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Abstract

It is important for public data repositories to promote the reuse of archived data. In the growing field of omics science,
however, the increasing number of submissions of high-throughput sequencing (HTSeq) data to public repositories
prevents users from choosing a suitable data set from among the large number of search results. Repository users need to
be able to set a threshold to reduce the number of results to obtain a suitable subset of high-quality data for reanalysis. We
calculated the quality of sequencing data archived in a public data repository, the Sequence Read Archive (SRA), by using
the quality control software FastQC. We obtained quality values for 1 171 313 experiments, which can be used to evaluate
the suitability of data for reuse. We also visualized the data distribution in SRA by integrating the quality information and
metadata of experiments and samples. We provide quality information of all of the archived sequencing data, which enable
users to obtain sufficient quality sequencing data for reanalyses. The calculated quality data are available to the public in
various formats. Our data also provide an example of enhancing the reuse of public data by adding metadata to published
research data by a third party.
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Background

The publication of primary data used as evidence is essential for
ensuring transparency and reproducibility in scientific research,
but it’s also important for promoting the reuse of data in future
research activities [1,2]. In the last decade, the rapid advance
of high-throughput DNA sequencing (HTSeq) technologies has
enabled omics research projects to produce massive amounts
of data, which have huge potential for reuse from different

perspectives [3]. An increasing number of sets of omics data
are being produced by not only international consortiums, but
also individual research projects [4]. However, only a portion of
all archived data derived from large projects is frequently being
reused, in contrast to data from individual studies. This is proba-
bly because users prefer to collect data from a single project that
had a sufficient number of samples that were produced by ex-
periments under reliable conditions, thus ensuring the quality
of the data. To promote the reuse of combined sets of data from
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multiple projects, public repositories have to provide a filtering
feature in data searches so that users can control the number
of experiments and quality of data in their searches. Currently,
data searches provided by repositories based on metadata de-
scribed by the data submitter cannot be used for filtering by data
quality. To enable such filtering, repositories have to provide in-
formation on the quality of sequence data.

As the number of submissions of data to repositories in-
creases, the number of search results produced by inputting the
same query also increases. To select an appropriate amount of
data, sequencing quality is usually used to ensure that the data
are sufficient for an analysis; however, only natural language
metadata described bythe data submitter and a few quality in-
formationdetails such as total sequence bases are available for
public sequencing data to filter the number of data sets. Categor-
ical values described in metadata can be used to filter the data,
but they are not enough to retrieve data sets in a smaller pool of
results. For example, when a user searches with the query “tran-
scriptome data of mouse brain” in the Sequence Read Archive
(SRA), a public HTSeq data repository, over 120 000 experiments
are shown in the search results. To reduce the number of results
and thus obtain the most suitable data set for analysis, the user
needs to download all of the data and calculate the sequence
quality, for instance, the read length or number of reads. Given
the rapid increase in the amount of archived data, this is becom-
ing increasingly unfeasible.

Providing information on data quality can also provide an in-
sight into the data repository itself. Basic quality values, for ex-
ample, mean andmedian levels of sequencing throughput, read
length, or base call accuracy of a specific sequencing method,
are important to obtain an overview of the archive. These val-
ues can be used to illustrate the overall distribution of data in
the repository. The distribution can show the standard of data
quality; thus, a user can use these values to filter out inappro-
priate data sets from among the thousands of search results.

Here, we provide the calculated sequencing quality data of all
archived HTSeq experiments to allow repository users to con-
trol the amount and the quality of data in their searches. We
also performed analyses to visualize the distribution of archived
data by quality values to show the standard of data quality in the
repository.

Data Description
Downloading of sequencing data

To calculate quality values of sequencing data, we downloaded
the data from the SRA, which is the largest public repository for
HTSeq data [5]. Sequencing data containing personal identifica-
tion information that should be shared in a controlled-access
manner are not archived in SRA. In this study, we downloaded
open-access SRA data stored in FASTQ format from the FTP
server of the DNA Data Bank of Japan [6].

We analyzed all of the publicly available HTSeq data sub-
mitted to SRA up until December 2015. The total number of se-
quenced samples was 1 171 313, and the number of sequenced
bases was more than 2.7 trillion. The varieties of sequencing
methods, sequencing instruments, and sequenced sample or-
ganisms are shown in Fig. 1; these were extracted from the
metadata described by the data submitter. The most common
sequencing method is the whole-genome shotgun (WGS) ap-
proach, whichwas employed for 426 841 samples, or 36.4% of the
total. The number of different sequenced organisms is 33 961,
based on the Taxonomy ID. The most commonly sequenced
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Figure 1: Performed sequencing experiments and sequenced samples of public
data for quality calculation. (a) Bar plot of the top 20 library strategies. Values are
categorical, retrieved frommetadata described by the data submitter. (b) Bar plot
of the top 20 sequenced sample organisms. Taxonomy information is retrieved

from the NCBI taxonomy database and declared by the data submitter. (c) Bar
plot of sequencing instrument models.

