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DNA damage activates a complex transcriptional
response in murine lymphocytes that includes
both physiological and cancer-predisposition
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Abstract

Background: Double strand (ds) DNA breaks are a form of DNA damage that can be generated from both
genotoxic exposures and physiologic processes, can disrupt cellular functions and can be lethal if not repaired
properly. Physiologic dsDNA breaks are generated in a variety of normal cellular functions, including the RAG
endonuclease-mediated rearrangement of antigen receptor genes during the normal development of lymphocytes.
We previously showed that physiologic breaks initiate lymphocyte development-specific transcriptional programs.
Here we compare transcriptional responses to physiological DNA breaks with responses to genotoxic DNA damage
induced by ionizing radiation.

Results: We identified a central lymphocyte-specific transcriptional response common to both physiologic and
genotoxic breaks, which includes many lymphocyte developmental processes. Genotoxic damage causes robust
alterations to pathways associated with B cell activation and increased proliferation, suggesting that genotoxic
damage initiates not only the normal B cell maturation processes but also mimics activated B cell response to
antigenic agents. Notably, changes including elevated levels of expression of Kras and mmu-miR-155 and the
repression of Socs1 were observed following genotoxic damage, reflecting induction of a cancer-prone phenotype.

Conclusions: Comparing these transcriptional responses provides a greater understanding of the mechanisms cells
use in the differentiation between types of DNA damage and the potential consequences of different sources of
damage. These results suggest genotoxic damage may induce a unique cancer-prone phenotype and processes
mimicking activated B cell response to antigenic agents, as well as the normal B cell maturation processes.
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Background
Double strand (ds) DNA breaks are generated in a variety
of ways from both genotoxic and physiologic sources.
In developing lymphocytes one source of physiological
double strand breaks (DSBs) is the process of V(D)J re-
combination that is utilized to generate rearranged anti-
gen receptor genes [1,2]. This process is initiated by RAG
endonucleases while the lymphocytes are in the G1 phase
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reproduction in any medium, provided the or
of the cell cycle. These breaks are necessary to create the
vast diversity seen in lymphocyte antigen receptors. In
addition to physiologic breaks, lymphocytes are exposed
to a variety of genotoxic damage from exogenous sources.
One such damage source is ionizing radiation (IR), which
can be generated from both natural and man-made
sources including radon gas and medical devices and
procedures. Ionizing radiation can cause DSBs, as well as
other DNA lesions, and has been shown to disrupt many
cellular functions. Failure to properly repair this damage
can lead to detrimental health effects, such as uncon-
trolled cell death and cancer formation. The normal
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response to dsDNA breaks includes the activation of mul-
tiple transcriptional pathways that can lead to cell cycle
arrest at specific checkpoints, DNA repair, or death of the
affected cells [3,4]. These genome wide transcriptional re-
sponses are very tightly regulated and complex. They also
differ between different cell types [5], possibly depending
on different sensitivities to DNA damage in general and to
different cellular functionalities.
Here we compare the response of developing B cells to

both physiologic and genotoxic DSBs. In a previous study
we showed that physiological DNA DSBs induced in the
G1 phase of the cell cycle by the RAG endonuclease-
associated process of V(D)J recombination activated a
broad transcriptional profile with many regulated genes
involved in diverse processes important for lymphocyte
development [6]. While it is known that genotoxic agents,
such as IR, activate transcriptional programs involved in
maintaining the integrity of the genome, we also want
to investigate whether or not the genotoxic breaks could
affect lymphocyte-specific maturation transcriptional
responses similar to those we observed following RAG-
induced physiological DSBs. By comparing the transcrip-
tional responses to both types of DNA damage, we can
compare the similarities in the responses to damage as
well as the differences induced by genotoxic damage.
Similarities in the responses could indicate that genotoxic
DNA breaks are potentially disrupting normal cellular
functions that occur in developing B cells, thus corrupting
these developmental processes. Elucidation of the similar-
ities and differences in these responses may lead to a
greater understanding of the cellular mechanisms involved
in lympho-proliferative cancer formation and lymphocyte
maturation.
In this study we highlight that genotoxic DNA damage

not only activates a lymphocyte-specific transcriptional
response but also activates a potentially hazardous tran-
scriptional profile that includes a set of genes and path-
ways indicative of a cancer-predisposition.

