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Abstract: Insole plantar stress detection (PSD) techniques play an important role in gait monitoring.
Among the various insole PSD methods, piezoelectric- and piezoresistive-based architectures are
broadly used in medical scenes. Each year, a growing number of new research outcomes are reported.
Hence, a deep understanding of these two kinds of insole PSD sensors and state-of-the-art work
would strongly benefit the researchers in this highly interdisciplinary field. In this context, this
review article is composed of the following aspects. First, the mechanisms of the two techniques and
corresponding comparisons are explained and discussed. Second, advanced materials which could
enhance the performance of current piezoelectric and piezoresistive insole prototypes are introduced.
Third, suggestions for designing insole PSD prototypes/products for different diseases are offered.
Last, the current challenge and potential future trends are provided.

Keywords: piezoresistive material; gait analysis; plantar stress detection

1. Introduction

Among all the wearable medical devices, gait-analysis-based insole systems are more
suitable for chronic disease diagnosis and rehabilitation. Neurologic and orthopedic
chronic diseases are caused by lesions of the central nervous system (CNS), peripheral
nerves (PNs), and orthopedic limbs. Gait features are comprehensive results generated
from the coordination of CNS, PN, and lower limbs [1–3]. Thus, gait features can contribute
to the analysis and diagnosis of specific diseases.

Among all the features of gait, plantar stress distribution is most commonly used
for diseases analysis, for two main reasons: First, plantar stress distribution is closely
associated with multiple chronic diseases. For instance, patients with diabetic feet place
more pressure in the big toe and heel, whereas patients with Parkinson’s disease (PD) have
lower peak plantar pressure [4,5]. Additionally, the high-amplitude response in PSD can
facilitate diagnosis easier. For example, one clinical manifestation of PD is that the peak
plantar pressure decreases by approximately 40% [6]. Second, the calculation of other
spatial and temporal gait features is based on the plantar pressure. For example, the gait
frequency and velocity are calculated by measuring the time interval between the adjacent
appearance of peak pressures [7,8].

Generally, the mainstream techniques used for PSD can be classified into five cate-
gories: piezoresistive, piezoelectric, capacitive, resistive, and inductive methods. Among
them, piezoresistive- and piezoelectric-related sensors are the most frequently used in insole
systems [9,10] for the following reasons: Piezoresistive PSD sensors normally have simple
structures, high sensitivity, and high-amplitude responses. Piezoelectric PSD sensors are
passive and provide multiple-dimensional detection.

During the sensor development procedure (as shown in Figure 1), selecting suitable
materials and designing a reasonable sensor layout are very important, especially when the
product is for biomedical applications. Therefore, in-depth explanation of essentials of the
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piezoresistive and piezoelectric PSD sensors from aspects of intrinsic principles, material
properties, the relationship between the sensor layout and different diseases, and the state-
of-the-art prototypes and products are strongly required, but are often omitted in previous
reviews, as this field is highly interdisciplinary. In this context, this article is created.
Compared to the current works, this article specifically contributes the following points:

- introducing the most advanced force sensitive materials and discussing their potential
integration into the current insole PSD sensors;

- conducting a detailed comparison of piezoresistive and piezoelectric based insole
PSD architectures;

- explaining diseases features and providing reasonable advice for insole PSD proto-
types/products design for diverse neural-skeleton diseases.
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Figure 1. Mechanisms, representative types, and correspondent insole systems or PSD sensors
composed of piezoelectric and piezoresistive materials. Piezoresistive system is produced in [11] and
piezoelectric system is produced in [12].

The above fruitful results indicate that piezoresistive and piezoelectric sensing ma-
terials have been applied in PSD and force sensing. However, these sensors still present
predicaments from the materials aspect and PSD aspects.

To conduct this work, we searched references from IEEE, Wiley, MDPI, etc. Keywords
included “chronic diseases”, “insole systems”, “piezoresistive sensors”, “piezoelectric
sensors”, etc. The gathered references were classified into three aspects according to their
research focus. Medical essays provide us with gait features like higher peak plantar
pressure. Research papers on current piezoresistive and piezoelectric PSD sensors present
us with the mechanisms, applications, and features of the two techniques. Research papers
on new advanced materials published in the last five years provide us with choices of
potential force-sensing materials in PSD sensors.

As for the methodology of this essay, in Section 2, we classify the materials used for
each sensing technique, and we describe the working principles of each type of material
according to the literature. In Section 3, we review literature from three aspects: current PSD
products, advanced materials for force sensing, and potential applications of PSD-based
disease diagnosis. By reviewing the above information, we compare piezoelectric and
piezoresistive wearable gait monitoring techniques in terms of suitable materials, sensor
performance, and medical applications. In Section 4, we analyze the current limitations of
the above studies, which we consider from application and sensing materials perspectives.
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Therefore, based on these challenges and the development trends in medical wearable
devices, we think that multi-sensing-based self-calibration and digital twin models can be
combined with these two techniques.

2. Mechanisms of Piezoresistive and Piezoelectric Techniques

These techniques are based on the characteristics of materials. Various materials can
enhance the performance of sensors in different aspects.

For piezoresistive sensors, conductive polymers such as thermoplastic polyurethane
(TPU) [13], fiber-reinforced polymer (RFP) [14], and Parylen-C polymer film [15] can be used
to increase sensor flexibility. Mixtures of carbon nanotubes and metal particles [11,16–18] can
improve the sensing range and sensitivity of the sensors. Metal liquids such as E-GaIn-based
piezoresistive PSD sensors can detect shear stress [19].

For piezoelectric sensors, using piezoelectric ceramics such as ethyl cellulose-poly lead
zirconate titanate piezoelectric ceramics (ECS-PolyPZT) [20] and PZT-ferroperm [21] as the
sensing material can produce high piezoelectric coefficients. Using piezoelectric polymers
such as polyvinylidene fluoride (PVDF) [12,22] and polyacrylonitrile/barium titanate
(PAN-C/BTO) [23] can enhance sensor flexibility and enable three-dimensional detection.

Though these materials possess distinct virtues, they still share common sensing
mechanisms. Thus, to compare these two techniques, we first reviewed the mechanisms of
techniques according to the classification of the materials.

2.1. Piezoresistive Sensing Mechanisms and Suitable Materials

With the piezoresistive technique, by imposing external force on a material, the re-
sistance of the material dynamically changes according to the external force. Through
constructing readout circuits and connecting them with material, the change in resistivity
can be reflected through the changes in the output voltage [24]. Hence, the relationship
between output voltage and applied force can be formulated, enabling the measurement of
external force.

