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Antimicrobial resistance (AMR) has emerged as one of the most urgent global threats
to public health. Accurate detection of AMR phenotypes is critical for reducing the
spread of AMR strains. Here, we developed PARMAP (Prediction of Antimicrobial
Resistance by MAPping genetic alterations in pan-genome) to predict AMR phenotypes
and to identify AMR-associated genetic alterations based on the pan-genome of
bacteria by utilizing machine learning algorithms. When we applied PARMAP to 1,597
Neisseria gonorrhoeae strains, it successfully predicted their AMR phenotypes based
on a pan-genome analysis. Furthermore, it identified 328 genetic alterations in 23
known AMR genes and discovered many new AMR-associated genetic alterations in
ciprofloxacin-resistant N. gonorrhoeae, and it clearly indicated the genetic heterogeneity
of AMR genes in different subtypes of resistant N. gonorrhoeae. Additionally, PARMAP
performed well in predicting the AMR phenotypes of Mycobacterium tuberculosis and
Escherichia coli, indicating the robustness of the PARMAP framework. In conclusion,
PARMAP not only precisely predicts the AMR of a population of strains of a given
species but also uses whole-genome sequencing data to prioritize candidate AMR-
associated genetic alterations based on their likelihood of contributing to AMR. Thus,
we believe that PARMAP will accelerate investigations into AMR mechanisms in other
human pathogens.

Keywords: antimicrobial resistance (AMR), pan-genome, machine learning (ML), Neisseria gonorrhoeae,
antibiotic resistance genes, AMR prediction

INTRODUCTION

Antimicrobial resistance (AMR) has emerged as one of the most urgent global threats to public
health (Boolchandani et al., 2019). Many bacterial infections are proving increasingly difficult to
treat (Unemo and Shafer, 2014; Holmes et al., 2016; Boolchandani et al., 2019). The emergence
of bacterial strains with resistance to multiple antibiotics greatly limits the therapeutic effect of
conventional therapy, leading to outbreaks of infectious diseases (Holmes et al., 2016). In addition
to new antimicrobial development efforts, there is an urgent need for tools that can accurately
and rapidly detect the AMR phenotypes of clinical isolates because culture-based laboratory
diagnostic tests are usually time-consuming and costly (Eliopoulos et al., 2003; Burnham et al.,
2017). Numerous studies have developed tools for predicting AMR phenotypes based on analysis
of the genomic sequences of bacterial strains (Bradley et al., 2015; Hunt et al., 2017; Moradigaravand
et al., 2018; Nguyen et al., 2018; Yang et al., 2018; Kouchaki et al., 2019; Schubert et al., 2019). For
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instance, Schubert et al. (2019) used reference-based single-
nucleotide polymorphisms (SNPs) to study the AMR of
Neisseria gonorrhoeae strains. However, a comprehensive tool
that integrates SNPs and gain/loss of genes in the pan-genome
to predict AMR phenotypes and to prioritize candidate AMR-
associated genomic alterations (based on their likelihood of
contributing to AMR) is still lacking (Boolchandani et al., 2019).

Current approaches for AMR prediction commonly make
use of SNPs derived from comparisons of a newly assembled
genome against the genome of a reference strain (Lau et al., 2011;
Manson et al., 2017; Kavvas et al., 2018). Manson et al. (2017)
showed that SNPs are enriched in AMR-associated genes available
in public databases and that they are useful for evaluating
the AMR of newly sequenced strains based on incorporating
machine learning methods. Additionally, Hunt et al. (2017)
developed ARIBA (Antimicrobial Resistance Identification by
Assembly), which identifies AMR-associated genes and SNPs
directly from next-generation sequencing data and predicts the
AMR of bacterial pathogens. Although the existing models are
highly effective in predicting the AMR of pathogens with well-
studied AMR mechanisms, they perform worse when predicting
the AMR of new pathogens (Bradley et al., 2015; Moradigaravand
et al., 2018). Therefore, further investigation of the utilization of
pan-genome information from a population of strains of a given
species is required.

Research has shown that AMR prediction models that
incorporate a machine learning algorithm overcome the
restrictions of rule-based tests that only focus on known AMR-
associated genes (Moradigaravand et al., 2018). Briefly, AMR
prediction models perform better by learning the informative
features (related to known and novel AMR mechanisms)
directly from original data. Moradigaravand et al. (2016)
demonstrated that not only SNPs but also gain/loss of genes
are associated with AMR (Martinez et al., 2015; Moradigaravand
et al., 2016), suggesting that SNPs are not the only feature
for describing the mutational landscape of AMR evolution.
Moreover, Török et al. (2012) reported that Burkholderia
pseudomallei obtained ceftazidime resistance by loss of a
penicillin-binding protein (PBP). Additionally, many higher-
order computational approaches have been applied for cell
type classification in research on single-cell genomics. These
approaches include the uniform manifold approximation and
projection (UMAP) technique, which is a novel manifold learning
technique for dimension reduction (Pezzotti et al., 2016; Becht
et al., 2018). Therefore, we reason that integrating machine
learning algorithms, higher-order dimension reduction methods,
and genomic features at the pan-genome level may contribute to
AMR prediction and help to explore the AMR mechanisms in
diverse pathogens.