Results
Ionizing radiation induces a broad transcriptional
program in wild type murine pre-B cells
Utilizing Affymetrix whole mouse genome gene expres-
sion microarrays, we collected gene expression data
from viral (v)-Abl kinase-transformed pre-B cell lines
that were generated from multiple WT mice expressing
an Eμ-Bcl2 transgene. Treatment of these pre-B cell
lines with the Abl kinase inhibitor, STI-571, leads to a
block in the G1-to-S cell cycle transition [6]. Cells
blocked at the G1-to-S transition with STI-571 were
evaluated for their gene expression response to mock
treatment or exposure to 1 Gy ionizing radiation (GEO
accession GSE36530). The purpose of arresting these
cells is to ensure that the cells are in the same phase of
the cell cycle as the RAG-induced physiologic response
to ensure that similar DNA damage repair processes
would be available under both IR and physiologic condi-
tions. We recognize that this will negate detection of
some of the gene expression patterns normally identified
in logarithmically growing cells that are associated with
cell cycle arrest and DNA damage response changes fol-
lowing exposure to IR. In our previous study we pro-
vided evidence that the RAG DSB gene expression
changes observed in the Abl kinase-transformed cell
lines was very similar to that of primary cells. We expect
the same to be the case for the IR response. In order to
identify significant changes in gene expression after IR-
induced DNA damage, we utilized a combination of t-test
generated p-values and fold change cut-offs (p ≤ 0.05; Fold
Change (FC) ≥ ± 1.5) based on global gene expression
analysis of 3 WT pre-B cell lines exposed to 0 or 1 Gy IR.
We identified 1940 probes that were significantly changed
after IR exposure (Additional file 1, column D). Using In-
genuity Pathway Analysis (IPA) [7] and Gene Set Enrich-
ment Analysis (GSEA) [8], we identified a broad range of
pathways and gene families with significant responses to
induction of genotoxic DNA damage. Figure 1A shows a
list of some of the top IPA canonical pathways signifi-
cantly affected by exposure to IR. The identification of
gene families, from the GSEA Molecular Signatures Data-
base, gives a functional overview of the genes identified as
significantly altered after IR. Gene families share common
features such as biochemical activity and homology. Gene
family analysis shows 107 transcription factors as well as
50 protein kinases whose expression levels are signifi-
cantly altered after IR. This reflects the broad nature of
the transcription program initiated by genotoxic DNA
damage (Figure 1B).

Physiologic and genotoxic damage induce a shared
lymphocyte-specific response
In previous work [6], we identified a lymphocyte-specific
pattern of gene expression in response to physiologic
dsDNA breaks induced by RAG endonuclease cleavage
in primary pre-B cells and abl pre-B cell lines. Here we
examined the similarities in gene expression changes in
response to both physiologic (Additional file 1, column
E; GEO accession GSE38044) and genotoxic damage.
We identified 288 probes representing genes that are
significantly regulated in the same direction in response
to both damage types (Additional file 1, column F).
Since our WT cells exposed to IR are WT for RAG endo-
nuclease, there may be a contribution of naturally occur-
ring RAG-induced breaks in addition to the IR-induced
DNA damage in these cells and the gene expression re-
sponse may contain elements of responses to both types
of DNA lesions. However, we expect the contribution of
the RAG-induced breaks to be minor since both the



Gene Family # of Regulated Genes

Transcription factors 107

Protein kinases 50

Oncogenes 41

Translocated cancer genes 34

Cytokines & growth factors 11

Cell differentiation markers 26

Tumor suppressors 13

Homeodomain proteins 5
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Figure 1 IR induces robust gene expression changes in G1 phase wild type murine pre-B cells. (A) Some of the significant IPA canonical
pathways (pathway significance bar at p-value = 0.01). (B) Gene Families from GSEA’s Molecular Signatures Database. These analyses represent the
1940 differentially regulated probes 2 hours following exposure to 1 Gy γ-radiation.
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control and irradiated cells should respond in a similar
manner to the STI-571 (i.e. not show differential gene ex-
pression changes) and since these cells are also WT for
the repair pathway machinery that rapidly resolves these
breaks. The similarly regulated genes include many
lymphocyte specific maturation genes such as Cd40,
Cd69, Swap70, and NFκB (Figure 2A). While these genes
are regulated in response to both damage types, one dif-
ference we observed was that genotoxic damage ap-
pears to induce a more robust change in many of the
affected genes and pathways. IPA reveals affected ca-
nonical pathways consistent with B cell maturation
(Figure 2B). Since CD40 expression plays an important
role in B cell maturation and its mRNA levels are in-
creased after DNA damage, we compared the protein
expression of CD40 after physiologic and genotoxic
damage by flow cytometric analysis. We observed the
expected increase in the number of cells with in-
creased CD40 surface expression 90 minutes after 1 Gy IR
(Figure 2C) and this is in agreement with our previously
published data showing an increase in cell numbers with
higher CD40 expression levels after RAG-induced DNA
breaks [6].