Chen et al. [25] and Gao et al. [4] have reported that piezoresistive representative
materials consist of conductive ink, conductive polymers (fabrics and foams), and metal
liquids. For these three kinds of materials, the process of achieving the piezoresistive effect
varies. For conductive ink and polymers, the original materials are nonconductive; hence,
their conductivity can be adjusted through methods such as doping fillers or heating. For
metal liquids, which are already conductive, the major focus of the process is constructing
metal gauge pieces with metal liquids because gauges produce different responses under
external force in multiple directions.

In this section, we discuss these materials. As conductive fabrics and conductive
foams are both conductive polymers, we discuss them together.

2.1.1. Piezoresistive Sensing Mechanism of Conductive Polymers

To reflect a force with electric signals, piezoresistive sensing material should be con-
ductive or semiconductive. Therefore, adjusting the conductivity of polymers is needed
to transform polymers into piezoresistive sensing materials. According to the original
conductivity, conductive polymers can be categorized into extrinsic and intrinsic polymers,
each of which has different sensing mechanisms.

The processing of the extrinsic polymers focuses on doping the raw nonconductive
material with a conductive material. When the concentration of added conductive fillers
meets the percolation threshold, the conductive filler forms a percolation network that
permits the electrons to move from one filler particle to another one [26]. This is also known
as electron tunneling, which indicates the material has become conductive, which enables
the conductivity of extrinsic polymers to be adjusted to achieve piezoresistivity [27].

Intrinsic polymers are named as such because of their hybridized orbits and special
chemical bonds. Electrons connected by three sigma bonds can dwell in the p-z orbit. Thus,
breaking the sigma bonds can release the restricted electrons, which can then transfer to
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the carbon chains. To achieve this purpose, suitable methods include doping particles into
intrinsic polymers or heating. Therefore, the released electrons increase the conductivity
of the material to achieve piezoresistivity [26–28]. Figure 2 illustrates the mechanisms of
conductive intrinsic and extrinsic polymers.
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Figure 2. Conducting mechanism of intrinsic (a) and extrinsic (b) polymers. Electrons in hybridized
orbits are released by bond-breaking methods such as heating and doping with fillers [27,28]. In
extrinsic polymers, doping fillers form networks to transfer electrons [26].

2.1.2. Piezoresistive Sensing Mechanism of Conductive Ink

The general types of conductive ink include carbon nanoparticles, metallic compounds,
and metal nanoparticles [29]. In pressure sensors, carbon nanotubes and metallic com-
pounds are most frequently applied [16,17]. On the one hand, the resistivity of metallic
particles is relatively lower than that of conductive polymers [29], producing increased
piezoresistivity. On the other hand, carbon nanotubes possess high flexibility and stretcha-
bility [29]. Therefore, compounds of carbon nanotubes and metallic particles are suitable
for piezoresistive force sensors.

Processing conductive ink to attain the piezoresistive effect is simple. This can be achieved
by heating the material because high temperatures break the metal–carbon composites into
metallic particles, which can transfer electrons. Another method involves inserting special
particles such as Au or Ag into the solvent at a particular ratio to produce a conductive liquid
solution for further fabrication such as combining carbon nanotubes in [29,30]. Using these
two methods, the raw material can become conductive or semiconductive.

2.1.3. Piezoresistive Sensing Mechanism of Metal Liquids

Unlike conductive ink and conductive polymers, metal liquids are naturally con-
ductive. They are usually fabricated into strain gauges for force sensing. The working
mechanism of metal liquid is determined by strain gauges, which show different defor-
mations under force in multiple directions. Strain gauges are embedded in a substrate
material, instead of being tiled over the substrates. In most current products, S-shaped
strain gauges are fixed in symmetry but in opposing angles [31].

Constructing strain gauges with metal liquids enables the piezoresistive measurement
of shear and normal forces [32]. Once an external force is applied, strain gauges present
different deformations according to the direction of the force. For example, shear force
causes strain gauges to show opposite deformation angles. With an applied normal force,
they show the same deformation length, instead of being at angles to one another. Thus,
their resistances alter differently [19,33]. As for the normal force, theoretically, when a
normal force is applied, two gauges present the same change, and the output signals are
the same [19,33]. The gauge-deforming process is demonstrated in Figure 3.
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2.2. Piezoelectric Sensing Mechanisms and Suitable Materials

The phrase “piezoelectric effect” was first created in 1880 to describe the electric
physical polarization phenomenon, which appears in the interaction between an external
force and a non-centrosymmetric material [34]. The interaction process is principally
influenced by the direction and strength of the external force. For instance, when vertically
compressing a piezoelectric material, positive charges accumulate on the upper surface,
while negative charges gather on the lower surface. Thus, polarization is formed. By
connecting a polarized material with readout circuits, the electric signals reflect the change
in applied force [35].

To quantify this effect, the following formula was established to describe the piezo-
electric effect and correlation between polarization and imposed pressure:

Pi = dijσj with i = 1, 2, 3 and j = 1, 2, 3, 4, 5, 6 (1)

where Pi represents the polarization of the materials in direction i, dij represents the piezo-
electric strain factor, and σj represents the strain in direction j. The degree of polarization
reflects the magnitude of the force.

For most application scenarios, polarization and force both appear in 3-dimensional
directions, so d33 is most frequently used to assess the performance of a material and
calculate the values of the force [36,37]. d31 is also used for measuring shear stress.

The material has opposite responses to tensing and compressing [35]. This indicates
that the piezoelectric effect is reversible, and this feature has enabled the design of energy
harvest systems [36]. Hence, this kind of system is suitable for long-time gait feature
supervision [38].

Since 1880, several kinds of material have been developed as the sensing material
in piezoelectric sensors. They can be chiefly classified into four types: natural biological
materials, natural crystals, piezoelectric polymers, and piezoelectric ceramics [39].

To fabricate force sensors, piezoelectric polymers and ceramics are most frequently
used because their properties can be adjusted in synthetic processes according to de-
mands [39–41]. In applications, the PSD process often involves bending and deforming.
This requires sensing material to be flexible and stretchable. Additionally, to attain a high
d33, materials should be small. To achieve these targets, piezoelectric ceramics are often
milled into small particles, whereas piezoelectric polymers are usually transmuted into
thin layers. We separately describe these processes in the following sections and Figure 4.
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Figure 4. The fabricating mechanism of piezoelectric ceramics (a) and polymers (b). The key step of
ceramics is milling into tiny size to achieve a more obvious piezoelectric effect [42,43]. While the key
step of polymers is squeezing because its properties is decided in this stage [44,45].

2.2.1. Piezoelectric Ceramics

Piezoelectric ceramics are brittle and rigid and are formed by large particles. Thus,
they cannot be directly applied in PSD sensors because the process of detecting plantar
force often involves bending and deforming. Therefore, materials should be designed to
have high stretchability and piezoelectric coefficients [25,42].