In this study, we present PARMAP (Prediction of
Antimicrobial Resistance by MAPping genetic alterations
in pan-genome), an integrative computational framework for
predicting AMR phenotypes and for identifying AMR-associated
genes based on the pan-genome of bacteria by incorporating
machine learning algorithms. PARMAP accurately predicted the
AMR phenotypes of N. gonorrhoeae by integrative analysis of the
pan-genome of 1,597 strains. Further five-fold cross-validation

analysis showed that the gradient boosting (GDBT) algorithm
consistently outperformed support vector classification (SVC),
random forest (RF), and logistic regression (LR), with area
under the curve (AUC) scores >0.98 for resistance to each
of the antibiotics investigated in N. gonorrhoeae strains.
Moreover, PARMAP analysis revealed the genetic heterogeneity
of ciprofloxacin resistance genes in N. gonorrhoeae. It identified
5,830 AMR-associated genetic alterations by deducing the
genetic content variability, and 328 of the genetic alterations
were associated with 23 known AMR genes. To test the
robustness of our method, we applied PARMAP to predict
the AMR phenotypes in Mycobacterium tuberculosis and
Escherichia coli. As expected, it performed well in predicting
AMR phenotypes related to various antibiotics in both species.
These results demonstrate that PARMAP enables precise AMR
prediction in a population of strains and prioritizes candidate
AMR-associated genetic alterations based on whole-genome
sequencing (WGS) data. Therefore, we believe that it will be
useful for mechanistic studies on AMR phenotypes in a wide
range of pathogens.

MATERIALS AND METHODS

Strain Datasets
Regarding the N. gonorrhoeae dataset, we downloaded the
WGS data of 1,597 strains derived from three countries in a
previous study (Schubert et al., 2019). Data on AMR phenotypes
related to penicillin, tetracycline, cefixime, ciprofloxacin, and
azithromycin were available. Regarding the M. tuberculosis
dataset, the protein sequences of 1,447 strains were acquired
from the PATRIC database (Wattam et al., 2013). It contains
AMR data related to ofloxacin, ethionamide, ethambutol,
kanamycin, and streptomycin. Regarding the E. coli dataset,
the WGS reads of 1,936 strains used in a previous study
were downloaded (Moradigaravand et al., 2018), with available
data on cephalothin, amoxicillin (AMX)-clavulanate, ampicillin,
tobramycin, and AMX susceptibility. Detailed information
(references, sequencing depth, GC content, etc.) for the datasets
used in this study are provided in Supplementary Table S1.

Whole-Genome Sequencing Data
Analysis
The low-quality paired-end reads of N. gonorrhoeae and E. coli
were filtered out using fastp (Pearson, 1990). Thereafter, spades
(Bankevich et al., 2012) was employed to perform de novo
assembly using the remaining reads, and GeneMark (Besemer
and Borodovsky, 2005) was used to annotate the draft genomes
with default parameters. Next, the protein-coding sequences
were converted to protein sequences. Subsequently, cd-hit (v4.6)
clustering was performed on all genes (at the protein sequence
level) with default parameters (parameters: -c 0.5 -n 3 -p 1 -
T 4 -g 1 -d 0 -s 0.7 -aL 0.7 -aS 0.7). The predicted genes
with high similarity were then aggregated into gene clusters,
and the longest gene in each gene cluster was defined as the
representative gene (Li and Godzik, 2006). To establish each gene
group for pan-genome construction, the bidirectional similarity
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of two sequences were determined with the following criteria:
(a) identity between the two sequences was >0.5; (b) aligned
length of query sequence was >70% of representative sequence;
(c) aligned length of query sequence was >70% then the gene
groups were defined as sequences with bidirectional similarity.
Finally, the pan-genome of all strains of a given species was
constructed by integrating the gene groups shared by all strains
(core genome) and those that only exist in a proportion of the
strains (accessory genome).

Phylogenetic Inference
The Genome Analysis Toolkit (GATK) (Mckenna et al., 2010) was
used to call genetic variants in each N. gonorrhoeae strain, with
the N. gonorrhoeae FA1090 genome being used as the reference.
Maximum likelihood phylogenetic trees were established using
RAxML v8.2.12 (Alexandros, 2014), with a general time reversible
(GTR) model and no rate heterogeneity. Finally, phylogenetic
trees were visualized using EvolView (Zhang et al., 2012).

