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Monolingual and bilingual language 
networks in healthy subjects using 
functional MRI and graph theory
Qiongge Li1,2,3,10*, Luca Pasquini4,5,10, Gino Del Ferraro1,4,6, Madeleine Gene4, 
Kyung K. Peck4,7, Hernán A. Makse1 & Andrei I. Holodny4,8,9

Bilingualism requires control of multiple language systems, and may lead to architectural differences 
in language networks obtained from clinical fMRI tasks. Emerging connectivity metrics such as k-core 
may capture these differences, highlighting crucial network components based on resiliency. We 
investigated the influence of bilingualism on clinical fMRI language tasks and characterized bilingual 
networks using connectivity metrics to provide a patient care benchmark. Sixteen right-handed 
subjects (mean age 42-years; nine males) without neurological history were included: eight native 
English-speaking monolinguals and eight native Spanish-speaking (L1) bilinguals with acquired 
English (L2). All subjects underwent fMRI with gold-standard clinical language tasks. Starting 
from active clusters on fMRI, we inferred the persistent functional network across subjects and ran 
centrality measures to characterize differences. Our results demonstrated a persistent network “core” 
consisting of Broca’s area, the pre-supplementary motor area, and the premotor area. K-core analysis 
showed that Wernicke’s area was engaged by the “core” with weaker connection in L2 than L1.

Human language function is exceptionally complex. Our growing understanding of functional language network 
(FLN) is enabled by improving techniques to acquire data1,2 and using increasingly sophisticated techniques to 
analyze functional data. This research aims for the latter, and is based on our group’s recently published work in 
graph theory and k-core percolation3. We successfully applied this general physics approach to multiple situa-
tions, including fMRI analysis of how the brain transition from conscious to subliminal perception4, and in the 
investigation of memory consolidation in rodents5. Our model described real and significant findings in multiple 
scenarios that could not be observed using other methods based on network connectivity alone.

The long-term goal of this research is to use fMRI to understand how language is functionally organized in 
healthy individuals and how it functionally re-organizes in the brain tumor setting. This understanding may 
help optimizing and guiding neurosurgical brain tumor resection. This study employs the paradigm selection 
recommendations recently published in a white paper by the American Society of Functional Neuroradiology6. 
We recommend the use of visually administered, silently generated language tasks that activate language areas 
related to speech comprehension and production through covert speech, relying on semantic and syntactic 
mental representations that require word retrieval and articulatory planning7–10. The silent word generation task, 
considered a phonemic fluency task, requires phonologic access, verbal working memory, and lexical search 
activity, which induce strong activation and lateralization of frontal areas11–13. This task showed effective language 
lateralization in the frontal lobe of the dominant language hemisphere14 with optimal language localization14 and 
is considered among the first choices in the state-of-the-art fMRI paradigm for clinical applications6.

In a previous study15, we established a functional language “core” subnetwork by analyzing 20 healthy sub-
jects without regard to monolingual or multi-lingual status. However, there are known functional differences 
between the language networks of bilinguals and monolinguals that may affect surgical management16. Although 
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the signature of the bilingual language network has been widely investigated, its effect on clinical practice is 
still unclear. In particular, the common language network of bilinguals in clinically acquired phonemic fluency 
tasks may differ from that of monolinguals in both the active areas and the connectivity between active nodes. 
These differences may impact evaluation of the relevance of each language area in clinical practices such as pre-
surgical planning17.

Language differences are a well-known limitation of fMRI evaluation especially among patients whose native 
language is different from the language employed in the fMRI task, as the results of the examination may be 
difficult to interpret. Understanding the interdependence of active fMRI clusters would significantly improve 
clinical care for minority patients. The ability to identify a specific hierarchy of active clusters on fMRI maps, 
characterized by a dominant cluster whose integrity is necessary for the stability of the network4,5, as well as 
crucial links between network nodes, is particularly relevant in the bilingual brain, whose peculiar network 
organization may emerge from clinically-relevant tasks.

