic disorder, no previous exposure to
antipsychotic medications, no substance abuse within the past month or
dependence upon substances within the past 6 months, no significant
neurological or medical conditions, no MRI contraindications, and fluency
in English. All participants received a complete explanation of the
experiment and signed consent. Participants younger than 18 years of
age gave informed assent and the parent or guardian signed consent. Data
used in the current analyses were collected from 1995 to 2008. This
research was approved by the University of Pittsburgh Medical Center's
Institutional Review Board.

All participants were followed up at approximately annual intervals for
up to 3 years. After data quality control, 75 participants only had data
collected at one-time point (Fig. 1). The mean total follow-up duration for
the participants with more than one-time point (n = 63) was 20.09 months
(min = 9.19 months; max = 40.44 months), and there were no significant
differences between our groups (p = 0.63). Conversion to psychosis was
determined at follow-up visits by trained clinicians using the SCID/K-SADS,
historical data acquired at baseline, subsequent evaluations, chart reviews,
and collateral information from patients, families, and guardians where
available. All available and relevant information was used in regular
consensus diagnostic meetings, which were chaired by a senior clinician.
By the end of the study, ten FHR had developed a psychotic disorder
(schizophrenia (n = 4), schizoaffective disorder (n = 3), schizophreniform
(n=1), and psychosis not otherwise specified (n = 2)). Converters included
six first-degree relatives and four second-degree relatives.

MRI acquisition and preprocessing

Three-dimensional spoiled gradient recall acquisition (SPGR) T1-weighted
scans were collected using a 1.5T GE SIGNA imaging system (General
Electric Healthcare, Marlborough, MA, USA) at baseline and annual
intervals for up to 3 years. T1-weighted scans were acquired with 124
coronal slices, TR=25ms, and TE=5ms, 256 x 192 matrix, and slice
thickness = 1.5 mm without interslice gap. Motion and field inhomogene-
ity artifacts were first graded (0 =no/very subtle motion, 1 =moderate
motion, 2 =severe motion), and scans with moderate-to-severe motion
artifacts were excluded from the study (Fig. 1). Pre-processing of T1-
weighted images was carried out using the minc bpipe library (https://
github.com/CobralLab/minc-bpipe-library).

MAGeT-brain segmentation

The amygdala, hippocampus and hippocampal subfields (i.e, CA1, CA2/CA3,
CA4/dentate gyrus, subiculum, and stratum) were segmented on the pre-
processed T1-weighted images of all subjects [38]. Segmentations were
performed using the Multiple Automatically Generated Templates (MAGeT)
Brain segmentation algorithm, which leverages the neuroanatomical variability
of a participant population to boost segmentation accuracy [39-41]. Each step
of the MAGet-Brain segmentation is detailed in Supplementary Information.
Scans were then removed from the analyses due to low segmentation quality
through a visual inspection of all MAGeT segmentations using a similar grading
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Table 1. Demographics of all participants.
HC FHR—
(N =56) (N=172)
Mean SD Range Mean SD
Age 18.0 3.8 9-25 16.9 3.7
N % N %
Sex
Male 20 35.7 32 44.4
Female 36 64.3 40 55.6
Handedness
Right 49 87.5 59 81.9
Mixed 0 0.0 3 4.2
Left 2 3.5 2 28
Race
Caucasian 43 76.8 34 47.2
African American 11 19.6 37 51.4
Asian 1 1.8 1 1.4
Other 1 1.8 0 0.0

FHR+ Between-group comparison
(N=10)
Range Mean SD Range p-value
9-24 17.1 36 10-20 0.232
N %
0.299
6 60.0
40.0
7 70.0 0.333
1 10.0
0 0.0
3 30.0 0.006
7 70.0
0 0.0
0 0.0

We considered the first time point with good quality data available as baseline for each participant. P-values reported in the table are from the omnibus tests.
Handedness data were missing for 5 HC and 5 FHR. FHR— = familial high risk who did not convert to psychosis, FHR+= familial high risk who converted to

psychosis, HC = healthy controls, SD = standard deviation.

as the quality control of motion artifacts (Fig. 1). Total brain volumes were also
estimated using the CIVET pipeline (Version 2.0.0: http://www.bic.mnimcgill.ca/
ServicesSoftware/CIVET) [42].