Gene Allele Feature Selection Based on
Antimicrobial Resistance Score
To elucidate the fine-grain genetic variations indicative of AMR
evolution, we divided each gene cluster of the pan-genome based
on the gene alleles present, i.e., the exact amino acid sequence
variants. Principal component analysis (PCA) was performed
on the gene allele features using the scanpy package (Wolf
et al., 2018). All strains were subjected to UMAP clustering
based on the most representative principal components (PCs)
using scanpy, resulting in clusters of strains with distinct gene
allele features. If >70% of strains in a cluster had an AMR
phenotype, the cluster was defined as an AMR cluster, and if
>70% of strains in a cluster had a susceptible phenotype, the
cluster was defined as a susceptible cluster. We then selected the
informative features by comparing the occurrence of gene allele
features in each AMR cluster and the remaining clusters using
Fisher’s exact tests with an adjusted p-value cutoff of 0.05 using
the Benjamini–Hochberg procedure (Benjamini and Hochberg,
1995). Thereafter, we defined AMR score (AMRS) to evaluate the
effect of each gene allele on the AMR phenotype. The higher the
AMRS of a gene allele, the greater the potential that the gene allele
is associated with the AMR phenotype. Briefly, the proportion
of strains in a cluster with a particular gene allele was defined
as follows:

pi =
ci

si
(1)

where ci denotes the number of strains with the gene allele
in the ith cluster, and si denotes the total number of strains
in that cluster.

The maximum proportion of strains with a particular gene
allele in the resistant clusters was defined as follows:

pr = max [p1, p2, . . . , pm] (2)

where m denotes the number of resistant clusters.
Finally, AMRS was defined as follows:

AMRS = 1−
1
n

n∑
j=1

(
pj

pr

)2
(3)

where pj denotes the proportion of clusters with a particular gene
allele in the jth susceptible cluster, and n represents the total
number of susceptible clusters.

We then selected the informative gene allele features based on
the AMRS cutoff of 0.9.

Antimicrobial Resistance Prediction
Antimicrobial resistance prediction models were established by
learning from the matrices of gene allele features (filtered based
on the AMRS cutoff) and the phenotype of each strain using a set
of machine learning algorithms, comprising GDBT, LR, RF, and
SVC. Briefly, the strains were randomly divided into the training
dataset (80%) and the testing dataset (20%) by the train_test_split
function in the scikit-learn package (Swami and Jain, 2012). The
AMR-associated features were then selected based on the training
dataset. Next, each AMR prediction model was established using
the selected gene allele features derived from the training dataset.
In the training process, five-fold cross-validation was used to
optimize the machine learning parameters according to the AUC
value. Finally, the performance of each model was assessed using
the testing dataset. The binary classification of each strain was
obtained using each AMR prediction model. All the machine
learning models were established using the scikit-learn package
(Swami and Jain, 2012).

In-Sample and Out-of-Sample Testing
First, the machine learning models were trained using the
training dataset (80% of all the data). An in-sample testing
dataset with the same sample size as the independent testing
dataset (20% of all the data) was then randomly selected from the
training dataset using train_test_split in the scikit-learn package
(Swami and Jain, 2012). The independent testing dataset (20%
of all the data) was defined as the out-of-sample testing dataset.
Finally, all predictions were performed in both the in-sample and
out-of-sample datasets using the same trained models.

Random Permutation Analysis
Using the train_test_split function in the scikit-learn package, the
strains were randomly divided into the training dataset (80%)
and the testing dataset (20%, which served as the independent
testing dataset) 100 times. Feature selection and AMR prediction
were performed independently in each permutation. The AUC
and Recall values related to five-fold cross-validation and the
independent testing were then calculated. Finally, boxplots were
used to evaluate the robustness of the PARMAP algorithm.

Protein Structural Analysis
Antimicrobial resistance genes were then mapped to homologous
structures, and in silico 3D models were established using the
Iterative Threading Assembly Refinement (I-TASSER) platform
(Roy et al., 2010). Each predicted 3D protein structure was then
visualized using PyMol (Delano, 2002).

Statistical Analyses
All statistical analyses (e.g., Fisher’s exact tests) were performed
using SciPy (Jones et al., 2014).
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Availability and Implementation
PARMAP is an open-source package freely available in the
GitHub repository (https://github.com/452990729/PARMAP)
under GNU General Public License v3.0.