The first objective of the current study is to determine how results of clinical fMRI tasks differ between 
bilingual and monolingual subjects. Second, we study the network architecture of the FLN in each of three 
groups (monolinguals, bilinguals speaking Spanish, and bilinguals speaking English) and we characterize any 
difference arising from centrality metrics. Particularly, we sought to assess the k-core, which has emerged as an 
important topological measure of networks because it reveals a robust and highly connected subnetwork, called 
the k-core max (as described in Sec. S1)3,18. The k-core has previously been employed to measure the stability 
of the most resilient functional structures in the brain4,15 and may provide useful insights in addition to the 
functional connectivity map. To this end, we analyzed fMRI scans from 16 healthy subjects: eight bilinguals 
and eight monolinguals. We hypothesized that the k-core method of analyzing fMRI data would demonstrate 
differences in language organization in the three groups that would not be discernible by standard methods19–21.

Materials and methods
All our methods were carried out in accordance with relevant guidelines and regulations.

Subjects.  We recruited 16 healthy (no neurological history) self-reportedly right-handed adult volunteers 
(mean age = 42.37 years; standard deviation (SD) = 8.92; nine males and seven females). As our ultimate goal 
is to apply the current methodology to patients with gliomas involving language areas, and acknowledging that 
language is organized differently across various age groups, we chose our volunteers to reflect the age distribu-
tion of the patients that we will be studying in the future.

Informed consent was obtained from all subjects. The 16 subjects included eight monolinguals (speaking only 
English) and eight bilinguals (speaking Spanish (L1) as their native language and English (L2) as their second 
language). All bilinguals had professional-level speaking fluency in English. This study was approved by the 
Institutional Review Board of Memorial Sloan Kettering Cancer Center (MSKCC).

Language proficiency tests.  Self-reported English and Spanish proficiency data were collected using two 
independent assessments to each subject by a qualified examiner: the four-item proficiency assessment22 and the 
Language Experience and Proficiency Questionnaire (LEAP-Q)23. For both assessments, bilinguals’ English and 
Spanish proficiency scores were compared using the Wilcoxon signed-rank test (paired). Bilinguals’ English and 
Spanish proficiency scores were also individually compared to monolinguals’ English proficiency scores using 
the Mann–Whitney U test (unpaired).

This evaluation of the language proficiency was approved by the NIH as part of the grant “Graph theoreti-
cal analysis of pre-operative fMRI data in bilingual and English as a second language (ESL) patients with brain 
tumors.” as part of NIH/NCI U54 CA 137788 (Ahles, PI) CCNY/MSK Partnership for Cancer Research Training 
and Community Outreach 2013-2019.

Functional MRI task.  All subjects performed a phonemic fluency letter task in response to task instruc-
tions delivered visually6, as recommended by the American Society of Functional Neuroradiology for the pre-
operative planning of brain tumor patients. This choice was motivated by our goal to obtain results directly 
applicable to the clinical practice. Each monolingual performed the task in English. Each bilingual performed 
the task in English and Spanish separately, resulting in two separate scans for each bilingual subject. We inter-
changed the order of English and Spanish tasks randomly. In the final data cohort, we had 24 task-based fMRI 
(tb-fMRI) scans, eight English scans from the monolingual subjects, and eight English scans plus eight Spanish 
scans from the bilingual subjects.

In the phonemic fluency task (letter task), subjects were asked to silently generate words that began with a 
given letter (for example, given the letter “B,” subjects would generate words such as “BIRD,” “BIKE,” “BANK,” 
etc.). Subjects silently generated words without vocalization to avoid creating artifacts from jaw movement. 
Stimuli were displayed on a screen over eight stimulation epochs with each epoch lasting 20 s. During the task, 
two letters were presented in each stimulation epoch. Each epoch also consisted of a 30 s resting period during 
which subjects were asked to focus on a blinking crosshair. Brain activity and head motion were monitored using 
Brainwave software (GE, Brainwave RT, Medical Numerics, Germantown, MD. https://​www.​gehea​lthca​re.​com/​
produ​cts/​advan​ced-​visua​lizat​ion/​all-​appli​catio​ns/​brain​wave) allowing for real-time observation. We specify that 
the preference of a “covert” task over an “overt” paradigm was motivated by the goal of applying our results in 
the clinical practice. Less compliance issues and motion artifacts were taken into account to support the choice 
of a “covert” task. Furthermore, the language paradigm was practiced with each subject prior to the actual fMRI 
to ensure optimal compliance.