Genotoxic damage, but not physiologic damage, induces
a potential cancer susceptibility cellular response
In addition to the similarities in response to both types
of DNA damage, we observed a robust gene expression
profile after genotoxic damage that was not seen after
the physiologic damage. We identified 1694 probes,
representing almost 900 unique genes, which were dif-
ferentially regulated in the response to IR but not in the
response to physiologically induced damage (Additional
file 1, column G). The transcriptional response unique
to the IR-induced damage includes increased expression
of 24 oncogenes, 25 protein kinases and 57 transcription
factors, as well as decreased expression of 5 tumor sup-
pressors and 42 transcription factors. Changes in the ex-
pression in these broad-range signalling molecules
suggest a diverse biological response to genotoxic DSBs.
In order to understand the broad biological mechanism
and pathways affected by IR-induced DSBs, we utilized
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Figure 2 Both physiologic and genotoxic damage initiate a lymphocyte-specific maturation gene expression response. (A) Fold change
from the microarray analysis of representative common genes. (B) Some of the significant IPA canonical pathways representing the 288 common
probes (pathway significance bar at p-value = 0.01). (C) Flow cytometric analysis of CD40 protein expression on STI-571 treated WT cells
90 minutes following exposure to 0 Gy or 1 Gy IR.
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IPA to investigate the changes in pathways and bio-
logical functions caused by genotoxic damage (Figure 3).
Several canonical pathways were affected in response to
IR that were not seen to be affected in physiologic-
induced profiles, such as an Nrf2-mediated oxidative
stress response and cell cycle regulation pathways. As
mentioned above, we also see a stronger enrichment of
pathways associated with activation of mature B cells in
response to antigen. Initial inspection of the genes sig-
nificantly regulated by IR-induced damage revealed sev-
eral oncogenes and tumor suppressor genes whose
expression change correlates with changes reported to
be involved in cancer formation. These included in-
creased expression of known proto-oncogenes, such as
Kras [9,10] and Rras [10], and the oncomiR microRNA-
155 [11-13], as well as suppression of the expression of
Socs1, a known tumor suppressor [14] (Figure 4A). While
the Affymetrix Mouse Genome 2.0 GeneChip array is not
specifically designed to recognize microRNAs, the current
annotation of the array revealed that several microRNAs
are represented in the array. MicroRNA-155 is known to
target Socs1 and this combination of increased expression



Figure 3 IPA of 1694 IR-induced only probes. These are some of the most significant IPA canonical pathways represented by the unique IR-
induced genes based on the 1694 probes differentially regulated in response to IR but not RAG-induced damage (pathway significance bar
at p-value = 0.01).
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of miR-155 and suppression of Socs1 has been described
in several B cell-derived lymphomas [11,15]. Our analysis
shows many biological functions affected that are consist-
ent with over-expression of potential oncogenes, such as
cancer formation, cellular proliferation, and cell-mediated
immune responses.
Increased miR-155 expression suggests an increased
capacity for cellular proliferation after ionizing radiation
Increased expression of mmu-miR-155 in response to IR-
induced damage suggests an increase in the capacity for
proliferation [16] of developing B cells when exposed to
genotoxic stress. Mature and functional microRNAs
are processed through a series of steps from a primary
microRNA transcript. It is possible the change in the
mmu-miR-155 levels seen on the microarray is a reflection
in the change of the primary miR-155 transcript. In order
to investigate the changes of the mature microRNA levels
after IR-induced DSBs and to further examine investigate
the expression of miR-155 and its target Socs1, we under-
took a time course to analyze and validate the miR-155
response to genotoxic damage over time. We used quanti-
tative real-time PCR (qRT-PCR) to track the miR-155 and
Socs1 expression levels at 2, 4, and 8 hours post ionizing
radiation in the 3 WT lines. A robust increase of miR-155
expression levels is seen in the initial hours after genotoxic
damage, with an average of 2.9 and 3.0 fold increases seen
at 2 and 4 hours, respectively, post IR. By 8 hours post IR
it appears the levels of miR-155 are returning to baseline.
In an inverse correlation, Socs1 expression is robustly de-
creased initially after IR exposure and has almost returned
to baseline levels by 8 hours post damage (Figure 4B, Add-
itional file 2 (miR-155) and Additional file 3 (Socs1)).
Activation of Nrf2 after IR-induced DNA damage suggests
a cellular protective response to oxidative stress
One pathway we observed to be regulated after genotoxic
but not physiologic damage was the Nrf2 oxidative stress
pathway. Members of the Nrf2 signalling pathway, includ-
ing Maff, Sqstm1, and Txnrd1, were up regulated after
exposure to genotoxic DNA damage by microarray. Since
IR exposure is known to induce oxidative stress [17,18],
induction of this pathway was expected, but in combin-
ation with the potential for increased proliferation sug-
gested by miR-155 expression, it may reflect a potentially
dangerous, cancer predisposed situation in response to
genotoxic damage.
In order to investigate and validate the induction of an

