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Abstract

Background: Pedicle screw insertion in osteoporotic patients is challenging. Achieving more screw-cortical bone
purchase and invasiveness minimization, the cortical bone trajectory and the midline cortical techniques represent
alternatives to traditional pedicle screws. This study compares the fatigue behavior and fixation strength of the
cement-augmented traditional trajectory (TT), the cortical bone trajectory (CBT), and the midline cortical (MC).

Methods: Ten human cadaveric spine specimens (L1 - L5) were examined. The average age was 86.3 ± 7.2 years. CT
scans were provided for preoperative planning. CBT and MC were implanted by using the patient-specific 3D-
printed placement guide (MySpine®, Medacta International), TT were implanted freehand. All ten cadaveric
specimens were randomized to group A (CBT vs. MC) or group B (MC vs. TT). Each screw was loaded for 10,000
cycles. The failure criterion was doubling of the initial screw displacement resulting from the compressive force (60
N) at the first cycle, the stop criterion was a doubling of the initial screw displacement. After dynamic testing,
screws were pulled out axially at 5 mm/min to determine their remaining fixation strength.

Results: The mean pull-out forces did not differ significantly. Concerning the fatigue performance, only one out of
ten MC of group A failed prematurely due to loosening after 1500 cycles (L3). Five CBT already loosened during the
first 500 cycles. The mean displacement was always lower in the MC. In group B, all TT showed no signs of failure or
loosening. Three MC failed already after 26 cycles, 1510 cycles or 2144 cycles. The TT showed always a lower mean
displacement. In the subsequent pull-out tests, the remaining mean fixation strength of the MC (449.6 ± 298.9 N)
was slightly higher compared to the mean pull-out force of the CBT (401.2 ± 261.4 N). However, MC (714.5 ± 488.0
N) were inferior to TT (990.2 ± 451.9 N).

Conclusion: The current study demonstrated that cement-augmented TT have the best fatigue and pull-out
characteristics in osteoporotic lumbar vertebrae, followed by the MC and CBT. MC represent a promising alternative
in osteoporotic bone if cement augmentation should be avoided. Using the patient-specific placement guide
contributes to the improvement of screws’ biomechanical properties.

Keywords: CBT, Biomechanical analysis, Cement-augmented screws, MC, Osteoporosis, Patient-specific placement
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Background
Lumbar spine instrumentation using pedicle screws
has emerged as the most common surgical technique
in traumatic and degenerative surgery. Especially in
the case of treating medical indications caused by
osteoporosis, cement-augmented cannulated pedicle
screws are widely used by now [13, 23, 32]. As bone
cement, e.g. polymethylmethacrylate (PMMA), is asso-
ciated with inherent disadvantages [17, 25, 38], auspi-
cious alternatives are needed to achieve sufficient
stability. To overcome this issue by enhancing pedicle
screw fixation in bone of compromised quality, differ-
ent screw designs and insertion techniques regarding
screw trajectory modifications were developed [36,
40]. In 2009, Santoni et al. [35] introduced the cor-
tical bone trajectory (CBT) fixation approach. This
trajectory starts medially at the pars interarticularis
and follows a craniolaterally direct path through the
pedicle [26]. By contrast, the medially directed trad-
itional trajectory (TT) has a lateral starting point and
uses a transpedicular path through the anatomic axis
of the pedicle [29]. Accordingly, TT pedicle screws
achieve their stability apart from the pedicle mainly
in cancellous bone, which is why a loss of stability
can be seen in osteoporotic patients if no bone ce-
ment is used. In contrast, CBT screws are character-
ized by increased screw thread contact with cortical
bone [26]. A further alternative represents the midline
cortical (MC) approach, which is derived from the
CBT technique. Its entry points are sufficiently distant
from the adjacent facet joints. The trajectory follows
the path from the pars interarticularis to the inferior
edge of the pedicle [29]. Due to passing denser bone,
the insertion of longer screws, which are directed to-
wards the middle of the vertebral endplate, is pos-
sible. Although CBT techniques allow invasiveness
reduction and show comparable or superior biomech-
anical features compared to the TT approach [6, 14,
18], there is little consensus on the selection of the
optimal screw size and the corresponding screw path
[30]. While the original CBT method grants a screw
length usually no longer than 25–30 mm, the MC ap-
proach allows the use of longer screws with a mini-
mum length of 40 mm. However, previous literature
does not adequately address the effects of the differ-
ent insertion techniques on the screws’ biomechanical
performance. For that reason, this study aimed at
comparing the fatigue behavior and fixation strength
of pedicle screws using the cement-augmented TT,
the CBT, and the MC fixation approach, respectively.
Therefore, a biomechanical analysis was performed to
evaluate whether CBT screws or MC screws represent
a possible alternative to cement-augmented TT
screws.