Morphometric modeling

To estimate surface-based deformations, a single averaged transformation
was first estimated by concatenating the individual nonlinear deformations
from each subject back to a model generated from the atlases. These
transformations were then averaged into a single non-linear transforma-
tion for each model-to-subject pathway to reduce noise in the
transformation and to increase precision and accuracy [43]. All surface
area values were blurred with a surface-based diffusion smoothing kernel
of 5mm. To determine the shape difference at the corresponding vertices
of an individual’'s amygdala and hippocampus and the model surface, we
used the dot product of the unit vector lying normal to the model surface
at each vertex. Then, the vector from the final averaged non-linear
deformation field at that same vertex was evaluated. This determined the
magnitude of local inward/outward displacement in the direction normal-
ized to the model surface at each vertex (i.e.,, concave/convex shape, see
Supplementary Information).

Cognitive measures

The California Verbal Learning Test (CVLT)'s total recall for trial 1, percent
trial to trial transfer, and delayed total recall were used to assess verbal
learning ability [44]. Emotion recognition was assessed using the total
correct responses on the Penn Emotion Recognition Test-40, a facial
emotion recognition paradigm commonly employed in schizophrenia
research [45].

Statistical analysis

All analyses were performed using SPSS (version 21) and SurfStat toolbox
within Matlab (http://www.math.mcgill.ca/keith/surfstat/). The analyses
were two-tailed with a critical p-value of 0.05, and the levels of significance
were corrected in all analyses for multiple comparisons using the false
discovery rate (FDR) approach. Voxel-wise FDR corrections were separately
applied within each region of interest (i.e, each amygdala and
hippocampus).

Demographic analysis. Demographic variables in Table 1 were analyzed

with a one-way analysis of variance for continuous variables (i.e., age) and
chi-square for categorical variables (i.e., sex, handedness, and race).
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Amygdala and hippocampus analysis. To examine longitudinal trajectories
of the amygdala and the hippocampus (including subfields), we computed
the slopes of change for each participant. Available timepoints were age-
centered and subject-specific slopes were calculated across available
timepoints [46]. Group differences and group-by-centered-age interactions
(i.e., group differences in the slope of amygdalar-hippocampal changes
with age) were the main predictors of interest. We used a series of linear
mixed effects models, accounting for random intercept and controlling for
sex, handedness, and race. Estimated total brain volume was also entered
as a covariate for all imaging analyses. When appropriate, post-hoc
pairwise between-group comparisons were also performed.

Cognitive measures analysis. We considered the first time point with good
quality data available as the baseline for each participant. Cognitive
measures at baseline were only available on a subsample of participants
(see the Supplementary Information for demographics of those subsam-
ples). Group differences at baseline in verbal learning and emotion
recognition performance were investigated using a general linear model
(GLM). Race was then entered as a covariate to ensure the effects remained
significant.

RESULTS

Demographics results

Table 1 provides the demographics of all participants. There were
no significant group differences in age, handedness, or sex. The
race was significantly different between our groups for the main
imaging sample, but not for the subsamples of participants with
cognitive data (see Supplementary Information).

The amygdala and hippocampus

We observed a significant group-by-centered-age interaction for
the shape of the right dorsomedial amygdala (p <0.05 FDR
corrected) (Fig. 2A). Pairwise contrast comparisons showed that
FHR+ had significantly altered shape trajectories in this region
compared to FHR— (p < 0.05 FDR corrected). More specifically, FHR+
showed a significant decrease in displacement (more concave)
with age in this region, while no change over time was observed
in FHR— (Fig. 2B and (). No post-hoc pairwise interactions
specifically with HC were significant (p > 0.05 FDR corrected).

SPRINGER NATURE
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We did not observe any statistically significant group difference
nor group-by-centered-age interaction for the total volume of the
amygdala and the hippocampus (Table 2).

Table 2. Total volume results.

Main effect of group Group-by-centered-

age interaction

F-value p-value F-value p-value
Amygdala
Left 1.044 0.526 0.790 0.370
Right 0.715 0.572 0.111 0.717
Hippocampus
Left 0.217 0.671 0.184 0.680
Right 0.272 0.814 0.670 0.830

p-values are uncorrected.

We found a trend-like group-by-centered-age interaction for the
subiculum volume (p =0.074 uncorrected). This interaction was
driven by a slight increase in subiculum volume with age in
controls, which was not found in FHR- (see Supplementary
Information). No other shape or volume changes of the
hippocampal subfields were significantly different between
groups (see Supplementary Information).