Nrf2 response to IR, we utilized a time course post IR to
examine investigate Nrf2 protein expression levels as well
as mRNA expression levels of the downstream target
Txnrd1 in each of the 3 WT pre-B lines (Figure 5 and
Additional files 4 and 5). Changes in Nrf2 protein expres-
sion were determined by quantitation from Western blots
of the 3 WT lines, with each Nrf2 band adjusted for the
loading control β-actin. Once activated, Nrf2 protein ac-
cumulates in the nucleus, where it transactivates numer-
ous target genes [19,20]. In response to IR exposure, Nrf2
protein levels were found to be on average 3 fold higher
than in mock-irradiated controls at 2 hours post treatment.
Levels continue to increase, reaching a peak at 4 hours
post IR exposure. Levels of Nrf2 are almost completely
returned to baseline levels after 8 hours. One downstream
target of Nrf2 is thioredoxin reductase 1 (Txnrd1), which
plays a role in protecting cells from oxidative stress [21].
As expected, mRNA levels of Txnrd1, as measured by
qRT-PCR and normalizing to 18S levels, are increased at
both 2 and 4 hours post genotoxic damage. By 8 hours the
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Examples of Over Expressed Oncogenes
Probeset ID Gene Symbol  IR Response Rag Response

1418971_x_at Bcl10 1.63 1.24

1450381_a_at Bcl6 2.56 1.09

1416123_at Ccnd2 6.59 1.00

1434000_at Kras 2.08 -1.36

1428027_at mmu-miR-155 12.23 1.06

1423006_at Pim1 2.80 1.37

1448689_at Rras2 7.18 -1.10

1452531_at Runx1 1.76 -1.04

1427258_at Trim24 1.90 1.18

Examples of Decreased Tumor Suppressors
1419076_a_at Brca2 -1.61 -1.21

1416045_a_at Smarcb1 -1.52 -1.01

1450446_a_at Socs1 -2.51 1.03

Figure 4 Increased miR-155 and Kras expression suggest a
possible cancer predisposition in G1 phase WT cells. (A)
Transcriptional regulation of known oncogenes and tumor
suppressors by microarray at 2 hours post IR in WT cells (fold
change) (also shown are values of the fold difference after RAG-
induced damage). (B) Gene expression of miR-155 and Socs1 mRNA
by qRT-PCR at 2, 4 and 8 hours post IR. Each data point is the final
ddCT calculated fold change value of 1 Gy/0 Gy from 3 WT pre-B
cells lines, with 3 to 5 technical replicates each, following
normalization to U6 or 18S, respectively.

Figure 5 Activation of the oxidative stress pathway seen in
increased Nrf2 and Txnrd1 expression following IR. Nrf2 protein
expression was determined by Western analysis and quantification
of the average of data from 3 WT cell lines with each Nrf2 intensity
pixel value normalized to β-actin. Error bars are standard error of the
3 WT ratios. Txnrd1 mRNA expression was determined by qRT-PCR
and each data point is the final ddCT calculated fold change value
from 3 WT cell lines, each with 3 to 5 technical replicates, following
normalization to 18S.