The ceramic most commonly used for piezoelectric force sensors is PZT (Pb[Zr(x)Ti(1−x)]O3).
The manufacture of PZT can be divided into four steps: First, the raw PZT material is wet
milled, which uniformly distributes the proportions of the ingredients. Second, the obtained
particles are dried for further calcination, which is conducted in a pure chemical environment to
prevent contamination. Third, after being calcinated under high temperature, for instance, around
1000 ◦C, the desired PZT phase is produced [43]. Fourth, the powders are milled again to ensure
homogeneity and prepare them for the adjunction of an organic binding agent. Finally, the water
in the composites evaporates, which indicates that the PZT for the piezoelectric sensor has been
fabricated [43].

2.2.2. Piezoelectric Polymers

The rigidity of ceramics hinders the stretchability of PSD sensors. To address this
issue, organic piezoelectric polymer-based thin films were designed. Their merits include
mechanical durability and flexibility. The most representative material is PVDF, which is
the material we consider in the following paragraphs to demonstrate the physical manufac-
turing process of piezoelectric polymers.

The fabrication of PVDF can be briefly described as radically polymerizing monomer
vinylidene difluoride at 10–150 ◦C and 10 to 300 atm. Polymerization can be divided into
four steps [44,45]: First, the raw material is melted. Melted products are shaped in molds
of the desired shapes at a relatively higher temperature. Second, the molded and cooled
products are dissolved in a suitable solution to obtain the desired chemical properties. The
solvent is evaporated from the composites, resulting in the final product having a porous
shape. Third, the polymers are transformed into thin films. In this step, polymers are
processed in a high-pressure environment and electric fields. Finally, the polymers are
squeezed into thin films for further production of piezoelectric sensors [45–47].
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3. Comparison and Review of Piezoresistive and Piezoelectric PSD Sensors

For pressure measurement, piezoresistive- and piezoelectric-based PSD insole systems
have been fabricated for gait analysis. Their results in this task were reviewed in detail [25].
However, these two techniques have not yet been compared. In this study, we compared the
systems in terms of material properties, sensing ability, and applications in gait monitoring.
Our motivations for doing so were as follows:

First, we wanted to describe and compare the types of materials, and their character-
istics, that can be exploited in PSD [48]. For example, the brittleness of PZT can provide
a relatively higher d33 for PSD. Second, the measuring ability of sensors is indicated by
parameters such as sensing range, sensors size, and sensitivity. Their applicability in gait
analysis is comprehensively determined by the sensor measuring ability and the features
of the disease, so we compared these techniques from these aspects [5,7,25,49].

Based on the above, we reviewed and compared several piezoelectric and piezoresis-
tive PSD sensors and present detailed tables and figures to demonstrate the comparison.

3.1. Review of Piezoresistive PSD Sensors for Gait Analysis

Generally, piezoresistive materials should have high mechanical flexibility and stretch-
ability [48]. Thus, piezoresistive materials are widely used in elastic PSD sensors. Typically,
the PSD sensor structure includes substrate materials, electrodes, and sensing material.
Among these components, the sensing material is the most important, because its perfor-
mance under an imposed force directly determines the sensor quality and applications.
For example, carbon nanotubes and graphene-based sensors have high mechanical flexi-
bility and stretchability; they can maintain high sensitivity under bending and pressing.
Therefore, they can be used for PSD [4,5,7,12,22–51].

When an external force is applied, the change in force alters the resistance of sensing
materials. The dynamic relationship between pressure and resistance can be observed
through readout circuits [52,53]. During the moving period, sensors can capture the
pressure-change process. Therefore, the value of and changing trend in plantar stress can
be obtained. The results can assist in the diagnosis and analysis of chronic diseases such as
Parkinson’s disease [54].

Currently, the several representative categories of the predominant piezoresistive
materials are conductive organic polymers (fabrics and foam), conductive ink, and metal
liquids [4,55–57]. We describe some of the current products of each kind of material in the
following paragraphs. Most of the insole systems in examples were fabricated in the last
1–4 years, which represents recent materials and methods.

3.1.1. Conductive Foam and Related PSD Sensors

For newly emerged piezoresistive PSD sensing layers, high flexibility and conductivity
are the main requirements during the design process. Thus, using flexible polymers and
salts in the design can simultaneously produce these two properties. For instance, TPU
is a kind of elastomer that can be plasticized by heating and dissolved by solvents. By
blending dissolved TPU with metal and salt compounds conductive foam mixtures can be
produced. Thus, TPU-related materials can be used to produce piezoresistive sensors in
insole systems.

Huang et al. [13] proposed an insole system equipped with a piezoresistive sensor
matrix with 32 pressure sensors in a 4×8 matrix, each of which was 7.5×7.5 mm2. For
their manufacture, they first dissolved the TPU with sodium chloride and CB in DMF;
under the influence of the metal and salt, the obtained material was conductive. After the
mixing, stirring, molding, and drying of the salt, the material obtained in the last stage was
piezoresistive material for sensors.

By dissolving sodium chloride and volatilizing DMF, a sensor array with a multistage
pore structure can be fabricated. This structure has satisfactory pressure sensitivity and
other mechanical properties [58]. The experiment was divided into standing and walking
phases to observe the response of the array in each situation. The results demonstrated that,
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in insole systems, the piezoresistive sensors can measure external pressure in the range of
20 Pa to 1.2 Mpa. This range is suitable for monitoring plantar pressure in normal life.

Although conductive foams and fabrics are both conductive polymers, conductive
fabrics are more frequently used in force sensing because they can reduce the hysteresis
effect to maintain sensitivity at a high level over a long working period.

A review [4] revealed that one disadvantage of piezoresistive sensors is hysteresis.
Hysteresis has different definitions in the engineering domain. For insole systems, it refers
to the issue where, after the removal of applied external pressure, the conductive property
of the system does not return to the original state [30]. Therefore, when fitting the curve
of external force and resistance, the trend, slope, and shape of the curve widely differ in
the uploading and removing load stages. Hysteresis seriously decreases the sensitivity
of sensors.

One way to overcome this issue is by repeating the experiment in dozens of cycles. By
observing the curve each time, the formulation of hysteresis can be accurately calculated.
Hence, the deviation of hysteresis is known when conducting further experiments.

Another method to address the hysteresis problem is choosing conductive fabrics as
sensing materials for piezoresistive PSD sensors [14]. Due to the repeatability of cycles
of experiments, this kind of material retains high sensitivity over a long working period.
Therefore, these materials are a suitable option for piezoresistive sensors. For example, the
insole system produced by Fei et al. [14] used RFP film as the conductive sensing material.
They fixed eight round sensors at the metatarsals, phalanges, and heel. By testing the
insole during running and walking, the results showed that the response curves of each
sensor were stable as the number of steps increased. Thus, their sensors showed sustainable
conductivity and did not experience hysteresis.