RESULTS

PARMAP: A Pan-Genome-Based
Computational Framework for Predicting
Antimicrobial Resistance
In this study, we implemented PARMAP, a pan-genome-based
computational framework, by utilizing UMAP and machine
learning algorithms in order to evaluate the AMR of a variety
of microbial species. PARMAP involves three key components:
(i) pan-genome construction, (ii) feature selection, and (iii) AMR
prediction (Figure 1).

Pan-Genome Construction
To construct a pan-genome for a specific bacterial species, three
steps are involved: (a) genome assembly, (b) gene prediction
and multiple sequence alignment, and (c) characterization of the
pan-genome. First, gene prediction was performed to annotate
de novo assembled draft genomes or genomes from other
sources (Figure 1A). We only included protein-coding genes
in the PARMAP analysis because most AMR entries (97.2%)
in the Comprehensive Antibiotic Resistance Database (CARD)
are related to protein-coding genes (Supplementary Figures
S1A,B). Next, multiple alignment among all predicted proteins
was performed, and gene groups with high similarity were then
established (Figure 1B). We identified the genes in the core and
accessory genomes as follows: (a) the core genome represents
the genes present in a population of strains, which are typically
housekeeping genes essential for survival, and (b) the accessory
genome refers to genes not presented in all the strains of a species,
which may include genes that exist in two or more strains or even
genes unique to a single strain (Figure 1C). We then combined
the core and accessory genomes to establish the pan-genome of
the species (Figure 1D).

Feature Selection
To extract the fine-grain genetic variations indicative of AMR
evolution, we divided each gene cluster of the pan-genome based
on the gene alleles present, i.e., the exact amino acid sequence
variants, with each gene allele representing a potential AMR
feature. We then established a gene allele–strain (GS) matrix
showing whether each gene allele was present or absent in
each specific strain (Figure 1E). Our approach accounts for
all the protein-coding gene alleles in the pan-genome, thereby
representing the extensive strain-to-strain variation observed
among bacterial genomes. Next, PCA was applied to reduce the
dimensionality of the huge GS matrix, and the strains were then
projected on a two-dimensional map using the UMAP algorithm
based on the most representative PCs (Figure 1F). To evaluate
the degree of AMR association of each feature in each strain
cluster, we took advantage of the clustering information of UMAP

to filter out gene allele features that were not associated with
the AMR phenotype using Fisher’s exact test. Furthermore, we
calculated the AMRS using Eq. 3 (see section “Materials and
Methods”), which represents the probability that a feature is
associated with the AMR phenotype. We defined gene alleles
as AMR-associated gene alleles if the AMRS score was >0.9
(Figure 1G; see section “Materials and Methods”).

Antimicrobial Resistance Prediction
To develop a model for AMR prediction, we took advantage
of several machine learning algorithms. To this end, all
the strains were segregated into resistant and susceptible
groups based on minimum inhibitory concentration (MIC)
data or predefined AMR phenotypes from previous studies.
Thereafter, 80% of the strains were randomly defined as
the training dataset for feature selection and model training,
while the remaining 20% were defined as the independent
testing dataset (Figure 1H). Next, the AMR prediction models
were established using SVC, GDBT, RF, or LR (Figure 1I).
The performance of these models was then evaluated using
receiver operating characteristic (ROC) curve and area under
the precision-recall (PR) curve (AUPRC) analyses in the testing
dataset (Figure 1J).