Innes et al. BMC Genomics 2013, 14:163 Page 6 of 10
http://www.biomedcentral.com/1471-2164/14/163
levels of Txnrd1 are returning to normal levels (CT values
are plotted for each WT line in Additional file 4).

Discussion
In this study we evaluated the transcriptional response
induced by physiologic and genotoxic DSBs in develop-
ing B cells. By comparing these different types of damage
we found that there are important similarities as well as
striking differences in the cellular responses to these dif-
ferent forms of DNA lesions.
In previous work [6], we observed a lymphocyte-

specific response to physiologically generated RAG-
induced dsDNA breaks. Highlights of this response in-
clude changes in the expression of genes important in
immune function and maturation. Changes in these
genes suggest an increase in the signalling of the CD40
and NFκB pathways, suggesting a role for DNA breaks
in the progression of B cell maturation. After the obser-
vation that RAG-induced DSBs trigger a response to
move the B cells toward maturation, the next obvious
question is whether or not other types of DSBs induce
the same lymphocyte-specific maturation profile. Here
we observed 288 probes that were differentially regu-
lated in the same direction after induction of breaks re-
gardless of the source of the damage. These changes
include increased expression of Cd40, Cd69, Icam1,
Swap70, NFκB, as well as other immune related genes.
Increased expression of these genes and others associ-
ated with Cd40-, Cd69-, and NFκB-related pathways
suggest that the B cells are preparing to undergo matur-
ation irrespective of the source of the DNA damage.
While a core set of genes is regulated in the same direc-
tion after both types of damage, the response to
genotoxic damage is generally more robust than the re-
sponse to RAG-induced breaks. We hypothesize this is
due to the greater amount of DNA damage induced by
IR exposures, perhaps initiating a stronger signal to-
wards maturation.
While we see similarities in the response to physio-

logic and genotoxic breaks, we recognize there are po-
tential biological and technical differences in comparing
RAG-induced and ionization radiation-induced DSBs.
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RAG-induced DSBs are tightly regulated and only a
small number of breaks in very specific locations in the
genome are induced. In contrast, IR exposure can in-
duce a broad range of DNA damage, including DSBs,
that is not restricted to specific locations but occurs
throughout the genome and can involve DNA lesions
with damaged nucleotide ends as opposed to the “clean”
ends generated by the RAG endonucleases. We have
attempted to mitigate these differences by using expo-
sures to a low dosage of IR and by ensuring the cells are
in the same phase of the cell cycle to ensure that similar
DNA damage repair processes would be available under
both conditions. Despite the differences in the nature of
the DSBs it appears that the cells undergo a similar re-
sponse to that damage by initiating a central lymphocyte-
specific transcriptional response that is common to both.
In addition to these similarities, the genotoxic damage

also induces changes in 1694 unique probes representing
almost 900 genes. Broad expression changes in transcrip-
tion factors and protein kinases suggest genotoxic DSBs
induce a myriad of changes in both gene expression and
physiological pathways. Gene expression changes and al-
terations in pathways associated with B cell activation, in-
creased proliferation, and oxidative stress responses are
seen in the unique response to IR. Many of the pathways
altered on a transcriptional level are known to be involved
in the generation of cancers. Also, this study highlights
the importance of additional layers of regulation, which
has become obvious with the discovery of genotoxic regu-
lation of small regulatory RNAs such as microRNAs
(miRNAs). Their role in a wide variety of physiological
processes has revealed their vital importance in proper
cellular function, and disregulation has been linked to hu-
man diseases, including cancer and immune disorders
(reviewed in [22-25]).
In addition to the lymphocyte specific transcriptional

pattern induced by both types of DNA damage, genotoxic
damage induces a potentially oncogenic combination of
alterations of genes and biological response pathways. We
found that genotoxic, but not physiologic, damage induces
increased expression of several proto-oncogenes such as
Kras and the oncomiR miR-155. This suggested to us that
the cellular response to double strand DNA damage could
be specific to the method of generation of that damage,
recognizing that IR-induced genotoxic damage causes
many types of DNA damage. miR-155 is a known onco-
genic miRNA and its increase has been correlated with
formation of B cell malignancies. The up-regulation of
miR-155, at both the primary transcript and mature
microRNA level, seen after IR-induced breaks suggests a
potential for the development of cancer after genotoxic
damage. Additionally, miR-155 has been identified to sup-
press a number of tumor suppressors, including Socs1,
which we found to be suppressed after genotoxic damage.
MiR-155 up-regulation has been associated with B cell
cancers and B cell transformation [11,13], as well as with
normal immune response [26]. Altered expression of this
miRNA and its target Socs1 suggests that an increase in
proliferation may be triggered after IR exposure. Interest-
ingly, this increase in proliferation and up-regulation of
miR-155 has been seen in mature B cells as a result of
their response to antigen [27,28].
Another noteworthy difference between genotoxic and