Adding metallic nanomaterials is also an option to enhance the stability of sensor
sensitivity because they have high conductivity, like metal, and high flexibility and stability,
like nanomaterials [59,60]. For instance, Zhang et al. used dicyclohexylcarbodiimide
(DCCF) decorated with Ag nanowires (Ag-NWs) as the sensing material [61]. The sensitivity
of the sensor was maintained at a high level (0.134 kPa) over 10,000 loading and unloading
cycles. To increase sensitivity, Deng et al. designed a conductive fabric force sensor in a
triple-layers structure [62]. They chose Ti3C2Tx MXene as the sensing material. In each
sensing layer, the concentration of Mxene was inversely proportional to the resistance of
the layer. In the triple-layer structure, they used the upper and lower layers as electrodes
because of their low resistance. Hence, they coated the upper and lower layers with
high-concentration Mxene and covered the middle layer with lower-concentration Mxene.
Therefore, the middle layer became the sensing layer with high resistance. Their final
product could measure pressure from 0.4 to 150 Kpa, with a sensitivity of 0.0034 Kpa.
Although not yet used in PSD, this sensor’s performance indicates its huge potential
for PSD.

These products proved their merits in force sensing; however, due to the potential
toxicity of the materials, the conductive fabrics should be carefully selected.

3.1.2. Conductive Ink and PSD Sensors

As the most common material used in piezoresistive PSD sensors, conductive-ink-
related materials can be classified into carbon particles and metal nanoparticles.

As a carbon particle, carbon nanotubes have suitable strength and toughness and are
extremely light. They also have both metal and semiconductor properties, which indicates
that they have many potential applications in PSD. Composites of carbon nanotubes and
carbon black are often used as the sensing material in PSD sensors [16,17]. An example of
this is the insole system devised by Jung et al. [16]. In sensors in this system, the carbon
black and multiwalled carbon nanotubes (MWCNTs) are functional nanopowders. To
attain the best properties, they tried many ratios of carbon black to MWCNTs, finding an
appropriate ratio of approximately 6:1. T PDMS was the substrate layer, which improved
the plasticity of the material. During the fabrication, they used isopropyl alcohol (IPA) as a
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solvent, which finally evaporated to produce a porous structure. They eventually obtained
four piezo-resistive sensors in the shape of a ribbon. Each sensor was 20 ×15 mm2. The
results of the tension tests of the sensors showed that when the carbon black outnumbered
the MWCNTs in a 6:1 ratio, the linear correlation coefficient between the change of resistance
and resistance was approximately 0.95. They then applied the sensor for body weight
estimation. The results of the experiments showed that the sensor could precisely measure
a minimum weight change of 0.5–2.5 kg. As weight change is an aspect of some diseases
such as diabetes, this product can be applied to daily body-weight monitoring for early
diagnosis and prevention of diabetes. Furthermore, the monitoring data can help medical
professionals to assess the effects of therapy [63,64].

For metal nanoparticles, adding metal particles into carbon nanotubes can promote the
conductivity of sensing materials. Au is an option for this addition because it is conductive
and stretchable and is chemically inert and so can increase the stability of sensors. As
mentioned above, increases in repeatability and stability can reduce the negative effect of
hysteresis. Additionally, altering the shape of a sensor containing Au is easier because of
its high level of stretchability and malleability [65].

Zhao et al. [17] devised an Au/textile sensor system. Their sensor had two essential
parts: substrate and sensing materials. They chose cotton fabric as the substrate and
Au-NWs as the sensing material. They produced the sensor in two stages: forming Au-
NW-impregnated fabric and fabricating piezoresistive sensors. The former stage involved
blending Au-NWs and knitting the cotton into hexane to form an Au–fabric mixture. By
repeating this procedure of knitting the mixture into hexane and evaporating the hexane
dozens of times, the final Au-NW fabric mixture presented a stable black color. In the
latter stage, they used electrodes with the Au-NW fabrics mixture to cover the substrates,
thereby fabricating the prototype sensors. After conducting a lot of bending and stretching,
the sensors showed flexibility and stretchability suitable for PSD. Then, they integrated
the sensors under the toes and metatarsals of an insole. Their results showed that when
bending the insole at different angles, the sensing range was 15 Kpa with sensitivity of
approximately 0.29 Kpa.

Due to the high flexibility and sensitivity of conductive ink films, PSD sensors fab-
ricated with these inks can replace traditional PSD devices such as force plates. These
sensors can be applied for diagnosing falling events, knee osteoarthritis (KOA), and similar
diseases by detecting subtle pressure changes and deviations in the center of pressure
(CoP) [66–68]. For instance, the conductive ink film-based PSD insole system proposed
by Zhao et al. contains forty-eight sensors, as shown in the Figure 5. This system has
successfully diagnosed KOA patients with an accuracy of 96.53% [11].
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3.1.3. Metal Liquids and Related PSD Sensors

For traditional piezoresistive PSD sensors, the detection of shear stress is also a prob-
lem. Hence, metal liquids were used because the strain gauges composed of metal liquids
produce distinct responses under shear and normal forces. Although this type of material
has not been widely used in PSD, their ability to detect shear force is suitable for PSD.

Shi et al. [19] proposed an EGaIn-based liquid metal as a sensing material for a
piezoresistive sensor system. They chose polydimethylsiloxane (PDMS) as the substrate
material. The manufacturing process of this material is complex: the key stage is screen-
printing the liquid metal onto PDMS. Before the screen printing, two pieces of cured PDMS
were prepared. The thicker piece was set to guarantee the adhesion of the liquid metal.
The thinner piece was used to promote the coverage of the liquid metal. In the next stage,
considering the relatively higher surface tension of liquid metals, they sprayed EGaIn
liquid metal alloy as tiny droplets that fell on the substrate layer composed of PDMS. This
stage was conducted under a high-pressure environment to guarantee that the liquid metal
separated into droplets. The sensor was 2 mm tall and 4 mm wide. Each sensor had two
resistors, each of which showed the same response under the impact of an external normal
force. When shear force was applied, they showed different deformations according to the
direction of the shear force. Thus, the sensors could simultaneously measure normal stress
and shear stress.

For gait analysis, the ability to measure shear and normal stress was found to con-
tribute to the diagnosis gait freezing [69], which is a representative clinical symptom
of Parkinson’s disease. Additionally, changes in CoP were detected by detecting shear
force [70]. Thus, such a sensor may also improve the prediction of falls. Moreover, through
loading and releasing an external force at different speeds, the obtained curve between
signal delay and speeds indicated that curves of loading and unloading overlapped. This
finding indicated that liquid-metal-based piezoresistive sensors substantially reduce the
hysteresis effect.