PARMAP Successfully Predicts
Antimicrobial Resistance in
N. gonorrhoeae
The rapid spread of AMR in N. gonorrhoeae has substantially
compromised antibiotic effectiveness (Unemo and Shafer, 2014).
WGS data and the MICS of multiple antibiotics for >1,500
N. gonorrhoeae isolates have been published (Schubert et al.,
2019). Thus, we first used PARMAP to predict AMR in
N. gonorrhoeae because of the comprehensive data available.
In particular, we used PARMAP to predict ciprofloxacin
resistance in N. gonorrhoeae. Briefly, we reconstructed the
N. gonorrhoeae pan-genome using the WGS data of 1,579 isolates
(Supplementary Figure S2 and Supplementary Table S1).
Thereafter, 5,830 high-quality AMR-associated gene alleles
(related to five antibiotics) were identified (Supplementary
Figures S3A,B, S4A,B and Supplementary Table S2). Finally,
we built AMR prediction models for N. gonorrhoeae and used
five-fold cross-validation to evaluate the model with the training
dataset. Thereafter, when we used the GDBT model to predict
AMR in N. gonorrhoeae, the AUC values were 0.99 and 1.00 in
the training and testing datasets, respectively, (Figures 2A,B).
Moreover, the Recall value was >0.98, indicating that PARMAP
accurately predicts ciprofloxacin resistance in N. gonorrhoeae
(Figures 2C,D). Moreover, the other three machine learning
models also performed well in predicting ciprofloxacin resistance
(Figures 2E,F). We further applied PARMAP to predict the
resistance to four other antibiotics in N. gonorrhoeae. As
expected, the AUC and Recall values of the training and testing
datasets were >0.8 in at least one machine learning model for
all antibiotics, demonstrating the robustness of the PARMAP
framework (Figure 2G). Notably, PARMAP achieved the best
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FIGURE 1 | Workflow of PARMAP (Prediction of Antimicrobial Resistance by MAPping genetic alterations in pan-genome) framework. (A) Collection of the genomic
sequences of strains from public databases. (B) Multiple sequence alignment of protein sequences of all strains. (C) Identification of the core and accessory genome
of a given species. (D) Construction of the pan-genome of a species by merging the core and accessory genomes. (E) Construction of the pan-genome gene allele
matrix. (F) Classification of all strains using the uniform manifold approximation and projection (UMAP) algorithm. (G) Antimicrobial resistance (AMR)-associated
features filtered by AMR score (AMRS). (H) Eighty percent of all strains were selected as the training dataset for feature selection and the development of four
machine learning models, comprising support vector classification (SVC), gradient boosting (GDBT), random forest (RF), and logistic regression (LR), algorithms.
(I) Machine learning models were optimized when they obtained the best area under the curve (AUC) and precision-recall (PR), curve values. (J) The remaining 20%
of samples (the independent testing dataset) were used for evaluating the prediction models.

performance when GDBT was used to predict ciprofloxacin
resistance, and it exhibited similar performance when it was used
to predict the resistance to the four other antibiotics in the testing
dataset, with an average AUC of 0.99 and an average Recall value
of 0.98 (Figure 2G). Furthermore, PARMAP also performed well
in the in-sample and out-of-sample testing of resistance to the five
antibiotics in N. gonorrhoeae (Supplementary Figures S5A,B).
Additionally, the 100 random permutation tests demonstrated
that PARMAP consistently performed better in the testing dataset
compared to the training dataset, as the sample size used in five-
fold cross-validation for model training was smaller than the final

model (Supplementary Figures S5C,D). In summary, PARMAP
robustly predicts AMR in N. gonorrhoeae and can be used for
AMR research in other human pathogens.

PARMAP Analysis Reveals Genetic
Heterogeneity in Antimicrobial
Resistance Genes of N. gonorrhoeae
Combinations of multiple antibiotics can achieve better clinical
performance than single antibiotics, indicating that the resistance
to different antibiotics in N. gonorrhoeae strains may be mediated
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FIGURE 2 | PARMAP (Prediction of Antimicrobial Resistance by MAPping genetic alterations in pan-genome) successfully predicts antimicrobial resistance (AMR), in
Neisseria gonorrhoeae. Receiver operating characteristic (ROC), curve for the prediction of ciprofloxacin resistance using the gradient boosting (GDBT), model in the
(A) training and (B) testing datasets. Precision-recall (PR), curve for the prediction of ciprofloxacin resistance using the GDBT model in the (C) training and (D) testing
datasets. (E) PR curve for the prediction of ciprofloxacin resistance using the GDBT model in the testing dataset. (F) Recall values for ciprofloxacin resistance with
different machine learning methods in the training and testing datasets. (G) Area under the curve (AUC), values (upper panel) and Recall values (lower panel) of
different machine learning models in the training and testing datasets for tetracycline (Tet.), azithromycin (Azi.), cefixime (Cef.), and penicillin (Pen.).

by distinct mechanisms (Unemo and Shafer, 2014; Sadiq et al.,
2017). To investigate the genetic heterogeneity in N. gonorrhoeae
strains with ciprofloxacin MIC data, we applied PARMAP to
segregate the strains into distinct clusters by incorporating the

UMAP algorithm. As a result, the strains were classified into
34 clusters (Figure 3A and Supplementary Table S3). We
found that the resistant strains were aggregated into multiple
distinct clusters, as were the susceptible strains, indicating that

Frontiers in Microbiology | www.frontiersin.org 6 October 2020 | Volume 11 | Article 578795

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-578795 October 17, 2020 Time: 20:9 # 7

Li et al. Antimicrobial Resistance Prediction

the genetic heterogeneity of the pan-genome may be related
to multiple ciprofloxacin resistance mechanisms (Figure 3B).
Moreover, the fact that most clusters contained either resistant or
susceptible isolates strongly indicates that the genetic differences
between the resistant and susceptible strains contribute to the
diverse ciprofloxacin resistance mechanisms of N. gonorrhoeae in
different clusters (Figure 3C). When we compared the genomic
composition of resistant (cluster 1) and susceptible (cluster
3) groups, we found that the resistance-associated gene alleles
observed in the resistant cluster were exclusively located in
known AMR genes such as mtrD, mtrE, mtrC, and mtrR,
while the susceptibility-associated gene alleles presented in the
susceptible cluster. These results suggested that PARMAP can
classify N. gonorrhoeae strains into distinct clusters with diverse
genetics associated with different AMR mechanisms (Figure 3D
and Supplementary Table S4). Taken together, our results
demonstrated that PARMAP is powerful not only for predicting
the AMR phenotype of isolates but also for investigating the
genetic heterogeneity of AMR genes in N. gonorrhoeae.