https://www.gehealthcare.com/products/advanced-visualization/all-applications/brainwave
https://www.gehealthcare.com/products/advanced-visualization/all-applications/brainwave
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Data acquisition.  Our acquisition process is the same as our previous paper15, therefore we repeat this 
information as follows: A GE 3T scanner (750W, Milwaukee, Wisconsin, USA) and a 24-channel neurovascular 
head coil were employed to acquire the MR images. Functional images covering the whole brain were acquired 
using a T∗

2-weighted gradient echo echo-planar imaging sequence (repetition time (TR)) divided by (echo time 
(TE)) = 2500 ms/30 ms; slice thickness = 4 mm; matrix = 64× 64 ; FOV = 240 mm; flip angle FA = 80◦ ; voxel 
resolution = 4 mm × 4 mm × 4 mm. In addition, functional coverage matching T1-weighted 3D BRAVO (spoiled 
gradient recalled echo with inversion activated) images (TR/TE = 8.2 ms /3.1 ms; slice thickness = 1 mm; Inver-
sion Time = 450 ms; matrix = 240× 240 , FA = 12◦ ) were acquired for co-registration and deformation.

Data pre‑processing.  fMRI data were processed and analyzed using the Analysis of Functional Neuro-
Images (AFNI) software program24. Head motion correction was performed using 3D rigid-body registration. 
Spatial smoothing was applied to improve the signal-to-noise ratio using a Gaussian filter with 4 mm full width 
of half maximum. Corrections for linear trend and high frequency noise were also applied. Signal changes over 
time were cross-correlated with a mathematical Gaussian model of the hemodynamic response to neural acti-
vation. Cross-correlation involved convolving the modeled waveform corresponding to the task performance 
block with all pixel time courses on a pixel-by-pixel basis to generate functional activity data. Functional activa-
tion maps were generated at a threshold of p < 0.001 . To reduce false positive activity from large venous struc-
tures and head motion, voxels in which SD of the acquired time series exceeded 8% of the mean signal intensity 
were set to zero. We then addressed multiple comparison correction by performing a cluster correction analysis. 
All clusters made of contiguous voxels that exceeded the family-wise error rate of P = 0.05 were disregarded.

Individual brain network construction.  Following a previously published approach5,15, we briefly illus-
trate the construction method of the functional network on two different scales: voxel and fROI. At both scales, 
the network construction starts from the identification of the fMRI active voxels under the task performance 
described in “Functional MRI task” section. Active voxels were identified as those which passed a statistical 
significance tests corrected for multiple comparison, as described in “Data pre-processing” section. A sample 
subject’s resulting fMRI activation map is shown in Fig. 1. Since instructions were delivered visually, the visual 

Figure 1.   A representative subject’s fMRI activation map overlaid on the anatomical MR image. The reader’s 
left-hand side is the subject’s left brain hemisphere. The slice number is indicated by z. The areas highlighted in 
color correspond to fMRI active brain areas and the color bar at the bottom of the figure provide the p-values. 
Several regions have been labeled according to anatomical location. Areas such as visual cortex, which are 
unrelated to language but active during the fMRI task, were not included. 3D Clusters were extracted and 
named according to their anatomical locations, such as left Broca’s Area (BA(L)), left Wernicke’s Area (WA(L)), 
pre-supplementary motor area (pre-SMA), left premotor area (preMA(L)) and left Supra-Marginal Gyrus 
(SupraMG(L)), as marked on the image.
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cortex inevitably activated. As functional activation in the occipital lobes was a consequence of the paradigm 
delivery rather than the subsequent language processing, these areas were discarded from the analysis.

At the voxel scale, each active voxel is defined as a node in the functional network. Active voxels that are 
contiguous and in the same anatomical regions are labeled as belonging to the same functional region of inter-
est (fROI). The labeling of the fROIs based on their anatomical location was performed by a neuroradiologist 
with 20 years’ experience in clinical and research fMRI7,8,25–28. Since there exist high inter-subject variability in 
the mapping of cognitive functions, we did not determine fROIs at the group level but rather at the individual 
level29. It is worth noticing that, due to the presence of mass effect in brain tumor patients, pre-operative fMRI 
results are always interpreted on an individual level30.