organism in SRA is human, with 216 896 samples, or 18.5% of
the total, while the total number of samples whose scientific
name contains “metagenome” is 244 457, or 20.9% of the total.
The number of experiments counted by the sequencing instru-
ment model used shows that Illumina HiSeq 2000 is the most
commonly used instrument in SRA, with 542 332 experiments,
or 46.3% of the total.
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Table 1: Calculated sequence quality values and used modules of
FastQC

Calculated Quality
Value

Numbers of
Multiple Runs in
an Experiment Used FastQC Modules

Total number of reads Added Basic Statistics module
Mean/median read
length

Average Sequence Length
Distribution module

%GC Average Basic Statistics module
Total duplicate
percentage

Average Duplicate Sequences
module

Mean/median base call
accuracy

Average Per Base Sequence
Quality module

N content Average Per Base N Content
module

Calculation of sequence read quality

To enable filtering of the search results in the repository by qual-
ity information, we extracted sequence read quality values from
raw sequencing data using FastQC. FastQC is one of the most
popular software programs for performing quality control of
high-throughput sequencing data [7]. By using the results from
FastQC, we calculated comparable values of sequence data, such
as the total number of reads, mean and median sequence read
length, %GC, read duplicate percentage, mean and median base
call accuracy, and percentage of failed base calling (N content)
(Table 1). The read quality values were calculated for each down-
loaded set of sequencing run data in FASTQ format, and then
assembled using the SRA Experiment ID.

We integrated the categorical values described inthe
metadata of the sample and experiment with calculated read
quality data. Experimental metadata were extracted from an
SRA metadata XML file downloaded from the FTP server of the
National Center for Biotechnology Information (NCBI). Sample
information was extracted from the XML file downloaded
from BioSample, a database maintained by the International
Nucleotide Sequence Database Collaboration (INSDC) to archive
information on biological materials [8].

Analyses
The state of the HTSeq repository visualized by the
distribution of data quality

Providing sequence data quality enables users to control the
number of search results from a data repository. The integra-
tion of information on data quality with metadata of samples
and experiments can be used to develop a better search func-
tion. However, to offer a method of obtaining a suitable data set
from thousands of search results, it is necessary to know the
standard of data quality and the data distribution in the reposi-
tory. To illustrate the state of publicly available HTSeq data using
quality values, histogramswere created for sequencing through-
put, base call accuracy, and N content (Fig. 2, Supplementary
Figs 1–3). As Fig. 1 shows, there is a huge bias in numbers of
sequencingmethods, sequenced organisms, and sequencing in-
strumentsused. Thus, we focused on the factor that defines the
range of the quality values, not the count of data, which is prob-
ably affected by the bias of the number of sequencing instru-
ments. To understand the data attribute that is decisive to its

distribution, histograms were color-coded (Fig. 2b and d) or sep-
arated (Supplementary Figs 1 and 2) in terms of the metadata
of sequencing experiments and sequenced sample organisms.
In the histograms of sequencing throughput, library source, par-
ticularly genomic, transcriptomic, or metagenomic source of se-
quencing, clearly explains the distribution of sequenced bases
(Fig. 2a and b, Supplementary Fig. 1). Overall, the mean value of
throughput was 2.371e+09, and the median value was 3.349e+08.
In the histogram of base call accuracy, as expected, the val-
ues are strongly affected by the choice of sequencing chemistry
(Fig. 2c and d, Supplementary Fig. 2). Themean value of base call
accuracy was 29.45, while the median value was 35.52. The his-
togram drawn by N content showed that 1 103 515 items, 94.2%
of the data, had N at less than 1% of the total sequences (Sup-
plementary Fig. 3). For the data with a higher proportion of N
content, theremay have been an error in the sample DNA prepa-
ration or sequencing operation.