Integrative Analysis Identified Known
and Novel Antimicrobial Resistance
Features
Although many AMR-associated genes have been deposited in
the CARD database (McArthur et al., 2013), they represent the
tip of the iceberg of AMR-associated genes involved in diverse
mechanisms (Jia et al., 2016). Therefore, it is very important
to prioritize candidate AMR-associated genes in a population
of strains (based on their likelihood of contributing to AMR)
in order to identify new factors that are likely to be involved
in AMR in N. gonorrhoeae. To this end, we used PARMAP
to extract AMR-associated features according to AMRS using
Fisher’s exact test (Figure 4A). As a result, 1,443 features with a
high AMRS were extracted, which represent gene alleles that are
potentially associated with AMR (Figure 4A and Supplementary
Table S5). Moreover, hierarchical clustering analysis showed that
the clusters of resistant and susceptible strains have distinct
features, indicating that these gene alleles may participate in AMR
(Figure 4B). In total, we found 328 gene alleles associated with 23
known AMR genes in N. gonorrhoeae (Supplementary Table S6).
In particular, several of the AMR-associated gene alleles were
related to the DNA gyrase subunit A and B (GYRA and GYRB)
genes (Figures 4C,D), consistent with previous studies (Deguchi
et al., 1996; Jeverica et al., 2014). Additionally, several potential
new AMR gene alleles were identified, such as the Q317K
mutation in the aconitate hydratase B (ACNB) gene (Figure 4E)
and the E115G, A117T, D135N, and R316E mutations in the
pyridoxine 5′-phosphate synthase (PDXJ) gene (Figures 4F
and Supplementary Figures S6A,B). An analysis involving
further sequencing depth conferred high coverage of these
resistant ACNB and PDXJ gene alleles (Supplementary Figures
S4A,B). Further in silico 3D protein modeling demonstrated
that the Q317K mutation affects the protein folding of ACNB
(Figure 4G), while the four PDXJ mutations alter the protein
folding of PDXJ (Figure 4H), which may disrupt the protein
functions of ACNB and PDXJ. Our findings demonstrate that

PARMAP can not only accurately predict AMR but also be used
to prioritize candidate AMR-associated gene alleles using the
pan-genome data of a population of strains.

PARMAP Accurately Predicts
Antimicrobial Resistance in
M. tuberculosis and E. coli
Recent studies have shown that AMR can be predicted
by using pan-genome information, but the performance
differs greatly in different species (Yang et al., 2018). To
demonstrate the performance of PARMAP, we used it to predict
AMR in M. tuberculosis because M. tuberculosis has been
extensively studied and there are plenty of related genomics
resources available (Kavvas et al., 2018; Kouchaki et al.,
2019). To this end, we obtained predicted protein sequences
of 1,448 M. tuberculosis strains from the PATRIC database,
and a pan-genome was then established using PARMAP.
As a result, 1,109 strains with streptomycin resistance data
were classified into 25 clusters (Figure 5A). The resistant
strains were distributed in distinct clusters, indicating that
M. tuberculosis may be resistant to streptomycin via multiple
different molecular mechanisms (Figure 5B). Furthermore, 4,662
streptomycin resistance-associated gene alleles were defined as
AMR features, and prediction models were established using
PARMAP (Supplementary Table S7). Notably, when we applied
the GDBT model in the testing dataset, the ROC curve
and PR curve analyses showed that high AUC and Recall
values were obtained for predicting streptomycin resistance
in M. tuberculosis, indicating the high accuracy of PARMAP
(Figures 5C,D). Additionally, we achieved high predictive
accuracy in streptomycin with the other computational models
(LR, RF, and SVC) (Figure 5E). Furthermore, as expected, we
achieved similar accuracy in predicting AMR in M. tuberculosis
strains with data on ofloxacin, ethionamide, ethambutol, and
kanamycin resistance (Figures 5E,F). Finally, we predicted AMR
in E. coli strains with data on cephalothin, AMX-clavulanate,
ampicillin, and AMX resistance and found that the prediction
models also performed well (Figures 5G,H). In summary,
PARMAP successfully predicts AMR in M. tuberculosis and
E. coli by incorporating a pan-genome analysis, suggesting that
PARMAP can be used to study AMR mechanisms in a wide range
of human pathogens.