Wu et al. later altered the proportion of Ga and In to increase sensor sensitivity [71].
Furthermore, they used PDMS as the substrate material to accommodate EGaIn-based
strain gauges, which prevented sensors from undesired moving deviation. In their sensor,
Ga and In proportions were 68.5% and 21.5%, respectively; the remaining 10% of the
sensing material was Sn. The sensitivity was 0.0168 Kpa.

The details of the products we described in Section 3.1 are presented in Table 1.

Table 1. Brief description of sensors outlined in Section 3.1. Conductive ink-based sensors are used
more often because of their higher sensitivity and stretchability. Other types of materials have diverse
merits such a non-hysteresis, simple fabrication, and ability to detect shear force.

Type of Material Sensing Material Parameters Main Advantages and Drawbacks

Conductive foam [13]
TPU Range: 20 Pa–1.2 Mpa Simpler fabrication
CB 32 sensors in a matrix Higher stretchability

NaCl Sensor size: 7.5×7.5 mm2 Higher conductivity

Conductive fabrics [14] RFP film
Range: 0–400 N Higher repeatability
8 round sensors Lower hysteresis

Sensor diameter: 8 mm Potential toxicity

Conductive ink [16]
PDMS Sensitivity: 0.5–2.5 Kg Wider use

MWCNT
4 sensors in a matrix Higher sensitivity

Sensor size: 20×15 mm2 Higher plasticity

Conductive ink [17]
PDMS Sensitivity: 0.29 Kpa Higher sensitivity

Au-NWS Range: 0–15 Kpa Higher stretchability

Metal liquids [19] EGaIn
PDMS

Sensitivity: 2N
Sensor size: 2×2 mm2

Higher hysteresis
Higher sensitivity

Shear force detection
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3.1.4. Current Commercial Piezoresistive PSD Sensors

Piezoresistive PSD sensors are mostly designed and fabricated by laboratories and
companies. Sensors produced by laboratories [6,72,73] are targeted for PD therapy and
monitoring. These piezoresistive sensors can detect the occurrence of freezing of gait (FoG)
by analyzing the distribution of plantar stress. Then, sensors send signals to ancillary
devices, which deliver stimulation cues to patients to reduce the time of FoG. Thereby, the
most important feature of these sensors is that they focus on a specific aspect of a disease.

Unlike laboratory-produced sensors, systems devised by companies concentrate on
distinct goals. For instance, Tek-scan provides PSD sensors systems such F-scan® and
K-scan®. Orpyx devised the Orpyx-Si system. These products have some similarities; the
main one is that most companies use multiwalled carbon nanotubes as the sensing material
and PDMS as the substrate material. These systems apply sensors of various sizes, and the
diameters of the sensors range from 3.81 to 80.9 mm. Insoles have four columns, with six to
eight sensors in each column. In total, 24 to 48 sensors are used for PSD [11].

Because of their size and quantity, sensor arrays can cover most of the insole area,
which also allows plantar stress to be detected in more places, increasing the sensing range.
They can detect plantar pressure from 7 to 1043 Kpa [74–77]. This range is suitable for the
diagnosis of some chronic diseases that involve higher peak plantar pressure. For instance,
Organero et al. used eight force-sensing resistors (FSRs) to detect changes in peak plantar
pressure. Then, they compared pressure between patients and normal people to diagnose
KOA. The final accuracy of their system was 89% [78]. Another example is applications to
stroke. In the system proposed by Howell et al., they used 32 FSRs to detect peak ground
reaction pressure, which enabled the calculation of the swing and stance phases of the gait
cycle [79]. As stroke patients usually have a shorter stance phase [80,81], this system can be
applied to the monitoring of patient rehabilitation.

3.1.5. Brief Summary of Piezoresistive PSD Sensors

Above, we introduced some recent studies on piezoresistive insole systems. We
classified them into several types according to the type of sensing material. Each kind
of sensor system has different advantages and drawbacks. In conclusion, the use of
conductive-fabric-based sensors can reduce the hysteresis effect because of their higher
repeatability, but their potential toxicity should be considered. Conductive-ink-based
sensors have been most frequently used; these sensors are relatively more sensitive. Metal-
liquid-based sensors are more sensitive, but this comes at the cost of higher hysteresis, and
the fabrication procedure is more complex. For conductive foam, polymers are used to
promote flexibility; salt is used to increase conductivity.

3.2. Review of Piezoelectric PSD Sensors for Gait Analysis

Generally, most piezoelectric PSD sensors are designed with a sandwich structure:
electrodes–piezoelectric film–electrodes [82]. The main properties of sensors mostly depend
on piezoelectric films.

The two main merits of piezoelectric PSD sensors are as follows: First, as introduced in
Section 2, the reversible accumulation of charges on the upper and lower surfaces indicates
that the energy can be harvested in dynamic working cycles. Second, the direction of
the external force will determine the orientation of polarization. Therefore, the distinct
responses of the material enable three-dimensional PSD. To describe three-dimensional
PSD, the coefficients d33 and d31 are most frequently used in calculations.

Based on these merits, piezoelectric PSD sensors are suitable for applications that
require a long working time and shear force detection. For instance, the prediction of falling
events is mainly achieved through machine learning methods [83]. However, as the gait
parameters are derived from activities of daily living, the obtained data are likely duplicate
or near-duplicate samples [84]. Hence, this prediction requires numerous data from daily
life to enable further analysis. For this purpose, sensors with low energy consumption
are required.
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Below, we provide examples of various piezoelectric PSD systems to illustrate the
connection between piezoelectric techniques and gait analysis.

3.2.1. Piezoelectric Ceramics and Related Piezoelectric PSD Sensors

As mentioned above, piezoelectric ceramics are milled into particles for further fab-
rication. The most common fabricating method is screen printing milled particles on a
substrate layer under high temperature [85]. Sensors constructed with this method usually
have a higher d33. For instance, Son et al. [20] milled and screen printed three kinds of
ECS-PolyPZT composite materials on alumina and polyimide substrates, which simultane-
ously produced conductive and flexible sensors. The results showed the value of d33 was
above 20 Pc/N, which could increase PSD sensitivity. However, these sensors still suffer
drawbacks: they lack flexibility due to the large diameters (>2 µm) and rigidness of the
particles [20,86]. Additionally, the complexity of the manufacturing process also hinders
their wider application.