physiologic damage is the significant change in regula-
tion of genes in B cell activation pathways and Nrf2-
mediated signalling. Nrf2 signalling is a known response
to IR but has also been seen in the activation of mature
B cells [19,29]. The Nrf2 pathway is a critical regulator
of the defense against oxidative stress. Activation of Nrf2
pathways is an important component in the clearing of
oxidative stress and in a cytoprotective outcome. There
has been some suggestion that Nrf2 also has a role in res-
cuing cells from cell cycle arrest that can be generated in
response to oxidative damage [30]. These responses to
genotoxic damage in both the B cell activation and Nrf2
signalling pathways could combine to result in serious
deleterious consequences to the immune system.

Conclusion
The broad gene expression alterations, increased expres-
sion of the oncomiR miR-155 and proto-oncogenes such
as Kras, the activation of Nrf2, and the lymphocyte spe-
cific maturation profile induced by genotoxic DSBs, reflect
a potentially dangerous combination of conflicting signals
for increased cellular proliferation and cytoprotective re-
sponses. These conflicting signals could drive developing
B cells to continue to mature and proliferate in the pres-
ence of DNA damage after genotoxic exposures. The pos-
sibility of maturation and proliferation in the presence of
DNA damage increases the risk for aberrant repair or lack
of repair of damaged DNA. Continued maturation and
proliferation of these highly proliferative cells signalled by
genotoxic DSBs provides a mechanism for the develop-
ment of immunodeficiencies due to the potential loss of
mature functional B cells as well as for the formation of
lympho-proliferative cancers when DNA repair is not
completed successfully.

Methods
Cell culture
Three independently derived WT (A70.1, Atm2A, and
PA112.2) v-abl-transformed murine pre-B cell lines were
used. Cells were maintained in suspension in Dulbecco’s
modified Eagle Medium (DMEM), high glucose, (Invitrogen
11960-077) supplemented with 10% fetal bovine serum
(Invitrogen 12476-024), 1X Sodium Pyruvate (Invitrogen
11360-070), 1X Non-Essential Amino Acids (Invitrogen
11140-050), 1X L-Glutamine (Invitrogen 25030-081), and
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0.0004% β-mercaptoethanol. Treated cells were passaged
with 3 μM STI-571 (Imatinib Mesylate) added to the media
and incubated for 48 hours. For exposure to ionizing radi-
ation (IR), cells were exposed to γ-rays at a rate of 0.72 Gy/
minute for a final dose of 1 Gy from a 137Cesium source.

RNA isolation
Cells were cultured for 48 hours with STI-571 and then
for an additional 2, 4, or 8 hours following mock or IR
exposure, then were collected and flash frozen. For
microarray, RNA was isolated using the Qiagen RNeasy
kit following the manufacturer’s protocol, including the
addition of DNase. For qRT-PCR analysis, total RNA
was isolated using the Qiagen miRNeasy isolation kit
using the standard protocol for total RNA isolation.

Microarray
Isolated total RNA was submitted to the NIEHS Micro-
array Core facility for microarray analysis. Gene expression
analysis was conducted using Affymetrix Mouse Genome
2.0 GeneChip arrays (Mouse 430 v2). One microgram of
total RNA was amplified as directed in the Affymetrix
One-Cycle cDNA Synthesis protocol. Fifteen micrograms
of amplified biotin-complementary-RNAs were fragmented
and hybridized to each array for 16 h at 45°C in a rotating
hybridization oven using the Affymetrix Eukaryotic Target
Hybridization Controls and protocol. Array slides were
stained with streptavidin and phycoerythrin using a
double-antibody staining procedure, and then washed
using the EukGE-WS2v5 protocol with the Affymetrix Flu-
idics Station FS450 for antibody amplification. Arrays were
scanned in an Affymetrix Scanner 3000 and data was
obtained using the GeneChip Operating Software (Version
1.2.0.037). The resulting gene expression data from 3 WT
pre-B cell lines exposed to 0 and 1 Gy IR were processed
and analyzed using Partek Genome Suites (PartekW Gen-
ome Suites software, version 6.6beta Copyright © 2009
Partek Inc., St. Louis, MO, USA) utilizing RMA back-
ground correction with quantile normalization and elimin-
ating probe sets with an expression level below 100 in all
samples. An analysis of variance (ANOVA) was performed
between the 0 and 1 Gy treated samples. Associated p-
values were generated and, combined with an average fold
change of ± 1.5, a p-value of ≤ 0.05 was used to generate a
list of differentially expressed genes.