DISCUSSION

Antimicrobial resistance prediction that incorporates genomic
sequences could be a powerful approach for epidemic
surveillance of diverse infections and for investigation of
AMR mechanisms. Here, we established PARMAP, an integrative
computational framework to predict AMR and identify AMR-
associated genetic alterations by utilizing machine learning
based on the pan-genome of pathogens. PARMAP involves
three components: (i) pan-genome construction, (ii) feature
selection, and (iii) AMR prediction. We applied PARMAP to
investigate AMR-associated genotype–phenotype relationships
in 1,597 sequenced N. gonorrhoeae strains. Our analysis
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FIGURE 3 | PARMAP (Prediction of Antimicrobial Resistance by MAPping genetic alterations in pan-genome) analysis reveals genetic heterogeneity in antimicrobial
resistance (AMR), genes of Neisseria gonorrhoeae. (A) Clustering analysis of strains with and without ciprofloxacin resistance based on gene allele features using the
uniform manifold approximation and projection (UMAP), algorithm; each number represents a distinct cluster. (B) Resistant phenotypes of the distinct clusters;
orange indicates ciprofloxacin resistance, and blue indicates ciprofloxacin susceptibility. (C) Percentages of resistant strains in different clusters. (D) Comparison of
gene alleles between clusters 1 and 3 showed that they have distinct mutation profiles regarding the mtrD, mtrE, mtrC, and mtrR genes, indicating that specific
genetic alterations confer the AMR phenotype in cluster 1.

showed that PARMAP not only accurately predicted AMR
but also revealed the genetic heterogeneity of AMR-associated
genes in different clusters of strains, which may contribute to
diverse AMR mechanisms. Furthermore, PARMAP successfully
predicted AMR in M. tuberculosis and E. coli, demonstrating
its robustness. Therefore, PARMAP is a comprehensive tool
for predicting AMR using the genomic sequence of a strain
and for providing insights into the functions of genetic
alterations in AMR.

PARMAP improves performance by utilizing the genomic
features derived from the pan-genome of a population of strains
because it considers both the conserved sequence and gain/loss
of genes in the genome of the bacteria. Recent studies have
shown that the reference-based SNP information and the k-mer

information of sequencing data are useful for assessing the
AMR of pathogens (Nguyen et al., 2018; Schubert et al., 2019).
However, the SNP-based method does not consider the AMR
genes acquired via horizontal gene transfer (Huddleston, 2014),
while the k-mer-based method introduces a large number of
features for AMR prediction, and thus increases the risk of
overfitting in machine learning models (Moradigaravand et al.,
2018). To fill the gaps, PARMAP first establishes a pan-genome
representing both the susceptible and resistant strains. Thereafter,
gene alleles are detected for each strain compared to the
established pan-genome, which enables a systematic analysis of
the intact genomic information from all strains. Additionally,
PARMAP takes advantage of the UMAP algorithm to perform
unsupervised classification of strains into clusters and uses AMRS

Frontiers in Microbiology | www.frontiersin.org 8 October 2020 | Volume 11 | Article 578795

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-578795 October 17, 2020 Time: 20:9 # 9