Cognitive measures

Emotion recognition. At baseline, we observed a significant
group difference on emotion recognition performance (Fig1)=
3.925, p = 0.024). This finding remained significant when control-
ling for race (F7¢)=3.733, p=0.028). More specifically, FHR+
had significantly lower emotion recognition performance com-
pared to FHR— (p = 0.039), and healthy controls (p = 0.007) (Table
3 and Fig. 3A). The difference between FHR- and healthy controls
was not significant (p = 0.257).

Verbal learning. No significant difference was observed between
any groups on total recall on trial 1 (F90) = 0.367, p =0.694) and
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Fig. 2 Between-group differences in amygdalar shape trajectories. A Significant group-by-centered-age interaction on the shape of the
dorsomedial amygdala (p < 0.05 corrected). B Decreased peak displacement (or increase in concavity) over the years in FHR+ (n=10)
compared to FHR— (n = 72) and HC (n = 56). C Extent of changes in amygdala shape over time in the FHR— (n = 10). FHR— = familial high risk
who did not convert to psychosis, FHR+ = familial high risk who converted to psychosis, HC = healthy controls.
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Fig. 3 Between-group differences on emotion recognition and verbal learning performance at baseline. A Significantly lower emotion
recognition performance at baseline in FHR+ (n = 8) compared to FHR- (n =37) and HC (n=39) (*p < 0.05 corrected). B Significant lower
verbal learning percent transfer trial to trial at baseline in both FHR groups (FHR+ n=10; FHR— n = 43) compared to HC (n = 36) (*p < 0.05
corrected). FHR— = familial high risk who did not convert to psychosis, FHR+ = familial high risk who converted to psychosis, HC = healthy

controls, Plain line = FHR, Dashed line = HC.

delayed total recall (F5,91) = 0.223, p = 0.800). However, both FHR+
and FHR— presented significantly lower percent trial to trial
transfer compared to healthy controls (see Table 3 and Fig. 3B,
omnibus test: Fpgs =4.162, p=0.019, FHR—: p=0.011, FHR+:
p =0.040). FHR+ and FHR— did not significantly differ on this
measure (p = 0.198). The observed group difference in the percent
trial to trial transfer was only trend-like after controlling for race
(F,83 = 2.276, p=0.109).

DISCUSSION
The current study identified two markers of risk of conversion to
psychosis in youth FHR: (1) abnormal changes in the shape of the
amygdala and (2) lower emotion recognition ability. More
specifically, FHR+ showed decreased longitudinal displacement
(or increased concavity) in the right dorsomedial region of the
amygdala and impaired emotion recognition performance at
baseline compared to FHR—. These specific neurobiological and
cognitive markers could facilitate the early identification of youth
FHR that are more at risk of developing a psychotic disorder.

Our results are in line with previous reports showing that shape
characteristics of a structure can provide information that is
neuroanatomically unique in relation to volumetric assessment
[47-49]. In the current study, we did not observe a significant
longitudinal change in terms of the total volume of the amygdala
between the groups, but we found a significant change in the
right amygdalar shape in a dorsomedial region. Our results
support those from Bois and colleagues who did not observe any
significant differences in the volumes of the amygdala or
hippocampus between FHR converters and non-converters
[24, 25]. These findings vary from previous reports using voxel-
based morphometry and showing change over time in gray
matter in or around the hippocampus in high-risk individuals who
convert to psychosis [50, 51]. Variabilities in previous findings
could be explained by differences in imaging methods used to
assess changes in limbic structures (i.e., voxel-based morphometry
versus automated volume segmentation). Our current findings
further suggest that the shape of a subcortical structure, like the
amygdala, maybe a more sensitive measure than its volume to
identify biomarkers of risk of conversion to psychosis.

The amygdala plays a key role in emotion recognition [18, 19].
The ability to distinguish different emotions in people is essential

Translational Psychiatry (2022)12:202

for our social interactions. This specific ability is impaired in
schizophrenia [52, 53] and similar difficulties have been observed
in people at clinical high risk [54], as well as in FHR [55, 56].
Interestingly, lower emotion recognition in clinical high risk for
schizophrenia has been previously associated with conversion to
psychosis [57]. Our current findings support these previous reports
and provide additional evidence for an association between
diminished emotion recognition capacity in FHR and later
conversion to psychosis. Our results also highlight the potential
specific role of the medial amygdala in emotion processing
[58, 59]. Longitudinal changes in medial amygdalar shape have
also been recently observed in first-episode psychosis, specifically
in patients with persistent negative symptoms [60]. In future
studies, it would be of interest to explore links between impaired
emotion processing in earlier stages of psychosis and markers of
amygdalar shape by incorporating other relevant measures, such
as genetic information and negative symptoms.