Next, we defined the links between voxels (nodes) by following standard methods of measuring statistical 
dependencies between activated voxels5,15,19–21. Links between voxels were obtained by thresholding the pair-wise 
voxel correlation of the Blood-Oxygen-Level Dependent (BOLD) signal15:

where xi is a vector encoding the fMRI time response of voxel i and �·� indicates a temporal average. If a pair of 
voxels has correlation absolute value above a given threshold then the pair is considered connected by a link, 
otherwise the two voxels are not linked. In Fig. 2a, we display a realization of the voxel scale network for the 
sample subject of Fig. 1. Each node represents a voxel, and nodes belonging to the same fROI are colored equally. 
Links connecting a pair of voxels belonging to different fROIs are shown as pink lines. The links connecting pairs 
of voxels within the same fROI are not displayed.

At the fROI scale, each node in the network is simply an entire fROI which contains all the active voxels 
belonging to the same anatomical area. To define the connectivity at the fROI scale, the functional link weight 
( Wij ) between two fROIs (labeled i and j) is defined as the sum of all the binarized functional link weights ( wlm ) 
connecting all pairs of voxels (l, and m) between the two fROIs, normalized by the sum of the two fROI sizes 
( Si and Sj):

Thus, there exist a nonzero fROI-fROI connection between any pair of regions such that a single voxel in each 
region is inter-connected. We show a realization of an fROI-level network of the same representative subject in 
Fig. 2b. Here, each colored node represents a fROI. The thickness of each link connecting two fROIs is propor-
tional to the link weight (W). The the fROI-scale link’s thickness connecting two nodes in Fig. 2b, may appear 
inconsistent with the amount of links connecting the two same fROIs in the voxel-scale network (Fig. 2a). This 
visual difference is due to the normalization present in the normalization factor in Eq. (2).

At this point, an important clarification about the interpretation of the voxel- and fROI-scale network is nec-
essary. To construct the functional network we follow a two steps procedure: (i) we select the fMRI active voxels 
during the task, (ii) we compute the pair-wise correlations among the active voxels to determine the network’s 

(1)Cij =
�xixj� − �xi��xj�

√
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(Si + Sj)

BA(L)

pre-SMA

WA(L)

v-preMA(L)

a-MFG(L)
Caudate(L)

a) Voxel-level network

BA(L)

v-preMA(L)

pre-SMA

WA(L)a-MFG(L)
Caudate(L)

b) fROI-level network

Figure 2.   A representative bilingual subject’s network on the voxel scale (a) and fROI level (b). In (b) each 
node represents an fROI, and the node’s size is proportional to the number of voxels in the fROI. The thickness 
of each link connecting two fROIs is proportional to the sum of all link weights inter-connecting the voxels 
between the two fROIs (as in Eq. (2)). Visualization of (a) was achieved by using Gephi32 and visualization of (b) 
was partially achieved by python 3.7.
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links. With this procedure, regions that are highly active in a block design task are also highly correlated across 
time due to the task. This means that, voxels which are highly correlated with the task stimulus are also very 
likely to be correlated with each other. If the purpose of the analysis here was to determine the connectivity of 
the language network independently from the task, this procedure would cause a circularity issue, also know as 
double dipping in the literature, as very well reported in31. When the same data is used for selection and selec-
tive analysis, indeed, the descriptive statistics is distorted due to the presence of the noice in the data31. In our 
approach here, we first select voxels that are active during the task and then we investigate which ones are more 
correlated among themself given that they are also active during the task. In other words, our results are task-
conditioned or task-based. This means that the resulting functional language network is not an independent 
architecture from the task but, on the contrary, it depends on both the task and the selective analysis. We stress 
that this approach is rather different from standard resting state approaches to construct functional networks, 
where the selection is usually done on the only anatomical basis, as discussed in31. Here, we are interested in 
highlighting a language network that is task-dependent, or task-conditioned, and we further want to analyze 
its properties. As a consequence, all our results will be dependent on the voxel selection, i.e. the initial activa-
tion map. This is fine as long as we keep in mind that the resulting language network is task-conditioned and, 
therefore, specific to the particular task that we use in our experiment.

We constructed both voxel scale and fROI scale networks from the tb-fMRI signal for each of the 24 individual 
scans of data partitioned into three groups: monolinguals, bilinguals speaking English, and bilinguals speaking 
Spanish, with each group containing eight networks. Next, we measured the common network characteristics 
at the group level to estimate robust connectivity across subjects within a group.