Methods
Specimens and grouping
Ten adult human cadaveric spine specimens, especially
L1 to L5, without destructive pathologies (fractures,
tumor) were obtained in fresh and anatomically unfixed
condition. All donors originated from the Institute of
Anatomy of the Leipzig University and had given written
consent to dedicate their bodies to medical education
and research purposes. Being part of the body donor
program regulated by the Saxonian Death and Funeral
Act of 1994 (3rd section, paragraph 18, item 8), institu-
tional approval for the use of the post-mortem tissues of
human body donors was obtained. The authors declare
that all experiments were performed according to the
ethical principles of the Declaration of Helsinki.
During dissection, all vertebrae were separated into

single levels. Muscular and soft tissue was removed from
each vertebra while preserving its anatomy. The speci-
mens were stored at − 83 °C until testing. Bone mineral
density (BMD) was measured by dual-energy X-ray ab-
sorptiometry (DXA) using Hologic Delphi A QDR-Series
(Hologic, Inc., Marlborough, MA, USA). For this pur-
pose, spine (L1 to L5) without tissue was analysed and
the average BMD of each vertebra of the corresponding
specimen was calculated. In addition, a low-dose com-
puted tomography (CT) scan (PHILIPS Brilliance iCT
256, Philips Healthcare, Cleveland, OH, USA) of all
specimens was taken for the exclusion of bone defects
and for preoperative planning.
All cadaveric spine specimens (n = 10) were random-

ized to two different groups, each consisting of 20
lumbar vertebrae (L1 - L4) from five body donors. While
group A analysed CBT screws vs. MC screws, group B
tested MC screws vs. cement-augmented TT screws.
Additionally, both groups were divided into the same
two subgroups concerning the test procedure (dynamic
test, static test). As L2 and L4 were tested dynamically,
L1 and L3 were analysed under static testing conditions.
Moreover, in group B four more L5 were tested.

Preoperative planning
Low-dose CT scans of all cadaveric specimens were
taken. While the TT screw design was determined by an
experienced surgeon by using these scans, the planning
of the CBT screws and MC screws was more extensive.
First, a CT scan-based 3D model of every single vertebra
was reconstructed by using medical image processing
software Mimics® (Materialise NV, Leuven, Belgium). A
3D preoperative plan regarding the optimal screw design
(screw length, screw diameter) and screw trajectory
(sagittal, transverse, and coronal plane) was realized
using SolidWorks® 3D CAD software (Dassault Systèmes
SolidWorks Corporation, Vélizy-Villacoublay, France)
(Fig. 1) Subsequently, the MySpine® patient-matched
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targeting guide was generated based on these data. Rele-
vant expertise and equipment originated from Medacta
International SA (Castel San Pietro, Switzerland).

