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Optical colonoscopy is known as a gold standard screening method in detecting and removing cancerous polyps. During this procedure, some
polyps may be undetected due to their positions, not being covered by the camera or missed by the surgeon. In this Letter, the authors introduce
a novel convolutional neural network (ConvNet) algorithm to map the internal colon surface to a 2D map (visibility map), which can be used to
increase the awareness of clinicians about areas they might miss. This was achieved by leveraging a colonoscopy simulator to generate a
dataset consisting of colonoscopy video frames and their corresponding colon centreline (CCL) points in 3D camera coordinates. A pair of
video frames were used as input to a ConvNet, whereas the output was a point on the CCL and its direction vector. By knowing CCL for
each frame and roughly modelling the colon as a cylinder, frames could be unrolled to build a visibility map. They validated their results
using both simulated and real colonoscopy frames. Their results showed that using consecutive simulated frames to learn the CCL can be
generalised to real colonoscopy video frames to generate a visibility map.
1. Introduction: Colorectal cancer is the second cause of cancer
mortality in Australia, and worldwide [1, 2]. The chance of
survival can be increased to 90% if it is diagnosed at early stages.
Colonoscopy is a common practice to detect and remove colonic
polyps, yet the chance of missing polyps is relatively high [3].
This might be due to the polyp structure and position (e.g. behind
a fold) or lack of coverage of the colon surface. Under optimal
conditions, it is expected that around 90–95% of the colon to be
inspected, while in practice only 81% of the colon mucosa is
typically visualised [4]. While polyp detection from colonoscopy
videos has been widely investigated [5], fewer studies have
investigated how to assist clinicians, particularly junior clinicians
in ensuring complete coverage during the procedure [6–8].
One previous approach to detecting missed areas focuses on

detecting regions behind haustral fold [6]. For example, Mahmood
and Durr [8] proposed a generative adversarial network method to
estimate colon depth from real images by using simulated images.
However, here, we aim to generate a map of the internal colon
surface (visibility map). Such a map can provide useful information
about uncovered areas during colonoscopy, map the position of any
detected polyp, and be used as a reference to follow up with patients.
Previous work taking a similar approach [7, 9] generates a visibility
map using the following steps: (i) estimate camera pose and infer
3D structure, (ii) fit a cylinder into the 3D structure to estimate an
average radius, (iii) compute the centre-of-dark region for each
frame, (iv) using camera parameters and the centre-of-dark region,
project the cylinder onto endoscopy images and unroll the images
(into band images), (v) stitch the band images to generate a visibility
map. Since this method is based on camera pose estimation and
3D reconstruction, it can be computationally expensive and complex
and can be unstable and fail for sparsely textured frames with the
complex structure of the colon wall. In particular, Armin et al. [9]
used traditional feature point matching methods, which can perform
poorly under difficult visual conditions, such as in colonoscopy.
One approach to improve robustness is to use convolutional

neural network (ConvNet) methods such as [8] or [10] to directly
generate the 3D structure of a colon, or ConvNet approaches to
compute optical flow that can then be used to estimate structure
[11]. However, these methods either need a dataset annotated
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with depth, which is hard to obtain for real optical colonoscopy,
or they predict depth from a single frame which adds complexity.
Generating complete 3D information is not necessary to infer
visibility and is a significant source of error. We propose a novel
approach, we use regression and train a network to learn directly
simple low-dimensional geometrical parameters of a colon
segment (here, centreline) in camera coordinates and use this to
directly estimate a visibility map. We propose a ConvNet to learn
the colon centreline (CCL) and its direction from simulated colon-
oscopy video frames. Our proposed method consists of two phases:
(i) train a ConvNet with simulated colonoscopy video frames
for which their CCLs in camera coordinate are known (a pair of
consecutive frames is used as input to the network and the output
is a point of CCL and its direction), (ii) test the ConvNet on real
colonoscopy video frames by generating a visibility map. The
summary of our method is presented in Fig. 1. Our contributions
are as follows: (i) an algorithm that combines motion and appear-
ance cues from training data from an endoscopic simulator
to learn to predict the centreline of the colon from red–green–blue-
only image sequences obtained during real and simulated endo-
scopic procedures; (ii) this is the basis of a new algorithm that
learns to project optical colonoscopy frames to a map to enable
accurate visualisation of visual information over an endoscopic
procedure; (iii) we show that this leads to the generation of a
more accurate map with a smoother mapping and reduced artefacts
compared to previous methods, without requiring additional infor-
mation (e.g. computed tomography or hardware end-effector local-
isation [12, 13]).