To address these issues, using smaller particles is a practicable solution. Altering the
ingredients and proportions of materials is another option. The PZT-polymer insole system
designed by Almusallam et al. [21] addressed the above-described problems. They used
ferroperm as the sensing material. First, they milled the raw material into particles with
diameters of 0.15, 0.3, and 0.8 µm. Second, they blended the particles with a polymer binder
to ensure suitable flexibility. Third, they printed the mixture on the surface of polyurethane,
which promoted bending flexibility. Finally, after heating the mixture until melting, they
shaped the mixture into the desired shapes as plantar pressure sensors. They divided the
insole into front and heel parts. Each part was covered by a sensor. The open-circuit voltage
changed according to the dynamic influence of pressure generated by walking stages. Their
results showed the changing trend in output voltage during the gait cycle. The detailed
data showed that the sensitivity was 4 mV/N and d33 was 36 Pc/N.

Given the sensitivity of these sensors, precise measurement of force distribution can
be achieved. Therefore, this type of sensor can be used to monitor the plantar pressure
distribution in the feet of diabetic patients to predict foot ulceration [87,88].

In addition to being placed over large areas of the insole such as the heel, PZT can be
used as a sensing material for sensors under the toes. For example, Acer et al. proposed
a sensor array composed of patterned electrode/PZT/patterned electrode in a sandwich
structure. The sensor arrays were placed at the tips of each finger; the width and length
of the sensor array were both 5 mm [89]. Through their experiments that involved mon-
itoring dynamic changes in finger force, they found the sensitivity of their method was
0.821 V/N. For medical gait analysis, this sensitivity is suitable for detecting the diabetic
ulceration of toes because [90] the forefoot and big toe are most likely to suffer ulcers, and
the big toe generates higher plantar pressure than other toes. Therefore, the proposed
sensors [89] can possibly be applied for diabetic foot ulceration diagnosis and prediction
through monitoring.

In conclusion, to obtain higher sensitivity, piezoelectric-ceramics-based PSD sensors
have smaller diameters and higher d33 coefficients.

3.2.2. Piezoelectric Polymers and Related Piezoelectric PSD Sensors

The above-described PZT-related studies have produced sensors with higher coef-
ficients (>30 Pc/N) for pressure distribution measurement. However, the rigidness of
ceramics complicates the manufacturing process because milling strong raw material into
the desired shape is difficult. Additionally, although particles can be printed on electrodes,
the lack of size precision poses an obstacle to production. Piezoelectric ceramics deform
less than polymers due to their rigidity. This hence hinders the sensing range [20,21,89].

To address these issues, Rajala et al. [91] found that thin piezoelectric films must be
used in future piezoelectric sensors: the use of thin films improves the flexibility of sensors
during continuous walking and bending and their fabrication methods, such as lamination,
are easier. As such, the representative polymer material, PVDF, had been applied [92].
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Initially, PVDF-based force sensors were auxiliary in the capturing of movement. For
instance, Xin et al. [93] used PVDF insole systems, with sensors composed of PVDF placed
at the front of the sole and under toes. This flexible system could detect sudden changes
during foot strike and toeing off the ground. Additionally, by combing IMU and PVDF
PSD sensors, Zhou and Hu tracked the motion of arms [94]. The correlation between real
motion and captured images was 98%.

Recently, PVDF has been used for PSD in different regions of the insoles. For instance,
Dai et al. [22] constructed a simple insole system. As shown in Figure 6, in the middle
of the sandwich structure, the most important layer was PVDF, which was 50 µm thick.
In addition to PVDF, the electrodes were also essential for the quality of the system. To
provide higher conductivity, the electrodes were composed of etching copper.

For fabrication, heating is conventionally the most frequent method of transforming
PVDF into sensing layers. However, the high temperature decreases the sensitivity of the
material. Therefore, the lamination technique was used in their manufacturing process,
preventing the decrease in sensitivity in PVDF [95]. For the measuring stage, thirty-six
sensors with a diameter of 4 mm were chosen to detect the accumulation of charge under
plantar stress. The results showed that the sensitivity was approximately 0.69 mv/N and
the detecting threshold was approximately 0.05 N, indicating the suitability of the sensor
for monitoring subtle daily changes in plantar pressure. Three-dimensional force detection
was not achieved because only one layer of PVDF was used, so only d33 could contribute
to PSD.

To increase accuracy and simultaneously measure shear and normal stress, an im-
proved insole system was designed [12]. In the revised structure, as shown in Figure 6, two
layers of PVDF were used: d31 was the dominant coefficient in one layer and d31 in the
other. In each layer, the ratio of the dominant coefficient to the other was 10:1. The structure
achieved 3D pressure detection because each layer responded differently to shear force.
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Figure 6. (a) Insole system [22], where one layer of PVDF was used; (b) insole system [12], where
two different PVDF layers were used to detect shear and normal force.

The structures of these products are illustrated in Figure 6. The results showed
that the sensitivity to normal plantar pressure and shear pressure was 56 and 174 mN,
respectively, providing improvements on the standard (100 and 200 mN, respectively).
Another advantage of these two insole systems is the promotion of IoHT: the data obtained
from experiments can be observed in real time by researchers at laboratories or hospitals,
and their decrease in sensitivity is less than 1.5% after 100 km of walking. They can provide
precise data online.

Another representative type of piezoelectric polymer is polyaniline (PANI)-based
composite material. PANI was originally used to mimic human skin. Materials for mim-
icking human skin are highly stretchable (140% to 180%) and have a large sensing range
(1.8 MPa) [96]. Because of these characteristics, PANI-based material can be used in force
sensing applications.

For instance, Wang et al. proposed a composite material composed of PANI, poly-
acrylic acid (PAA), and polyamide (PA). PA was used as the doping material to enhance the
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conductivity of the sensing layer, whereas PANI and PAA were used to mimic human skin.
PANI makes the mimicked skin more robust because of its rigidness. PAA enables the skin
to be more flexible because of its crosslinked elastin fibril [97]. Their product was highly
stretchable (500%) and had a large sensing range (50 Pa to 1.5 MPa). Additionally, the
fake skin takes advantage of the characteristics of piezoelectric materials, which is energy
harvesting. Electrical properties (such as energy) can be restored within a day. Due to the
high sensing range, stretchability, and energy-harvesting speed, this material can be used
for PSD.

The products outlined in Section 3.2 are detailed in Table 2.

Table 2. Brief description of sensors in Section 3.2. Piezoelectric ceramics have larger particle
diameters and sizes, but their stretchability and sensitivity need to be improved. Piezoelectric
polymers have higher stretchability and stronger ability to detect shear stress.