Common network construction across subjects.  We named the persistent functional architecture 
across subjects in a particular group at the fROI-level the “common network”. This common architecture was 
constructed for each group by retaining only those pairs of fROIs and those functional links connecting them 
that were present across all subjects, and we considered the number of appearances of the functional link within 
the group as a measure of frequency.

The weight of the functional link connecting two fROIs (i and j), in the common network ( WC
ij  ) was defined 

as the average of the Wij connecting those fROIs across subjects:

where N is the number of individuals and where the link Wi,j is nonzero.

Results
Language proficiency tests.  From the Mann–Whitney U test (unpaired), no significant differences 
were found between bilinguals’ English proficiency and Spanish proficiency in any language domain (speak-
ing, understanding, reading) or in overall proficiency ( p > 0.05 ). There were also no significant differences 
between monolinguals’ English proficiency and bilinguals’ English proficiency across all measures ( p > 0.05 ). 
There were no significant differences between monolingual’s English proficiency and bilinguals’ Spanish pro-
ficiency ( p > 0.05 ). There were no significant differences in self-reported English and Spanish proficiency for 
monolingual and bilingual participants.

Individual networks.  From the 24 brain scans, 17 activated areas (or fROIs) were identified by the proce-
dure described above (2.2.6). A summary of these activated areas and their frequency of activation by subject is 
shown in Supplementary Table S1. Both hemispheres demonstrated activation; however, left hemisphere domi-
nance is clearly observed, which is expected in an fMRI language task among right-handed subjects, as language 
brain activation is mostly concentrated in the left hemisphere in right-handed individuals33.

Although 17 activated areas were detected, not all areas were activated in each subject due to inter-subject 
variability. We observed that the most areas were activated in the monolingual group (16/17), followed by the 
bilingual Spanish-speaking group (13/17) and the bilingual English-speaking group (12/17).

The areas that were activated in all subjects and all groups were the pre-supplementary motor area (pre-SMA), 
Broca’s Area (BA(L)), and ventral premotor area (v-pre-MA(L)). Wernicke’s Area (WA(L)) was activated in all 
eight subjects of bilingual Spanish-speaking group. Thus, these regions were included in the corresponding com-
mon networks by default. The anterior Middle Frontal Gyrus (L) (a-MFG(L)) and the Supra-Marginal Gyrus(L) 
(SupraMG(L)) activated with significant frequency (50 to 75 percent of subjects) in all three groups.

Individual link weights for the fROI scale network are reported in Supplementary Tables S2–S4. We observe 
that, overall, the preMA is the most connected area across subjects in terms of connectivity weight (strength). 
Only the shared links between subsets of activated fROIs are shown in these tables, with the subsets representing 
the core similarities between the groups included in the common networks. As a general trend, the strongest 
link (with the largest connectivity weight) is between v-preMA(L) and BA(L), followed by the link between 
v-preMA(L) and pre-SMA, and then the link between pre-SMA and BA(L).

We note several relatively small fROI-level link weights such as Wij = 0.01 in some subjects (for example, 
refer to the connection between BA and WA for Subject 6 in Supplementary Table S2. These small values arise 
because the fROI scale network normalizes the link weights by fROI size (number of voxels in the clusters), 
which can lead to apparently small link weights in some cases when fROI size is large compared to relatively 
sparse interconnections.

(3)WC
ij =

1

N

N
∑

l=1

W
(l)
ij
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Common networks.  The resulting common networks were constructed as described in “Common network 
construction across subjects” section. In each group, the shared common network contained only nodes and 
links that were present across the majority of subjects. A visualization of the shared common networks at the 
fROI level are shown in Fig. 3. All groups’ common networks have a similar fully connected structure involving 
the pre-SMA, BA(L), and v-preMA(L) (also called the “triangle structure,” notated by 

�
 ) across all studied scans 

(n = 8/8 in each group; 100%). This structure is identified by the consistent edges connecting fROIs across indi-
viduals. Therefore, this triangle captures the part of the individual functional network that goes beyond inter-
subject variability, i.e. the part of the individual network that is common across individuals. This structure is 
consistent with the results of our recent study of healthy individuals performing a different clinical pre-operative 
language task, in which it was called the “core” of the language network15.