Data distribution by read quality for each sequencing
method

SRA accepts the submission of various kinds of sequencing
data, such as those obtained by WGS, RNA-Seq, ChIP-Seq, and
metagenomic approaches, as well as many other DNA library
construction strategies. To accomplish higher measurement ac-
curacy and greater dynamic range, each sequencingmethod has
ideal conditions regarding sequencing quality. We analyzed the
distribution of data in each data set using a library strategy to in-
vestigate howmany performed experiments achieved such ideal
conditions. We employed 988 678 sets of data for this analysis,
which were obtained through the sequencing of human sam-
ples via WGS, amplicon sequencing, RNA-Seq, ChIP-Seq, pooled
clone sequencing, or whole-exome sequencing (WXS). We visu-
alized the data distribution by creating a histogram for each li-
brary strategy (Fig. 3). The histogramswere also separated by the
sequencing instrument manufacturer to show which type of se-
quencing chemistry had been selected (Supplementary Fig. 4). In
one of the six library strategies, namely amplicon sequencing,
multiple types of sequencing chemistry were used, while the
others were performed mostly by Illumina sequencing chem-
istry. The histograms indicate that the five library strategies re-
quire a larger number of sequence reads and higher base call
quality. In contrast, experiments by other library strategies were
performed with a short read length of around 100 bases, while
some amplicon sequencing experiments were performed with
longer sequence reads of hundreds of bases. A total of 66.3%
of amplicon sequencing experiments were performed by non-
Illumina sequencers, for which the average read length was
388.4. This is consistent with the standards of each sequencing
strategy [9].

Changes of sequencing quality during SRA’s history

Since 2007, when the first next-generation sequencing datawere
submitted to the SRA, there have been rapid advances in the
sequencing technology regarding both the instruments and the
chemistry, which have significantly improved the quality of se-
quencing data. The improved specs of sequencers have enabled
various new sequencing methods to be developed, but have also
helped improve the data quality output using existing methods.
We visualized the changes of quality values for each sequencing
method over time. A change in four sequencing qualities, total
number of reads, read length, sequencing throughput, and base
call quality of six library strategies, WGS, amplicon, RNA-Seq,
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Figure 2: Data distribution in a public data repository by sequencing quality. (a, b) Histogram of sequencing throughput (a) and one color-coded by library source (b).
(c, d) Histogram of base call accuracy (c) and one color-coded by instrument manufacturer (d).

ChIP-Seq, pooled clone, and WXS are visualized by box plots in
quarterly time series (Fig. 4, Supplementary Fig. 5). While the
plots of pooled clone sequencing could not be evaluated due
to a lack of continuous data submission, the plots of the other
strategies show their trends over time. The plots of amplicon
sequencing show no specific tendency, probably indicating that
such sequencing quality values are determined by the charac-
teristics of each sequencing project, the surveying of which re-
quires more detailed metadata. In ChIP-Seq and WXS, sequenc-
ing throughput increased slightly over time. In plots of base call
accuracy, ChIP-Seq, RNA-Seq, WGS, and WXS showed increases
of the value, possibly reflecting the improvement of sequencing
technologies.

Discussion

The increasing number of submissions of data to public high-
throughput sequencing data repositories has made it difficult
to reuse published data efficiently. By calculating quantitative
variables of sequencing data and integrating them with infor-
mation on experiments and sample organisms, we enabled an
appropriately sized subset to be obtained frommultiple projects
archived in the repository. Without any quantitative informa-
tion, users cannot choose a reliable data set from among thou-
sands of search hits. When users search data with a query of
sample-related information, such as a treatment of biological
materials, the number of search results tends to be very small
or too large for users to be able to browse through due to the
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Figure 3: Human data distribution for each library strategy. (a–d) Histograms separated by the top six library strategies. Data distribution is by the total number of
sequences (a), median read length (b), sequencing throughput (c), and median base call accuracy (d) per experiment.

lack of detailed metadata. It is also claimed that the metadata
described by data submitters lack some important information
or may contain errors [10]. In contrast, our results can provide
information in a way that enables users to look into a large data
set and control the amount of data output in their search by set-
ting a threshold regarding the quality value.

Our approach also enables visualization of the data
distribution to find the relative position of data in a data set
of similar features. Moreover, it is now possible to show the
distribution of read information and its change over time for
each sequencing method. These features are useful when
deciding on the conditions to set in a sequencing experiment.
For example, from the results of our investigation on the
distribution of sequencing throughput and base call accuracy,

users can check whether the total number of sequenced bases
is within the appropriate range for one’s library source, and they
can also evaluate whether the base call accuracy is sufficient
to follow the standard quality of the instruments used. Though
it is possible that an incorrect metadata description such as
wrong usage of sequencing method categories can affect the
interpretation of the result, the quality summary is useful to
evaluate the users’ data by comparing to a similar data set.

The data of FastQC that we used to calculate the
read information are also published on our web server
(http://sra.dbcls.jp/fastqc). These data enable SRA users to ex-
amine read quality information before downloading sequencing
data from the FTP server. They can also help users to avoid
downloading data that do not match their objectives, which

http://sra.dbcls.jp/fastqc
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Figure 4: Change of data distribution by sequencing quality over time. (a, b) Box plots separated by the top six library strategies, showing quarterly change. Data
distribution is by the sequencing throughput (a) and median base call accuracy (b) per experiment. The numbers in the plots indicate the numbers of samples in a

row. The lines connecting the boxes indicate changes of mean value.
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can decrease the cost of downloading. The calculated sequence
statistics in this study are published as linked data, which can
be accessed via the SPARQL endpoint, along with SPARQL query
examples, to allow users to integrate these with other public
biological linked data resources related to the SRA [11]. We
will continue to calculate sequencing statistics for future data
submission and update the summary.