Test preparation
Before biomechanical testing, the lumbar vertebra was
thawed to room temperature for 24 h and embedded in
an aluminum cylinder by using RenCast® FC52/53 Iso-
cyanate mixed in a ratio of 1:1:3 with RenCast® FC52
Polyol and Filler DT 082 (Huntsman Corporation, Salt

Lake City, UT, USA). After finalizing preparations, all
vertebrae were instrumented by the same experienced
surgeon. For screw implantation, the patient-specific
placement guide (MySpine®, Medacta International SA,
Castel San Pietro, Switzerland [9, 15, 22]), (Fig. 2) was
used to guide the drilling of the CBT and MC trajectory
(Fig. 3), respectively. While pushing the navigation tool
firmly to the lamina, initial screw holes were made (Fig.
2). After a K-wire was inserted in the canal, the
MySpine® guide was removed. Prior to the subsequent

Fig. 1 Preoperative 3D planning of screw design and appropriate screw trajectory (SolidWorks® 3D CAD software (Dassault Systèmes SolidWorks
Corporation, Vélizy Villacoublay, France)
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screw insertion, an appropriate cannulated tap was used,
which was guided by the K-wire. However, TT screw im-
plantation was based on the freehand technique whereby
its trajectory was oriented towards the anatomic axis of
the pedicle (Fig. 3). Medacta Universal Screw Technol-
ogy (M.U.S.T., Medacta International SA, Castel San
Pietro, Switzerland) was used for all pedicle screws. In
addition, the TT screws were augmented by using 1.25
mL PMMA-based bone cement after screw insertion. To
prevent possible impacts of cementation leakage on the
non-cemented screw of the contralateral side, TT screw
augmentation was first performed after the CBT or MC
screw was tested.

Biomechanical testing
Static test
After implantation, the appropriate subgroup was tested.
Therefore, the embedded specimen was mounted and
oriented properly in the customized pull-out test setup
(Fig. 4). As the inserted screw was aligned with the load-
ing axis of the servo-pneumatic uniaxial testing machine
(Type 2082/000, DYNA-MESS Prüfmaschinen GmbH,
Aachen, Germany), the setup could ensure the longitu-
dinal extraction of the implant. The pull-out test was
performed by using a testing speed of 5 mm/min follow-
ing ASTM F543–17 [3]. During the test, force and dis-
placement were recorded. The test procedure was
stopped when the screw was released from its vertebra,
which was indicated by a 50% decrease in peak force.
Group A was tested randomly. By contrast, MC screws
of group B were always tested first to avoid adverse ef-
fects on the screw’s fixation strength caused by TT
screw augmentation.

Dynamic test
The dynamic testing procedure, especially the experi-
mental setup, was based on ASTM F1717–18 [4]. The
test setup used (Fig. 5) enabled standardized test

Fig. 2 Guided drilling of screw trajectory

Fig. 3 Screw path of traditional trajectory (red), cortical bone trajectory (green) and midline cortical (blue) fixation approach, respectively; left:
sagittal plane, right: transverse plane
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conditions for each vertebra despite its anatomical con-
ditions. However, in contrast to ASTM F1717–18 [4],
only one screw-rod system was evaluated. Moreover, the
cranial vertebra was replaced by a customized lever arm
which was directly attached to a longitudinal rod. As in
the pull-out tests, group A was tested in a random order,
while the MC screws were always tested first in group B.
The screws underwent cyclical loading at a rate of 1 Hz
for 10,000 cycles using the servo-pneumatic uniaxial
testing machine (Type 2082/000, DYNA-MESS Prüf-
maschinen GmbH, Aachen, Germany). The test proced-
ure started with a preloading of 10 N (compressive
force). Then a mean compressive force of 60 N was ap-
plied and cyclic testing was performed with an ampli-
tude of ±50 N. The failure criterion was defined as a
doubling of the initial screw displacement resulting from
the mean compressive force (60 N) at the first cycle. In
case the initial screw displacement was too high, the test
was stopped when the upper and the lower setup com-
ponent came into contact. For defined cycles, the rela-
tive motion of the screw-bone interface was detected by
using specific optical markers (Fig. 5) and a digital image

correlation system (Q400, LIMESS Messtechnik und
Software GmbH, Krefeld, Germany). The displacement
analysis was performed in Excel 2013 (Microsoft Cor-
poration, Redmond, WA, USA) and Matlab R2019a (The
MathWorks Inc., Natick, MA, USA). After the dynamic
testing, the screws were pulled out axially, as described
above, to determine the remaining postfatigue fixation
strength of the screws.