Another structure involving WA(L)–v-preMA(L) and WA(L)–BA(L) (called the “V structure,” notated as 
∨

 ) 
is present in 6/8 (75%) subjects in the monolingual group, 4/8 (50%) subjects in the bilingual English-speaking 
group and 8/8 (100%) subjects in the bilingual Spanish-speaking group. This information is also summarized 
in Table 1. These four regions are functionally connected with one another, with detailed modular link weights 
shown in Supplementary Tables S5–S7.

Although sample SD in the link weights for each group is large relative to the mean, it is nevertheless evident 
that the common modular link weights are consistently larger for bilingual subjects speaking their native lan-
guage (L1) than for bilinguals speaking their second language (L2), as shown in Supplementary Tables S5–S7. 
A larger modular level link weight stems from the higher density in inter-fROI voxel level connections between 
common fROIs. The larger modular link weight in the bilingual Spanish group coincides with a 100% attach-
ment level of the 

∨

 structure. The average common link weights of monolinguals tend to lie between those of 
bilingual Spanish-speaking and bilingual English-speaking subjects. The relative common modular link weights 
as determined by Eq. (3) are indicated by the color bar in Fig. 4. The thickness indicates the in group occurrence 
frequency fi of the link.

The shared common networks reveal a hierarchical ordering of link weight as shown in Fig. 4. We denote 
the link BA(L)-v-preMA(L) by A, pre-SMA-v-preMA(L) by B, pre-SMA-BA(L) by C, BA(L)-WA(L) by D and 
WA(L)-v-preMA(L) by E. The link weight hierarchy ( A > B > C > D > E ) is consistent in all three groups. 
These results are consistent with the findings in our previous investigation conducted with 20 right-handed 
healthy controls15. In the previous study15, we named the four fROIs the language “core” sub-structure for the 
specific language task under study.

pre-SMA

v-preMA(L)
BA(L)

WA

Figure 3.   Common network structure in fROI level. The colored nodes represent fROIs, and their size is 
proportional to the averaged size of fROIs across all subjects. The solid gray links connecting pre-SMA, BA(L), 
and v-preMA(L), is the “ 

�
 structure,” and the yellow links connecting WA(L) to BA(L) and to v-preMA(L), 

respectively, is the “ 
∨

 structure”. We use different colors for the links to distinguish their different frequencies 
( fi ) of activation (activate in # of subjects/the total # of subjects). This information is provided as in Table 1: the 
“ 
�

 structure” was activated in all studied subjects. The “ 
∨

 structure” was activated in all subjects in the bilingual 
Spanish-speaking group; this is different from monolingual group and bilingual English-speaking group, which 
only activated 75% and 50% of the time, respectively.

Table 1.   Frequency ( fi ) of each structure appearance.

Monolingual subjects Bilingual subjects

English task English task Spanish task
�

 structure 8/8 ( 100%) 8/8 ( 100%) 8/8 ( 100%)
∨

 structure 6/8 ( 75%) 4/8 ( 50%) 8/8 ( 100%)
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Although we have grouped the bilingual English and bilingual Spanish common networks separately, they are 
constructed from the same group of eight subjects performing the task in different languages. The monolingual 
group represents a different set of individuals. Therefore we expect an extra factor of inter-subject variability 
when making monolingual to bilingual group level comparisons as opposed to L1 to L2 based comparisons 
within the bilingual group.

Note that not all pairs of core modules were directly connected. This is to be expected since, for example, pre-
SMA and WA(L) have no known structural connections, whereas the WA and BA are known to be connected by 
the arcuate fasciculus35. The absence of a link does not convey direct information about the underlying structural 
connectivity due to intra- and inter-subject variability in subject response to the task paradigm as noted above.

Our primary findings are the differential attachment of the 
∨

 structure between groups and the higher com-
mon link weights in the L2 group compared to the L1 in the 

�
 structure.

K‑core analysis.  The k-core of a given architecture is defined as the maximal sub-graph (not necessarily 
one that is globally connected) of all nodes having a degree (number of connections) of at least k. To partition 
the whole network into hierarchically ordered sub-networks, we iteratively prune all nodes with degree k until 
further pruning is no longer possible (when pruning has caused the whole network to collapse completely)36. 
The removed nodes are in the k-shell and the remaining subnetwork is called the (k + 1)-core. This final step will 
lead to finding the nodes in the maximum shell and the most connected sub-graph (maximum core) just before 
the whole network collapses. This process is called k-shell decomposition. We provide a brief explanation of the 
k-core, the k-shell decomposition algorithm, and the meaning of the kmax and k-shell occupancy histograms 
through a schematic k-shell decomposition process in Supplementary Fig. S1.