Type of Material Utilized Material Parameter Main Advantages and Drawbacks

Ceramics [20]
Diameters of particles: ≥ 0.3 µm High conductivity

ECS-PolyPZT
Al d33 = 29 Pc/N Medium flexibility

Larger particle diameters

Ceramics [21] PZT
Ferroperm

Diameters of particles < 0.3 µm
d33 = 36 Pcma/N

Sensitivity: 0.4 Mv/N

High flexibility
More complex production
Smaller particle diameters

Polymers [22] Copper Sensitivity: 0.056 N Only normal stress
PVDF

Patterned electrodes d33 around 60 Pc/N Higher sensitivity
Simpler fabrication

Polymers [12] Copper Normal sensitivity: 0.056 N Higher and wider sensitivity
2 layers of PVDF

Patterned electrodes
Shear sensitivity: 0.174 N

d33 and d31 around 60 Pc/N
Higher stability

Simpler use

Micro-structure
Materials [98]

ZnO/PZT
PDMS as substrate layer

Sensitivity: 0.293 Kpa
d33 = 69 Pc/N

Sensing range: 0.2–500 Kpa

Higher coefficients
Simpler fabrication

Higher sensing range

3.2.3. Conclusions and Recent Commercial Progress of Piezoelectric PSD Sensors

Various studies have been conducted to improve the sensitivity, sensing range, and
flexibility of sensor systems. Nevertheless, piezoelectric sensors have not yet been commer-
cialized. The main reason for this is that polarization is aeolotropic. Thus, small external
forces in each direction may cause noise in the sensor response. Thus, future studies should
focus on removing the noise due to small forces whose direction is almost uncontrollable.

One solution to this issue is choosing a simpler fabricating method. This may be
achieved by using a printing circuit board (PCB) to ensure the stability of parameters and
simplify the fabrication procedures [12,22,99]. In one study, eight sensors were printed on
piezoelectric films, which simplified the complex manufacturing process and stabilized the
output current. The sensitivity and maximum detectable pressure were maintained at 69
Pc/N and 500 Kpa, respectively. The results showed that the sensitivity was maintained at
a high level after 20,000 steps.

Lamination [98], PCB [12,22,99], and microfluidic spinning technology [100] can also be
used to simplify fabrication. Meng et al. used this technique to construct β-phase-enriched
PVDF microfibers [100]. This technique aims at inducing the inner PVDF solution [45]
to enable phase transferring inside microfluidic channels. The obtained PVDF fibers
had various diameters, which were woven into intertwined meshes to detect force from
different directions.

Another solution is using microstructure materials. For example, Choi et al. [101]
used micro-structured PDMS as the substrate material, which was bonded with a PZT
piezoelectric layer to increase the stable sensitivity to 0.23 Kpa. Dayeh et al. used a micro-
structured PDMS and ZnO thin-film transistors (TFTs) as piezoelectric channels. This
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design improved the ability to detect small forces as well because ZnO and TFT intrinsically
enabled sensing and amplification of the forces [98].

Based on the new focus in recent studies, the theoretical foundation for commercial
piezoelectric sensors has been laid.

3.3. Comparison of Piezoresistive and Piezoelectric Techniques

Above, we described the classification, suitable materials, mechanisms, and recent
related insole systems. To summarize the information in this section, we briefly compare
these two techniques in three aspects.

3.3.1. Mechanisms

Both techniques derive from the same basic physical phenomenon. Pressure can
be reflected through the changes in the resistance of piezoresistive materials under ex-
ternal force. Piezoelectric materials reflect pressure through polarization and reversal
charge accumulation.

Their main difference is the methods through which the physical effects are produced.
For piezoresistive materials, the conductivity of raw materials is adjusted as higher conduc-
tivity usually represents higher sensitivity, and most piezoresistive materials are naturally
nonconductive [25,26]. For piezoelectric materials, polarization is an intrinsic feature of
non-centered symmetric materials. The methods mainly concentrate on milling the material
into films or particles to the desired size. These methods can also enhance the piezoelectric
response [34–38].

3.3.2. Main Advantages and Drawbacks

The distinct mechanisms have different advantages and drawbacks. For piezoresistive
force sensors, changes in resistance are closely correlated with external forces in a certain
direction [4,24]. Higher sensing range [16,17] and sensitivity [17,19] can be obtained by ad-
justing the conductivity. However, the modulus of sensing material increases with working
time, which can decrease sensitivity and cause potential hysteresis [14,19]. Additionally,
hysteresis and temperature [26,27] also decrease sensor accuracy.

For piezoelectric sensors, multidimensional and reversal polarization provides feasible
energy harvest, which reduces power consumption and increases access for measuring
shear force [12,22,98]. However, the dynamic working cycles can cause current leakage
because static force prolongs the polarization time [102]. The complex structure [20,21] and
noise caused by small forces are also concerns because these factors are closely related to
shear stress detection.

3.3.3. Chronic Diseases Suitable for Monitoring

According to the above advantages and drawbacks, we summarize the possible appli-
cations of these sensors. Piezoresistive PSD sensors have a higher sensitivity and wider
sensing range, implying they are suitable for diseases with a higher peak pressure, longer
stance phase, and whole-area detection, such as Parkinson’s disease, knee osteoarthritis,
and stroke [103,104]. Some diseases require long-term monitoring to detect gradual issues,
such as diabetic foot, so piezoelectric PSD sensors can be used due to their lower power
consumption and longer working lifetime [105,106]. Furthermore, the center of plantar
pressure (CoP) deviates in patients prone to falling and with flat foot. This CoP change is
detected through detecting shear force, for which piezoelectric PSD sensors can be utilized.

The information is briefly summarized in Figure 7 and Table 3.
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Figure 7. Diseases suitable for monitoring and why via two techniques: piezoresistive sensors are
suitable for diseases requiring higher accuracy and larger detecting area, examples of which are stroke,
PD, and KOA [103,104]. Piezoelectric sensors are suitable for diseases requiring longer working time
and shear force detection, examples of which are diabetic foot, elderly falling, and flat foot [105,106].

Table 3. Comparison of two techniques’ mechanisms: advantages and drawbacks. Each technique has
two separate and typical mechanisms. Advantages and drawbacks were derived from mechanisms.

Technique Basic Mechanisms Main Advantages Main Drawbacks

Changing resistivity
under external force.

[25,26]

Near linear correlation; Changing modulus decreases
accuracy in walking.

[14]Piezoresistive static force measurement.
[16,17]

Sensing
Adjusting conductivity to

form piezoresistive material.
[4,24]

Higher sensing range;
higher sensitivity.

[16,17,19]

Potential hysteresis; [14,19]
sensitive to temperature.

[26,27]

Polarization under external
force in each direction.

[34,37]

Shear force measurement; Complex fabrication

Piezoelectric simpler structure.
[22,98]

sensitive to small forces.
[20,21]

Sensing Reversal charges accumulation
under impact of force.

[35,36]

Feasible charges harvest; Potential current leakage
under static force.

[102]
less energy consumed.