Statistical analyses
The datasets were compared descriptively using Excel
2013 (Microsoft Corporation, Redmond, WA, USA). The
data of each vertebra are listed in the supplement 1–3.
Due to the small number of cases, the nonparametric Wil-
coxon signed rank test was performed. SPSS 24.0 (IBM,
Armonk, NY, USA) was used for all statistical analyses.
The statistical significance was set at p < 0.05. Most data
were expressed as mean ± standard deviation (SD).

Results
Specimens
A total of ten body donors (four females, six males) were
analysed (Table 1). The specimens of group A showed a
mean age of 86.4 years and mean BMD of 0.839 ± 0.104
g/cm2. Group B had a mean age of 86.2 years and a
mean BMD of 0.820 ± 0.145 g/cm2. All values did not
differ significantly.
Both groups (CBT/MC, MC/TT) consisted of five

body donors of five lumbar vertebrae each. While L1
and L3 of each cadaver were tested statically, L2, L4, and
L5 were tested under dynamic testing conditions. How-
ever, L5 were only examined in group B.

Static test
In group A, 18 out of 20 screws were successfully pulled
out. MC screw data were obtained from five L2 and
three L4, whereas all ten CBT screws could be tested
without any problems. In group B, one L4 had to be ex-
cluded because of its anatomical deformations. Hence,
only 16 out of 18 screws could successfully pulled out.
All MC screws could be tested in five L2 and four L4. By

Fig. 4 Pull-out test setup

Fig. 5 ASTM F1717–18 test setup; left: 3D CAD construction, middle: experimental setup, right: marker setup
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contrast, cement-augmented TT screws data were ob-
tained from only four L2 and three L4. The group-
specific mean pull-out forces of the different screws are
shown in Table 2 and plotted in Fig. 6. All values did
not differ significantly in consideration of n ≥ 5.

Dynamic test
In group A, only one out of ten MC screws failed pre-
maturely due to loosening after 1500 cycles (L3, cadaver
ID: 05). By contrast, five CBT screws from three L1 (ca-
daver ID: 05, 06, 08) and two L3 (cadaver ID: 05, 08) did
not reach the scheduled 10,000 cycles. They already loos-
ened after 64, 450, 120, 26 and 260 cycles, respectively.
In group B, one L3 (cadaver ID: 09) had to be excluded
caused by its anatomical deformations. Thus, only nine
vertebrae could be examined. No signs of failure or loos-
ening were observed according to the cement-
augmented TT screws. Three MC screws reached the
failure criterion already after 26 cycles (L1, cadaver ID:

07), 1510 cycles (L1, cadaver ID: 04), and 2144 cycles
(L3, cadaver ID: 04), respectively. Four more L5 were
tested on sponsor’s demand. All screws successfully
resisted cyclic loading.
The mean displacement was only analysed of those

screws that reached total 10,000 cycles. In group A, the
mean displacement between screw and bone according
to the defined cycles was always lower in the MC screws
(n = 9) compared to the CBT screws (n = 5) (Fig. 7). In
group B, the cement-augmented TT screws (n = 9)
showed always a lower mean displacement compared to
the MC screws (n = 6) (Fig. 8) The same behaviour can
be seen in the additionally tested L5 (n = 4) (Fig. 8). Be-
cause of the different numbers of vertebrae, there is no
individual comparison.
The subsequent pull-out tests were only performed if

no screw loosening occurred during the dynamic testing.
As some vertebrae were breached, only four CBT screws
and eight MC screws could be analysed. The pull-out