It has been shown that for networks with positive couplings (positive link weights), the k max core is the 
component of the system that is most resilient with respect to network failures, where in this case a failure means 
a reduction of the link weight (potentially due to brain tumor invasion or physical resection)3. All thresholded 
voxel-voxel BOLD time series correlations defining the link weight for our experimental task paradigm were 
positive. Thus, conducting k-core analysis would reveal the most robust component of the functional language 
architecture in healthy monolingual and bilingual subjects.

The k-shell (occupancy) histogram provides important and direct insights into the network structures. There-
fore, for each group, we calculated the ks shell occupancy for each node in the individual network at the voxel 
level. Then, we normalized ks by the maximum shell number found in each individual network ( kmax ) so that ks 
ranged from 0 to 1, where ks = 1 is the maximum shell (k max core). Next, we collected the individual networks’ 
nodes together, regardless of which subject they came from, and placed them into 15 bins according to their ks 
values. Then, we grouped the nodes in each bin by the modules to which they belonged. Finally, we plotted one 
unique k-shell occupancy histogram for each group. The histograms are shown in Fig. 5 for the four modules 
from the common shared core of the FLN: pre-SMA, v-preMA(L), BA(L), and WA(L). Panels a–c display the 
k-shell histogram for monolinguals, bilinguals speaking English, and bilinguals speaking Spanish, respectively.

a) Monolingual b) Bilingual English

c) Bilingual Spanish

pre-SMA BA(L)

WA(L)v-preMA(L)

Strongest(4.10) Weakest(0.10)
A B C D E

Figure 4.   Common network visualization. Visualization of the shared common network across subjects in 
(a) monolingual group, (b) bilingual English-speaking group and in (c) bilingual Spanish-speaking group, 
constructed by the methods described in “Common network construction across subjects” section. Here, we 
show the sagittal view of the left brain. The modules color legend is provided below panel (a). The link colors 
represent the WC

ij  hierarchy strengths within each group. The link color bar is provided below the color legends 
of the modules. From Left to Right, we show the strongest (the largest WC

ij  ) to the weakest (the smallest WC
ij  ). 

The links between each fROI pairs are abbreviated as A-E, see Supplementary Tables S5–S7 for more details. 
The thickness of the links represents how frequently (in how many subjects) they appear. WA connects with 
preMA(L) and BA(L) in 75% of monolingual subjects, 50% of bilingual English-speaking subjects and 100% 
of bilingual Spanish-speaking subjects, respectively. The background brain surface was created in BrainNet 
Viewer34.
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In parallel, we plot each module’s k-shell histogram separately, as shown in Fig. 6. To validate our results, 
we conducted residual analysis to determine how much differences in k-shell occupancy distributions between 
groups. To this end, we compute the sum of squared errors (SSE or residuals) between each distribution pair for 
each of the four modules. By the sum of squared errors, we mean that the differences between data points from 
different distributions in the same bin and then for each distribution pair, we sum all such squared differences.

First, we observed that the shell occupancy of the “core” modules - BA(L), v-preMA(L), and pre-SMA were 
quite similar in all three groups; most nodes in these three modules occupy the maximum shell ( kmax ). This can 
be seen in Figs. 5a–c and 6a–c. This is also confirmed by residual analysis (Fig. 7). By similarity in distribution, 
we mean that the SSE is relatively small in the core modules compared to the WA(L), which displays much 
greater sums of square residuals.

Second, the occupancy of WA(L) is fundamentally different from that of the “core” regions, as most nodes 
do not occupy the maximum shell. Rather, occupancy is distributed among the smaller shells ( ks ≤ 0.5 ) in the 
peripheral of the network. This is observed consistently (in Fig. 5a–c as well as Fig. 6d) among all three groups: 
monolingual, bilingual English-speaking and bilingual Spanish-speaking. This is supported by SSE analysis 
(Fig. 7a–c), which shows that WA(L) is five to ten times greater in the SSE than in the “core” modules. Notably, 
the above two points align with recent findings that WA(L) may belong to the lower shells15 rather than the 
“core” regions.