2. Method: A CCL is a curve in space that represents the centre of
a surface of revolution that approximates the structure of the colon
(the green line in Fig. 2). Note that the colon is not generally a
surface of revolution, and our method does not require it to be.
Our aim is to learn to predict a CCL in 3D camera coordinates.
This provides the viewed colon segment centre and direction.
Using this information, we locally generate a cylinder and project
it onto the image to unroll it to build a small portion of a
visibility map. These portions can then be joined to form a map
of the internal colon surface. Considering the importance of
187
This is an open access article published by the IET under the

Creative Commons Attribution -NonCommercial License (http://
creativecommons.org/licenses/by-nc/3.0/)

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


Fig. 1 Schematic of the proposed processing pipeline

Fig. 2 Colon centreline and band image
a Colon with its centreline, Pccl is a point on the CCL and Pdccl is the
direction to a second point (red arrow)
b Cylinder generated in the direction of colon and
c Projection of the cylinder onto the image and the band image
understanding CCL and its application in our method, first, we
explain how a visibility map can be generated by knowing the
CCL, and then we introduce a ConvNet to learn the CCL.

2.1. Cylindrical model: A cylinder model can be determined in
camera coordinates by estimating Pccl as the point of intersection
between the CCL and the image plane (or the closest point on the
CCL to the centre of projection if they do not intersect (Figs. 2a
and b)). A vector with the direction of the CCL in camera
coordinates Pdccl from Pccl is defined by taking a point on the
CCL at a geodesic distance a from Pccl, where s ≤ a is the length
of the vector. Then a line segment in the direction of the CCL can
be defined as

P(i) = iPdccl + Pccl|i [ [− 0.01, d]
{ }

(1)

where d is the length of the cylinder. Then the surface of the cylinder
Pc(i) can be estimated by

Pc(i) = {iPdccl + Pccl + ru cos (u)+ rv sin (u)|
i [ [− 0.01, d], u [ (0, 2p)}

(2)

where r is the radius of the cylinder and u and v are vectors
orthogonal to the CCL. Note that defining Pdccl is based on a point
at a distance so that smoothness of direction is maintained by
being well ahead of the camera viewing location. This means that
a local cylinder will remain in the overall direction of the colon
and be less subject to rapid change at corners. The definition here
is aimed to produce a smoothly changing mapping.

2.2. Band image and visibility map
2.2.1 Band image: By knowing intrinsic camera parameters, the
above cylinder can be projected onto the colonoscopy video
frame to unroll it and generate a radial strip called a band image
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(Fig. 2c) [7]. The radius of the cylinder is set to be constant through-
out. The radius of 2 cm was empirically chosen for our experiments.

2.2.2 Visibility map: Band images were stitched by computing
average motion flow in the x and y directions, estimated by
FlowNet2 [14] from consecutive band images. A median filter
was applied to the average motion flows to ensure a consistent
motion. Some examples of a visibility map generated by our
method and method explained in [7] are presented in Fig. 3 (first
panel in each group).

2.3. Loss function: The loss function took the L2 norm between
predicted and ground truth centreline information. Specifically,
there were two separate terms, being the error for the CCL point
Pcclp

, and the direction Pdcclp
with l as scale coefficient. The final

loss is the sum of these terms

L = |Pccl − Pcclp
|2 + l|Pdccl − Pdcclp

|2 (3)

2.4. ConvNet and implementation details
2.4.1 Network architecture: In our experiments, we used VGG due
to its high performance on our dataset. VGG is a ConvNet which
consists of 16 convolutional layers, with a uniform architecture.
We modified this architecture to take two consecutive frames as
input, in a similar manner to FlowNet2 [11, 14]. The final fully con-
nected output layer was reduced to predict six parameters, repre-
senting a CCL Pcclp

and its direction Pdcclp
.

2.4.2 Pre-image processing and implementation: Since the simu-
lated frames have different colour distribution in comparison to
real frames. We equalised both real and simulated video frames
and resized them to comply with the input size of the ConvNet.
A pre-trained VGG was used to learn CCL parameters. The learning
rate was set to 1 × 10−4 and the network was trained for 100 epochs
using the TensorFlow interface [15].

3. Experiments and results
3.1. Dataset
3.1.1 Simulated video frames: Simulated colonoscopy video frames
with realistic appearance including specular reflection, texture, and
blood vessels, were generated using a high fidelity simulator
employing a complex parametric mathematical model. Using
OpenGL, information such as CCL points and camera pose could
be extracted for each frame. We used the CCL as ground truth in
our experiments. Our simulated dataset consists of 20,827 video
frames from segments of 12 different simulated colons which
were generated by a variety of possible camera motions. Frames
were generated at a simulated rate of 30 frames/s with a size of
676 × 540 pixels. This was split into 80% training and 20%
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Fig. 3 Two sample visibility maps generated from two different colon segments generated by our method and [7]. On the left our map shows an uncovered area,
this has not appeared on the map generated by Armin et al. [7]. The difference between our method and [7] is also clear as the map generated by our method has
fewer artefacts and shows colon folds due to its consistency in CCL detection

Fig. 4 Validation of trained VGG on simulated training dataset (left panel), test network for generalisation by using a simulated colonoscopy video that has not
been used in training or validation (right panel). x, y, z represent centreline points and dir is for the direction of colon
validation frames. We also generated a separate video for test that
was not used in training or validation.
Fig. 5 Comparison between the network when it trained with a pair of con-
secutive frames versus one frame to estimate CCL parameters, here
( x1, y1, z1) represent centreline points and dir is for the direction of CCL
3.1.2 Real colonoscopy video frames: We tested our trained
network on ten different segments of real colonoscopy videos
from five different patients. Uninformative frames (frames with
no technical or medical information) were removed. The videos
were captured by a 190HD Olympus endoscope, with a frame
size 1352 × 1080 pixels, and a capture rate of 50 frames/s. In total
2515 real video frames were used to test our method.