Table 1 Specimens’ baseline characteristics

Cadaver ID Group Sex Age in years Body mass in kg Bone mineral density in g/cm2

1 A m 82 82 0.906

2 A m 78 60 0.774

3 B m 90 69 1043

4 B m 97 58 0.743

5 A f 85 30 0.985

6 A f 80 70 0.730

7 B f 96 41 0.653

8 A m 86 50 0.798

9 B m 92 61 0.819

10 B f 77 86 0.842

Group: A - CBT/MC, B - MC/TT; Sex: f - female, m - male

Table 2 Screw’s group-specific mean pull-out forces in consideration of the testing conditions

Pull-out force in N

Group A Group B

CBT MC p TT MC p

Static test

Total 587.9 ± 309.1 603.8 ± 227.7 0.327 986.8 ± 302.7 691.0 ± 375.2 0.063

L2 581.3 ± 307.7 649.2 ± 266.4 0.345 1003.5 ± 341.4 559.7 ± 382.6 0.068

L4 594.5 ± 310.4 528.2 ± 104.1 0.593 964.6 ± 239.9 855.1 ± 292.1 1000

Dynamic test

Total 401.2 ± 261.4 449.4 ± 298.9 0.068 990.2 ± 451.9 714.5 ± 488.0 0.499

L1 424.7 ± 349.5 339.1 ± 285.9 0.180 1193.0 ± 311.7 928.5 ± 579.3 0.465

L3 377.8 ± 115.6 633.2 ± 219.1 0.180 736.8 ± 471.7 500.4 ± 221.4 0.593

L5 – – – 1637.9 ± 222.8 960.2 ± 141.5 0.109

Static test: pull-out; Dynamic test: fatigue testing + pull-out

Jarvers et al. BMC Musculoskeletal Disorders          (2021) 22:418 Page 6 of 11



tests (Table 2) showed that the remaining mean fixation
strength of the MC screws (449.4 ± 298.9 N) was slightly
higher compared to the mean pull-out force of the CBT
screws (401.2 ± 261.4 N) (Fig. 6). As one vertebra had to
be excluded and three MC screws loosened early, only
six MC screws were pulled out, whereas nine TT screws
could be tested. The MC screws (714.5 ± 488.0 N) were
inferior to the cement-augmented TT screws (990.2 ±
451.9 N) concerning mean postfatigue fixation strength
(Fig. 6). This fact was also confirmed by the tested L5.
Here, the cement-augmented TT screws (n = 4) with a
mean fixation strength of 1637.9 ± 222.8 N were superior
to the MC screws (n = 3), which showed a mean pull-out
force of 960.2 ± 141.5 N. But in a direct comparison of
the vertebra-specific screws, MC screws showed two
times (L1, cadaver ID: 09; L3, cadaver ID: 10) a higher
mean pull-out force than the cement-augmented TT
screws.

Discussion
There are many different instrumentation techniques of
the lumbar spine at present. However, there is still no
clear consensus regarding the optimal screw design and
screw trajectory, enhancing screw’s fixation strength sig-
nificantly. Especially the treatment of osteoporotic bone
is still challenging. As osteoporosis causes more loss of
cancellous bone than cortical bone, special measures are
needed. In the literature, cement-augmented pedicle
screws are described as gold standard in osteoporotic