In addition to its role in processing emotions, the medial
amygdala is also important for reward and stress responses. For
example, reduced attention to rewarding stimuli has been
previously associated with hypofunctionality of the centromedial
nucleus of the amygdala in FHR [61]. Neurons in the medial region
of the amygdala have also shown reduced spine density after
chronic stress exposure in mice [62]. Given the role of the medial
amygdala in response to emotions, rewarding stimuli, and stress, it
is possible that early morphometric abnormalities that we
observed in this region could be associated with greater stress
vulnerability. One hypothesis that remains to be tested is that
lower emotion processing abilities in FHR and reduced attention
to rewarding stimuli could increase vulnerability to stress and risk
of conversion to psychosis. While our current results support the
role of lower emotion processing and abnormal development of
the dorsomedial amygdala in conversion to psychosis for FHR,
future studies are needed to investigate potential mediators of
reward and stress response.

Contrary to our initial hypothesis, we did not observe any group
differences in total volume or shape of the hippocampus, but we
observed a trend-like group-by-centered-age interaction for the
subiculum volume between FHR- and controls. The subiculum is
an important region of the hippocampus implicated in learning
and memory [63, 64]. Previous studies also observed smaller
hippocampus and subiculum volumes in adult FHR [25, 65]. Our
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Verbal learning

0.694 N.S.

0.367
4.162

10
10
10

2.02 37 9.94 2.58 48 8.70 34
44

8.

10.19

CVLT total trial 1 recall

FHR-+ < HC, FHR— < HC

N.S.

0.019
0.8

14.25
239

82.32

14.56
2.78

36 85.21

37

62
10

91.53

14.08
p-values survived FDR correction for multiple comparisons (p < 0.05). One entry was missing for the percent to trial transfer and 4 outliers (>3 SD) for this variable were removed from the analysis. FHR—

familial high risk who did not convert to psychosis, FHR+ = familial high risk who converted to psychosis, HC

analysis, SD = standard deviation, N.S. = not significant.

CVLT percent trial to trial transfer

0.223

13.80

13.52 48

2.

CVLT delayed correct recall

number of participants with data available at baseline and included in the

healthy controls, N =

current results in youth FHR were only trend-like significant for the
subiculum; it is possible that such abnormalities could be more
predominant after adolescence. However, more longitudinal
studies in FHR with larger samples are needed to draw firmer
conclusions.

The current study has many strengths. First, we investigated a
unique sample of youth and antipsychotic-free FHR, using both
cognitive and brain imaging data. Second, neuroimaging data
were collected at many time points during a follow-up period of 3
years. Third, in addition to total volumetric analyses, we used
subfield volumetric analyses and shape analysis methodology to
examine longitudinal changes in these brain regions. Together,
this allowed us to identify more subtle but meaningful brain
differences between converters and non-converters.

Nonetheless, our findings should be interpreted in light of some
limitations. For instance, cognitive measures were only collected
on a subsample of our participants. Longitudinal imaging studies
investigating youth over a long period of time and with many
timepoints are challenging. In addition, only 56 of our participants
had longitudinal imaging data that could be used in our analyses.
While our sample size and follow-up attrition are in the range of
similar longitudinal investigations previously published [25], we
did not have sufficient power to use predictive statistical models
to determine whether the shape abnormality or lower emotion
recognition performance were predictive of conversion to
psychosis. Furthermore, while MAGeT Brain has been extensively
validated on data acquired on a 1.5-T scanner [41, 60], the scanner
resolution could have limited the precision of segmentation for
the hippocampal subfields which might have increased the risk of
false-negative findings in the current study. Longitudinal studies
with larger samples of youth FHR and higher scanner resolution
are needed and encouraged.

CONCLUSION

Youth FHR who developed a psychotic disorder had significantly
lower emotion recognition performance at baseline and abnormal
age-related shape trajectories in the right dorsomedial amygdala
compared to other FHR individuals. These findings could improve
the early detection of youth who are at higher risk of developing
psychosis. They could also guide the development of future
preventive intervention on specific cognitive and neurobiological
targets.
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