3.2. Performance on simulated colonoscopy videos: The absolute
difference error results for the validation set are presented by
boxplot in Fig. 4 left panel and results showing the generalisation
ability of the network to predict the CCL evaluated using the test
video are shown in Fig. 4 right panels. In general, the absolute
difference error for the centreline parameters for validation and
test sets was <0.15 and 0.40 cm, respectively. We performed an
ablation study to demonstrate the performance of our proposed
method when only one frame was used for training versus two
frames. The results are shown in Fig. 5.

3.3. Performance on real colonoscopy videos: As the CCL was
not estimated in [7] and camera parameters along with the
centre-of-dark region were used to project cylinder onto the image,
we were unable to directly compare CCL results from our method
with them. Instead, we implemented the method of Armin et al.
[7] to generate a visibility map and compared it with a map generated
by our proposed method. The projection of the cylinder using our
CCL ConvNet method is shown as the first row of Fig. 6 and the
second row shows those generated by Armin et al. [7] using the
centre-of-dark region and camera R,t. In these sequences, camera
translates to the left side of colon occluding part of the darkest
region, though the centreline does not shift dramatically. For our
method, the projected cylinder is correctly stretched to the side
Healthcare Technology Letters, 2019, Vol. 6, Iss. 6, pp. 187–190
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where it has moved closer to the wall but retains orientation
towards what appears as the centre, whereas, in [7] the estimated
centreline is shifted significantly as the darkest region in the image
is partially occluded shifting the centre-of-dark region, showing
the limitations of this method. In Fig. 3, comparative examples of
visibility maps generated by both methods are presented for two
short sequences. For the rightmost visibility maps, our method
shows fewer artefacts, the corresponding video (see supplementary
results) shows a fold which can be seen in our map but is lost in a
less consistent map by Armin et al. [7]. In the left maps, our
method shows a region that is uncovered in this sequence due to
the downward tilt of the camera (see supplementary results), but
this is not shown by Armin et al. [7]. This reflects a more accurate
estimation of the centreline.
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Fig. 6 Projection of the cylinder onto a short sequence of real frames. The first row shows projection using CCL information estimated by our ConvNet and the
second row presents results from [7]. When the camera moves from middle to left, the position of the projected cylinder using [7] changes with respect to the
change of darkest region, but in our method, CCL remains consistent and keeps cylinder projection following the true centreline position
4. Discussion and conclusion: This Letter presented a ConvNet
approach that learns the CCL and its direction from optical
colonoscopy frames. This is used to roughly fit a collection of
concentric circles to the colon segment in 3D, and project them
onto the image to unroll the image to form a band image.
Stitching band images can provide a visibility map which can
show any uncovered regions. This can help to improve awareness
of uncovered areas, particularly for junior clinicians, and so
improve the quality of colonoscopy.

In comparison to existing methods [7, 9], which were based on
computing camera pose, 3D reconstruction and estimating the
centre-of-dark region to estimate the centreline, we showed that
the colon direction and centreline point could be directly learned
by a ConvNet. Our results presented in Fig. 4 indicated the learning
and generalisation of the CCL by a ConvNet. Further our results
indicated that the estimation learned from simulated images can
generalise to real colonoscopy video frames, which has not been
shown previously for a ConvNet approach in optical colonoscopy.

Our approach used two frames, enabling the possibility to learn
optical flow to have an indication of structure, while also having
access to appearance parameters such as folds and dark regions in
estimating the centreline. We speculate that ConvNet is able to in-
corporate these features to gain a more effective model than the pre-
vious more heuristic approach. The ablation study shows a clear
gain from using multiple frames. However, we will investigate
the performance of our ConvNet method using domain adaptation
methods as in [16].

Our method currently projects the colon as a collection of con-
centric circles with the same radius as a rough estimation, and there-
fore in our future work, we are aiming to train a network to learn
additional parameters of a colon segment such as radii for each
chamber, along with colon structure and camera parameters.
Using VGG has been shown to be effective; other networks such
as ResNet and DenseNet along with a bigger dataset will be inves-
tigated and compared with the ConvNet used in this Letter in future
work.

In summary, our ConvNet-based method shows promising
results for CCL estimation and generating a map of the internal
colon surface. More investigations need to be performed to generate
a real-time visibility map with high precision. This can help clini-
cians to make better decisions while inspecting a colon.
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