spine instrumentation. Numerous biomechanical studies
have demonstrated an increased pull-out strength of
these screws [7, 8, 12, 16, 39]. Apart from that, good
functional outcomes and low revision rates have been
proven in clinical middle- and long-term studies [2, 5,
10, 11, 33]. However, cement augmentation is associated
with several disadvantages such as the risk of cement
leakage and subsequent embolism, exothermic proper-
ties or complications during the removal of the screws
in case of revision [17, 19, 37]. Therefore, alternative
techniques for the treatment of bones of compromised
quality are necessary. In consideration of the required
surgical demands, the CBT screw seems to be a promis-
ing approach. This is described as an attractive tech-
nique due to its less invasiveness. Furthermore, these
thinner and shorter screws are characterized by their ex-
tensive contact with the solid cortical bone in contrast
to TT pedicle screws. Thus, fixation strength rises,
which is of particular relevance in osteoporotic bone.
Santoni et al. [35] first reported the superiority of CBT
screws in osteoporotic cadaveric lumbar spines. In their
report, CBT screws demonstrated a 30% greater uniaxial
pull-out strength and an equivalent strength against tog-
gle loading as compared to non-augmented TT screws.
Baluch et al. [6] also compared the fixation strength of
these screws. But they simulated more physiological con-
ditions using cyclical loading and subsequent orthogonal
screw pull-out. Their results also demonstrated the su-
perior resistance of CBT screws. As there is no in vivo

Fig. 6 Box plots representing pull-out forces of the appropriate pedicle screws (total) in consideration of the testing conditions
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Fig. 8 Mean displacement of screw head relative to its vertebra - cement-augmented TT screw vs. MC screw

Fig. 7 Mean displacement of screw head relative to its vertebra - CBT screw vs. MC screw
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biomechanical study reporting on the mechanical behav-
iour of the CBT trajectory, Matsukawa et al. [27] evalu-
ated the insertional torque using the CBT and TT
fixation approach, respectively. The comparison of both
techniques showed a significant difference in the mean
maximum insertional torque in favour of the CBT
screws. Within the scope of another study of Matsukawa
et al. [28], a finite element analysis was performed. The
results show a 26.4% greater mean pull-out strength, a
mean 27.8% higher resistance to cephalocaudal loading,
and 140.2% stronger stiffness to mediolateral loading
than non-augmented TT screws. However, Wray et al.
[41] reported equivalent mechanical fixation properties
of both approaches in their cadaveric biomechanical
study including pull-out and toggling testing. Contrary
results were achieved by Akpolat et al. [1], who stated
that non-augmented TT screws had a better fatigue per-
formance compared to CBT screws in vertebrae of com-
promised bone quality. As the use of bone cement
during posterior instrumentation of the osteoporotic
spine represents the gold standard, augmented TT
screws were compared to possible alternatives within
this study. Moreover, this study was focused on screw
size, which was also done by Matsukawa et al. [30]. They
analysed the ideal screw size for optimal fixation to
significantly enhance screw’s fixation strength. As mech-
anical stress is dependent on the dimension of the bone-
screw interface, there is a higher risk of loosening with
short pedicle screws. To reduce this risk, Matsukawa
et al. [30] suggested the use of longer cortical screws to
improve vertebral load transmission and to decrease
mechanical stress. Finally, their finite element study
demonstrated biomechanical superiority of a long tra-
jectory with maximum cortical purchase. Therefore,
the “long CBT” or MC screw, which is directed to-
wards a more anterior position of the vertebral body
compared to the original CBT, is recommended.
Ideally, the CBT screw should have a diameter larger
than 5.5 mm and a length longer than 35 mm (stand-
ard size) [30]. To the best of our knowledge, no stud-
ies concerning the biomechanical behavior of MC
screws have previously been published. For this rea-
son, our study was aimed to evaluate this approach
compared to the original CBT and the gold standard
used in osteoporotic spine instrumentation. However,
reaching the correct trajectory is challenging for sur-
geons as this narrow screw path has to be created in
the denser bone. Moreover, there are fewer anatom-
ical landmarks available within the limited operative
field. Apart from high-level surgical skills, intraopera-
tive fluoroscopic support is needed to enhance accur-
acy and safety. In this context, the use of a patient-
specific screw placement guide including a preplanned
screw trajectory has been considered as a promising