Flow cytometry
To examine surface protein expression, cells were harvested
90 minutes following irradiation and fixed in 4% parafor-
maldehyde (BioLegend Fixation Buffer, 420801), diluted
with PBS, and stored at 4°C. Cells were stained with CD40-
FITC antibody (eBioscience 11-0402) and re-suspended in
PBS. Surface expression was determined using an LSRII
flow cytometer (Becton Dickinson). Cells were gated for
viability based on FSC vs. SSC and the resulting histograms
of CD40 (FITC) expression were overlaid for each pair of
treated (1 Gy IR) vs. untreated (0 Gy IR) samples using
FlowJo (Tree Star, Inc. Ashland, OR) Flow Cytometry ana-
lysis software.

Reverse Transcription and qRT-PCR
Quantitative real-time PCR of microRNA-155
Mature microRNAs were measured using the stem loop
based TaqManW MicroRNA Assays kit (Applied Bio-
systems, Foster City, CA) according to the manufacturer’s
protocol. Briefly, microRNAs from 10 ng of total RNA were
reverse transcribed with TaqManW mature microRNA
specific stem-loop primers. TaqManW MicroRNA Reverse
Transcription assay kits and reagents were used per the
manufacturer’s protocol. Abundance of the microRNAs
was measured by qRT-PCR performed on 50-extended
cDNA using the Applied Biosystems TaqManW 2X Univer-
sal PCR Master Mix and 5X TaqManW MicroRNA Assay
Mix (mmu-miR-155, MIMAT0000165). For each sample,
CT values were obtained from the 3 independent WT cell
lines, each with 5 technical replicate wells using an ABI
7900 in the 384 well plate format. MicroRNA concentra-
tions were determined by calculating ddCT with norma-
lization to U6 snRNA. Fold change values were determined
based on the normalized ddCT values of the 0 Gy vs. 1 Gy
samples. Original CT values of all wells are plotted in
Additional file 2.

Quantitative real-time PCR for Socs1 and Txnrd1
One-step qRT-PCR was performed using TaqMan Gene
Expression Assays (Applied Biosystems) and Superscript
II Reverse Transcriptase (Life Technologies). Briefly,
250 ng of total RNA from each sample was combined
with Superscript II Reverse Transcriptase, TaqMan gene
expression assays (Socs1, Mm00782550_s1; Txnrd1,
Mm00443675_m1) and TaqMan Universal PCR Master
mix. 18S RNA was used to normalize gene expression
and to calculate the ddCT and fold changes for each
gene, as described for miR-155. PCR was run on the ABI
7900 in the 384 well plate format using the following
program:

Stage 1 1 cycle 50°C 8 minutes
Stage 2 1 cycle 95°C 10 minutes
Stage 3 40 cycles 95°C 15 seconds
60°C 1 minute

Original CT values of all wells are plotted in Additional
files 3 (Socs1) and 4 (Txnrd1).

Protein extraction and western blotting
Treated or control cells were harvested by centrifugation,
washed 1x with ice-cold PBS, and lysed in IP lysis buffer
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(Thermo Scientific) supplemented with phosphatase and
protease inhibitors (Thermo Scientific). Cell lysates from 3
WT pre-B cells lines were incubated on ice for 30 minutes
and cleared by centrifugation at 14 K RPM. Aliquots
representing equal amounts of protein (10-30 μg per lane)
from each lysate were mixed with sample dilution buffer
and denatured by heating at 98°C for 5 minutes, separated
on SDS-PAGE gels, and analyzed by western blotting. The
antibody to Nrf2 (C-20) (sc-722x) was from Santa Cruz
Biologicals (Santa Cruz, CA). Equivalent loading and pro-
tein transfer were confirmed by Ponceau stain and Western
blot with β-actin (Sigma A5316) as a loading control.
Primary antibodies were detected with a peroxidase-
conjugated secondary antibody and enhanced chemilu-
minescence according to the manufacturer’s instructions
(Pierce). Quantitation of bands in Western blots was
performed with the ImageQuant TL v.2005 software (GE
Healthcare).