Our study shows that efforts to extend metadata of existing
public sequencing data by a third party can increase data acces-
sibility and enhance the reuse of published data. Although it is
important to publish primary data used in research, it is not pos-
sible tomaintain a large repository of high-throughput sequenc-
ing data without sufficient economic and human resources [12].
To tackle the problem of the sustainability of data repositories,
approaches to decrease the cost of hosting them have been pro-
posed, including a new data compression strategy. As another
method of increasing their efficiency, we also highlight the im-
portance of biological data repositories, increasing their value by
enhancing the reuse of data. We strongly believe that the use of
open data is the best way of keeping them accessible.

Potential implications

The amount and the accuracy of sequencing data have been
drastically changing in recent years. This means that database
users have to care about the details of the experiment, for ex-
ample, date of sequencing or sequencing equipment used for
each database entry. The quality information of public sequenc-
ing data provided by our work can be used to evaluate the reli-
ability of entries in biological databases, such as genome varia-
tions or gene expressions.

Methods
Data retrieval from the data repository

We downloaded data from the FTP server of the DNA Databank
of Japan (ftp.ddbj.nig.ac.jp/ddbj database/dra) by using the lftp
command. Most of the data were downloaded as FASTQ format
files. When data were only available in SRA format, we decom-
pressed the data to FASTQ format by using the fastq-dump com-
mand of the SRA toolkit (v. 2.5.1). fastq-dump is performed with
the –split-3 option to split paired-end files into individual FASTQ
files. Downloaded data were analyzed by md5 checksum to con-
firm that they were not corrupt.

Extraction of sequencing quality information

First, we performed FastQC [7] via the command line with op-
tions –no-extraction and –threads 4. The versions of FastQC soft-
ware used in this study were 0.10.0, 0.10.1, and 0.11.3, depend-
ing on the date when each sequencing run was performed. We
confirmed that there were no differences in the results of the
modules that we used among the versions. We parsed the re-
sult files of FastQC (fastqc data.txt) by the bioruby [13] mod-
ule bio-fastqc [14], which we developed based on biogem [15].
The results from paired-end reads were concatenated by calcu-
lating the average values for each quality value, excluding val-
ues of the total number of sequences that were summed. If an
experiment involved multiple sequencing runs, quality values
were also concatenated to create comparable values for each ex-
periment. By using relation of SRA ExperimentID and BioSam-
pleID, calculated quality values, experimental metadata, and

sample organism metadata were assembled. The code is avail-
able online [16].

Publishing quality data as linked open data

We published the individual results of FastQC for each sequenc-
ing run on our web server [17]. Each set of sequencing quality
data was converted into RDF format and deposited in the NBDC
RDF portal [11]. We developed an ontology to describe sequenc-
ing quality information, namely sequence statistics ontology,
and also published it in the NBDC RDF portal.

Visualization of the data distribution in the repository

Visualization of the distribution of data was performed using R
language (v. 3.2.3) [18] and library ggplot2 (v. 2.1.0) [19]. The code
is available online [15].

Additional files

Supplementary Figure 1: Data distribution of sequencing
throughput for each set of metadata. (a–e) Histograms of se-
quencing throughput (a), separated by library strategy (b), library
source (c), top 20 taxonomic scientific names (d), and instrument
manufacturer (e).
Supplementary Figure 2: Data distribution of base call accuracy
for each set of metadata. (a–e) Histograms of base call accuracy
(a), separated by library strategy (b), library source (c), top 20 tax-
onomic scientific names (d), and instrument manufacturer (e).
Supplementary Figure 3: Data distribution by N content. (a–f)
Histograms ofN content percentage per experiment. Histograms
of base call failure of overall (a), separated by library strategy
(b), library source (c), sample organism (d), instrument manu-
facturer (e), and year of data submission (f). The y-axis is log 10
scale.
Supplementary Figure 4: Human data distribution for each li-
brary strategy separated by instrument manufacturer. (a–d) His-
tograms separated by the top 6 library strategies and instrument.
Data distribution is by the total number of sequences (a),median
read length (b), sequencing throughput (c), andmedian base call
accuracy (d) per experiment.
Supplementary Figure 5: Change of data distribution by se-
quencing quality over time. Box plot of sequence quality per ex-
periment over time. (a) Data distribution by total number of se-
quence reads per experiment. (b) Data distribution by median
sequence read length per experiment.
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