approach [20–22, 24, 31, 34]. Farshad et al. [15] dem-
onstrated in a randomized cadaveric study that the
guided pedicle screw placement using MySpine®
(Medacta International SA, Castel San Pietro,
Switzerland) was superior in terms of faster instru-
mentation time, higher accuracy, and reduced radi-
ation exposure compared to freehand fluoroscopically
controlled pedicle screw placement. Moreover, this
tool is characterized by its minimal invasiveness com-
pared to conventional techniques. In this study, the
MySpine® tool was used to ensure accurate cortical
screw placement that crucially affects screw’s bio-
mechanical properties. To analyse screws’ biomechan-
ical behaviour, fatigue and pull-out testing were
performed. In contrast to the often used pull-out test,
the fatigue test setup provides a more clinically rele-
vant failure scenario including more meaningful data
[35]. Therefore, both groups were separated into two
subgroups each, which were tested statically (pull-out)
and dynamically (fatigue testing and ensuing pull-
out), respectively.
In group A, both screw types had no significant differ-

ences concerning the static pull-out tests (Table 2). MC
screws’ mean pull-out strength was only 2.7% higher
than that of the CBT screws. However, this test proced-
ure does not reflect physiological testing conditions. The
dynamic comparison showed major differences both in
cyclic loading and the ensuing pull-out test. Here, the
CBT screws loosened early five times more frequently
than the MC screws that failed only once. The CBT
screw loosening always occurred within the first 500 cy-
cles, which indicates inferior fixation. Consequently, it
can be assumed that the larger length of the MC screw
resulted in a better anchorage, which is proven by its
comparably significant gain in screw’s stability. Similar
results are demonstrated by Matsukawa et al. [30]. The
ensuing pull-out tests also showed the superiority of the
MC screws. Their higher mean failure loads (+ 12.1%)
showed that MC screws resisted longer physiological
loading than CBT screws did. This was due to MC
screws’ design and screws’ trajectory, which allows more
anchorage within the cortical bone. The displacement
evaluation also substantiated the fact of CBT screws’
earlier loosening and higher range of motion during
physiological cyclic loading.
In group B, the MC screws were compared to the

cement-augmented TT screws mostly used for osteopor-
otic spine instrumentation. As expected, the pull-out
tests showed higher mean failure loads of the TT screws
both in the static (+ 42.8%) and dynamic (+ 38.6%) test-
ing conditions. Weiser et al. [40] have even demon-
strated that cement augmentation of osteoporotic bone
can lead to an increase in failure load by approximately
52%. That can be attributed to the higher screw-bone
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purchase caused by the cement augmentation filling the
porous bone. However, MC screws’ mean pull-out force
of 691.0 N (static) or 714.5 N (dynamic) provides suffi-
cient stability. Additionally, screws revision is possible
without difficulty, whereas vertebrae mostly breach dur-
ing pull-out of the cement-augmented TT screws. More-
over, screw’s solid augmentation results in a lower mean
displacement compared to MC screws. The same can be
observed based on the additionally tested L5. The tests
also showed the superiority of the cement-augmented
TT screws in both mean displacement and pull-out
forces. But in a direct comparison of the L5, the MC
screw showed once a lower range of motion during dy-
namic testing.
However, this study has some limitations. The limited

number of specimens may be of concern. Apart from
that, the varying sample sizes of the individual groups
should be critically reviewed. Therefore, a more exten-
sive evaluation using equal sample sizes is desirable. Fur-
thermore, the position of the embedded vertebrae is not
physiological, nevertheless a standardized procedure re-
garding literature. Finally, for biomechanical testing, only
cadaveric specimens were used.

Conclusion
The cement-augmented TT pedicle screws had the best
fatigue performance as well as the highest pull-out forces
in lumbar vertebrae of compromised bone quality. How-
ever, MC screws represent a promising alternative in
case of reduced bone quality compared to the CBT
screws as they showed substantially better results.
Proving if MC trajectory is superior, a comparative study
of non-augmented TT screws and MC screws is already
planned. Especially, dynamic tests should be performed
as they provide a more clinically relevant failure
scenario.
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