Accession numbers
Data from microarrays used in this study have been ar-
chived at the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo/) under GEO acces-
sion numbers GSE36530 and GSE38044.

Additional files
The following additional data files are available with the
online version of this paper. Additional file 1 is a table
containing data from the microarray analyses. It is a com-
pilation of the probes that were differentially regulated in
response to IR-induced breaks in WTcells and in response
to RAG-induced breaks. The columns represent the
Affymetrix probe ID, gene symbol, gene name, fold change
values of probes differentially regulated in response to IR,
fold change values in response to RAG breaks, and indica-
tors of which are common to both, or unique to IR-
induced breaks. Additional files 2, 3 and 4 contain original
CT values used to determine the changes in transcriptional
expression levels from the qRT-PCR of miR-155, Socs1
and Txnrd1. Additional file 5 contains the western blot
images for Nrf2.

Additional file 1: Differentially regulated probes in response to
DNA damage. This is a combined table of all probes that were
significantly differentially regulated in response to 1 Gy IR (p ≤ 0.05,
FC ≥ ±1.5) in WT pre-B cells lines and in response to RAG induced DSBs
(p≤ 0.05, FC ≥ ±1.5). Three independent WT lines were used to
determine the response to genotoxic IR-induced DNA damage. These
cells were exposed to STI-571 for 48 hours, treated with 0 or 1 Gy IR and
mRNA expression was measured at 2 hours post IR. The intensity values
were averaged from the 3 treated or untreated samples and used to
determine fold change of 1 Gy/0 Gy. Significantly differentially regulated
IR-induced probe fold change values are shown in column D. To
determine differentially regulated probes in response to RAG-induced
breaks, three independent Rag2-/- (no DSBs) lines and three independent
Artemis-/- (unrepaired RAG-induced DSBs) lines were exposed to STI-571
for 48 hours and mRNA expression was measured. The intensity values
were averaged for each genotype. Values are fold change of Artemis-/-/
Rag2-/- and significantly differentially regulated fold change values are
shown in column E. Differentially regulated probes common to IR- and
RAG-induced break responses are indicated in column F with a # for a
commonly expressed specific probe ID and ## for a commonly expressed
gene. For the latter, multiple probes representing the same gene were
differentially regulated in the same direction (up or down-regulated)
following both IR- and RAG-induced breaks. Differentially regulated
probes unique to IR-induced DNA damage response are indicated in
column G with an *. This column includes all probes that were
differentially regulated in the WT response to IR (p ≤ 0.05, FC ≥ ±1.5) but
not in the physiological response to RAG-induced breaks. Annotation of
all genes listed is based on build 32 from Affymetrix.

Additional file 2: qRT-PCR expression data for miR-155. Original CT
values representing miR-155 and U6 expression levels from 3 WT Pre-B
cell lines at 2 (A), 4 (B) and 8 (C) hr following IR are plotted. Data are
from 5 technical replicates for each cell line, primer and time point.

Additional file 3: qRT-PCR expression data for Socs1. Original CT
values representing Socs1 and 18S expression levels from 3 WT Pre-B cell
lines at 2 (A), 4 (B) and 8 (C) hr following IR are plotted. Data are from 3
to 5 technical replicates for each cell line, primer and time point.

Additional file 4: qRT-PCR expression data for Txnrd1. Original CT
values representing Txnrd1 and 18S expression levels from 3 WT Pre-B cell
lines at 2 (A), 4 (B) and 8 (C) hr following IR are plotted. Data are from 3
to 5 technical replicates for each cell line, primer and time point.

Additional file 5: Protein expression of Nrf2 in WT Pre-B cell lines.
Each Nrf2 and β-actin pair of panels comes from the same
polyacrylamide gel and represents one of the 3 WT cell lines. The first 3
lanes are untreated cells and the last 3 lanes of each are the
corresponding irradiated cells for each time point following IR, 2, 4 and
8 hr. The values in Figure 5 incorporate normalization to β-actin for each
lane.
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