Li et al. Antimicrobial Resistance Prediction

FIGURE 4 | Integrative analysis identified known and novel antimicrobial resistance (AMR), features. (A) Analysis pipeline for extracting AMR-associated features
using AMR, score (AMRS). (B) Heatmap showing distinct AMR-associated features in ciprofloxacin-resistant and -susceptible clusters, indicating distinct
mechanisms in different clusters with the same phenotype. Mutation tables for (C) GYRA, (D) GYRB, (E) ACNB, and (F) PDXJ, genes associated with ciprofloxacin
resistance. Rows represent mutation position, and columns represent gene alleles; gray boxes represent those chosen as the references, and yellow represents
those chosen as AMR-associated features. “SNP” indicates that there is an SNP, in the gene allele. The two rows below each mutation table show the number of
resistant strains and the total number of strains. Predicted 3D structures of (G) ACNB, and (H) PDXJ, proteins with mutations, indicating that AMR-associated gene
alleles may achieve AMR, by altering the structure of the proteins. Red arrows indicate protein structure alterations based on the AMR-associated gene alleles.
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FIGURE 5 | PARMAP (Prediction of Antimicrobial Resistance by MAPping genetic alterations in pan-genome) accurately predicts antimicrobial resistance (AMR), in
Mycobacterium tuberculosis and Escherichia coli. (A) Clustering analysis of M. tuberculosis strains with and without streptomycin resistance based on gene allele
features using the uniform manifold approximation and projection (UMAP), algorithm; each number represents a distinct cluster. (B) Resistant phenotypes of the
distinct clusters; orange indicates ciprofloxacin resistance, and blue indicates ciprofloxacin susceptibility. (C) Receiver operating characteristic (ROC) and
(D) precision-recall (PR), curves of streptomycin resistance for the gradient boosting (GDBT), model in the testing dataset. (E,F) Area under the curve (AUC) and
Recall values of different machine learning models in the training and testing datasets for streptomycin (Ste.), ethionamide (Eon.), ethambutol (Eam.), kanamycin
(Kan.), and ofloxacin (Ofl.), resistance in M. tuberculosis. (G,H) AUC and Recall values of different machine learning models in the training and testing datasets for
cephalothin (Cet.), AMX-clavulanate (Amc.), ampicillin (Amp.), tobramycin (Tbp.), and amoxicillin (Amx.), resistance in Escherichia coli.
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to identify the gene alleles that significantly discriminate between
clusters of strains. The most informative gene alleles are applied
for AMR prediction, so PARMAP uses a small number of features
and improves performance.

PARMAP not only segregates the resistant strains into
different subtypes using the genomic sequences but also
prioritizes candidate genes associated with AMR. It first uses
AMRS to evaluate the effect of a gene allele on the AMR
phenotype by incorporating the pan-genome and gene allele
profile at the level of the population of strains. The higher the
AMRS of a gene allele, the increased likelihood of contribution to
the AMR phenotype. We successfully prioritized the candidate
AMR genes in N. gonorrhoeae according to AMRS using
PARMAP. In particular, we recovered 23 known AMR genes that
are present in the CARD database and uncovered many potential
novel genetic alterations associated with AMR, demonstrating
that PARMAP identified candidate genes that may expand our
knowledge of the genetic basis of AMR in N. gonorrhoeae. In
particular, the Q371K mutation, which is located in the aconitase
B swivel domain (IPRO15929) of the ACNB gene, may disrupt the
function of the ACNB protein based on 3D structural modeling
of the ACNB protein (Figure 4G). Additionally, the S91F, D95A,
D95G, and I250M mutations were located in the GYRA gene,
a known AMR-associated gene (Deguchi et al., 1996). However,
the functional mechanisms of these AMR-associated mutations
require further experimental validation.

Furthermore, using data on N. gonorrhoeae, we provided
a benchmark for comparing four popular machine learning
algorithms (LR, SVC, RF, and GDBT) to predict AMR. We
found that the ensemble methods (RF and GDBT) achieved
better results than the LR and SVC algorithms. In particular,
our analysis confirmed that the GDBT model was the most
accurate model for predicting AMR in a population of strains of
human pathogens.

We are aware that PARMAP does not account for non-
protein-coding genes in the pan-genome construction, which
limits its predictive power. Therefore, PARMAP cannot identify
non-protein-coding genes related to AMR, such as 23S rRNA
and 16S rRNA (rrs). However, only 84 (2.8%) of the 3,044
AMR entries in the CARD database are for non-coding genes,
including 23S rRNA and rrs, and the resistance to 45 (97.8%)
antibiotics is conferred by protein-coding genes (Supplementary
Figures S1A,B). Therefore, we focused on protein-coding
genes and their protein sequences, but our computational
framework can be extended to non-coding elements in bacterial
genomes. Another limitation is that the AMR-associated gene
alleles lack experimental validation in the current study.
To accelerate their experimental validation, the PARMAP
framework and the AMR-associated gene alleles discovered

in this study are provided in Supplementary Table S2 and
Supplementary File 1, which will benefit future investigations
of AMR mechanisms.

Numerous methods have been developed to predict AMR
in different pathogens, which have various advantages and
disadvantages (Hunt et al., 2017; Yang et al., 2018). Future
efforts may integrate genome-scale data on pathogens (from
transcriptome and proteome data to other clinical and
epidemiological data) in order to understand the genetic
signatures of AMR. Moreover, PARMAP meets the need for high-
throughput analysis of AMR phenotypes enabled by the rapidly
growing data available for N. gonorrhoeae and other pathogens
such as M. tuberculosis and E. coli. It both recovers known AMR
genes and reveals potential novel AMR genes. The PARMAP
framework integrates a pan-genome analysis and machine
learning methods to provide a comprehensive tool for analyzing
the associations between genotypes and phenotypes. We believe
that PARMAP will provide vital information for mechanistic
investigations of AMR in N. gonorrhoeae and other pathogens.
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