[12]

4. Challenges

As demonstrated by the studies described above, piezoelectric and piezoresistive
pressure sensors have been applied for medical gait analysis. The features in the raw
data were exploited to construct sensors, which have enabled convenient diagnosis and
increased accuracy of measurement. Nevertheless, some challenges still hinder the wider
use of piezoelectric and piezoresistive sensors. A brief summary of the challenges is
demonstrated in Table 4.
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Table 4. A comparison of challenges and correspondent reasons of two techniques.

Technique Challenges Reasons

Piezoresistive Decreasing sensitivity in utilization [4,30] Hysteresis will decrease accuracy during utilization [30]

Sensing Sensitive to temperature change [26–28]; Temperature changes conductivity [26,28]
limited detecting directions [31,32] Materials cannot detect shear force [31,32]

Piezoelectric Influencing accuracy in static PSD [12,22] d33 and d31 both exist in one PVDF layer [12,22]

Sensing Sensitive to temperature change [95] The pyroelectric effect will decrease the charges on the
surface [95]

4.1. Application Challenges

For medical purposes, ideal insole systems should be sustainable, which means the
sensing accuracy should be maintained at a high level over a long working period. However,
current sensors have limited working sustainability.

For piezoresistive materials, their decrease in sensitivity is the main problem. When
the external force increases, the modulus of the insole material increases as well. Hence,
the deformation of materials under the same force declines according to Hook’s law. The
decreased sensitivity influences diagnosis accuracy. For instance, due to the damage to
their plantar nerves, patients with diabetes present clinical features such as higher peak
plantar pressure. However, the result obtained from the sensors includes pressure imposed
by users and the deviation of the sensor. Hence, the early prediction accuracy is lower.

For piezoelectric materials, plantar stress is detected based on dynamic gait cycles. For
some clinical manifestations, such as freezing of gait (FoG), the foot of patients stagnates
for a short time interval. However, under the influence of static force, current leakage leads
to decreased pressure detection accuracy. Therefore, the working efficiency of piezoelectric
materials is lower in some static or quasistatic scenarios such as FoG.

4.2. Limitations of Sensing Materials

Although the sensitivity, sensing range, and working lifetime of sensors have been im-
proved in recent studies, the intrinsic features of sensing materials prevent further application.

The challenge common to these two techniques is that sensing materials are both
sensitive to temperature. For piezoresistive materials, increases in temperature increase the
resistance of metal material while considerably decreasing the resistance of semiconduc-
tors [26–28], because the heating or cooling process will sharply increase the conductivity
of sensing materials. Piezoelectric materials are sensitive to temperature changes due to
the pyroelectric effect. For asymmetric crystals, the number of polar charges on the surface
gradually decreases with increasing temperature [95].

The materials in these two techniques also have their own limitations.
Piezoresistive materials are mostly elastic materials, so hysteresis is inevitable. When

the external force is removed, if the deformation recovery time is longer than the average
time per step, the measurement accuracy and sensitivity of PSD decreases [4,30]. Ad-
ditionally, the inability to detect shear force is a shortcoming, as mentioned in [31,32].
Though metal liquid-based sensing material can overcome this problem, it has not been
widely used.

For piezoelectric materials, there is more than one piezoelectric coefficient in a film
of piezoelectric material, which means that both d33 and d31 exist [12,22]. Therefore, a
piezoelectric material with a dominant coefficient in measuring force in a single direction is
not as accurate as a piezoresistive material, because another piezoelectric co-efficient can
interfere with the measurement results. Though this effect can be used to measure shear
force and normal force simultaneously [12], the co-existing phenomenon will influence the
accuracy of measurement.
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5. Future Research Directions

In the foreseeable future, we think that these two techniques can be combined with
the following technologies to advance PSD and associated healthcare applications.

5.1. Multi-Sensing-Based Self-Calibration Function

To overcome the degradation in performance caused by environmental factors, the
traditional solution is manual calibration. However, frequent manual calibration is not
beneficial for wider applications. As each sensing material is subject to different envi-
ronmental influences, self-calibration can be achieved by simultaneously using multiple
sensing techniques. The combined use of multiple technologies can help improve the
performance of sensor systems.

Piezoresistive materials are less affected by temperature than piezoelectric materials,
so the change in piezoelectric coefficient can be calculated by comparing the detection
results in the vertical direction. This self-calibration can specifically be realized because the
output voltage of the d31 layer is jointly generated by shear and normal stress. Therefore,
by subtracting the output voltage of the piezoresistive sensor from the output voltage of the
d31 layer, the voltage corresponding to the accurate shear stress component can be obtained.

5.2. Digital Twin (DT) Technology

DT technology involves the duplication of objects, which can be observed in virtual
environments. In the medical domain, the construction of DTs for the human body is one
of the future trends in healthcare. Through constructing human DTs, medical professionals
can not only diagnose current diseases but also predict potential disease development
trends [107]. Furthermore, based on DT data, professionals can formulate suitable rehabili-
tation strategies for a patient [108].

In the establishment of human DTs, wearable devices are most frequently used to
obtain data. Among all kinds of wearable devices, gait-based sensors are more suitable
because gait is generated from the coordination between nerves, muscles, and lower
limbs. Hence, these data can more comprehensively reflect lesions. Additionally, gait
detection does not affect the normal life of users. Therefore, gait detection is one of the
most convenient methods to obtain large amounts of comprehensive data [25,108–110].

Although piezoresistive and piezoelectric techniques are the most commonly used to
detect plantar pressure, plantar force is not the only gait parameter most closely related
to lesions. Therefore, piezoresistive and piezoelectric PSD sensors can be combined with
sensors, such as inertial measurement unit (IMU) and electromyogram (EMG) sensors,
in other locations to obtain data for establishing DT models, thereby providing a more
accurate basis for disease detection and rehabilitation monitoring.

6. Conclusions

In this study, we first analyzed the current situation of mainstream piezoresistive-
and piezoelectric-based PSD sensors in gait analysis. Second, we introduced the recently
developed advanced piezoresistive and piezoelectric materials and explained their potential
use in improving PSD performance.

In Section 2, we explained the processes of fabricating representative piezoelectric
ceramics and polymers and described the conducting mechanisms of recent piezoresistive
materials, including conductive ink, polymers, and metal liquids. We provided readers
with a review of their working principles. In Section 3, we reviewed various studies and
results based on recently used materials.

In Section 4, we analyzed the current drawback, which is the limited working sustain-
ability, of these two kinds of PSD sensors due to their sensing mechanisms.

Finally, we proposed future trends in these techniques. These two techniques can
be used together to achieve self-calibration, which can enhance sensitivity and working
efficiency. These techniques should also be combined with other wearable devices to
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establish DT models of users, which can provide medical professionals with more detailed
information for diseases diagnosis.
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