Furthermore, comparing the groups for WA(L) occupancy, important and statistically significant differences 
between the three groups emerged. For example, as shown in Fig. 6d, the occupancy of WA(L) in the bilingual 
English-speaking group peaked at ks = 0.5 and did not extend to higher shells. This result suggests that the WA 
may be less resilient in its attachment to the FLN in bilingual subjects speaking English (L2). Additionally, in 
the bilingual English-speaking group, WA(L) shows less occupancy in the peripheral outer shells (small ks ) than 
in the other two groups. Visually, the occupancy distribution of WA(L) in monolingual and bilingual Spanish-
speakers appeared to be more similar to one another than to the bilingual English-speaking group. These apparent 
difference are corroborated by the SSE analysis shown in Fig. 7a–c.

a) Monolingual b) Bilingual English

c) Bilingual Spanish

Figure 5.   K-shell occupancy for all three groups. Different colors represent nodes belonging to different 
modules, and the color legend is shown in the upper left of the figure. In (a)–(c) pre-SMA, BA(L), and 
v-preMA(L) peak at the maximum shell; however, WA(L) occupies most of the middle and low shell. In (b), 
WA(L) does not occupy the higher ( ks > 0.5) shell at all.
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To summarize the results of the SSE analysis, the “core” k-shell distribution tended to be similar between 
groups, whereas for the WA, the k-shell histogram varied significantly between each group pair. Furthermore, 
we found a larger SSE ( ∼ 0.2–0.25) in the occupancy of WA when we compared the bilingual English-speaking 
group to either the monolingual group or the bilingual Spanish-speaking group, as shown in Fig. 7a,c. On the 
other hand, the SSE of WA drops to less than half of this value (SSE ∼ 0.1) when we compare the monolingual 
with the bilingual Spanish-speaking group, implying that the occupancy of WA is more similar between the 
monolingual and the bilingual Spanish-speaking group than between the monolingual and the bilingual English-
speaking group.

Residual analysis suggests that the occupation behavior of WA is unlikely to be caused by random noise in 
the data, and more likely reflects real underlying trends.

Discussion
The goal of this study was to identify the hierarchal relationship of language areas identified by fMRI in mono-
lingual and bilingual subjects with the eventual goal of applying these results to the brain tumor neurosurgical 
setting. We used network analysis to study the structure and interconnections between essential language areas 
in both monolingual and bilingual groups. We conducted this study by first constructing FLNs on the individual 
level and aggregating these results by group to identify group structures and to highlight differences between 
groups.

For the common networks, we observed that there were both similarities and differences between the FLN of 
monolinguals and bilinguals. All groups share a core network composed of a resilient “triangular structure.” The 
“triangular structure” also connects to WA to form the “V structure” with different degrees at the group level: 
8/8 bilingual subjects speaking Spanish, 6/8 monolingual subjects, and 4/8 bilingual subjects speaking English. 
Bilingual English-speaking subjects displayed the smallest common link weights, while the same subjects per-
forming the fMRI task in Spanish displayed the largest common link weights. These results reflect the higher 
clinical task engagement of L1 language processing systems when compared to L2 systems.

The hierarchy of strengths between the three clusters ( A > B > C > D > E ) is consistent across all three 
groups, as shown in Fig. 4 and Supplementary Tables S5–S7. These findings are consistent with our previous 
analysis of 20 right-handed healthy subjects15. This consistent hierarchy may predict the amount of information 

a) pre-SMA b) BA(L)

c) v-preMA(L) d) WA(L)

Figure 6.   (a) Pre-SMA, (b) BA(L), (c) v-preMA and (d) WA k-shell occupancy for all three groups. Different 
colors represent different groups. Notice that the three colored curves are most distinctive in (d). For this panel 
only, the most distinctively behaving group is bilingual English-speaking group, but all three groups appear to 
behave quite differently.
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traffic flowing between each interacting module. The low connectivity weight between ventral preMA and WA 
(see Supplementary Tables S5–S7) may be explained by the increased distance between the two structures.

One of the results of our study may at first appear somewhat puzzling: the apparently great role in language 
organization played by the preMA (L) compared to one of the classical language areas: WA (L). The answer is 
that in the present study, we are not evaluating language in general (if such a thing is even possible), but are 
considering a specific paradigm, designed to analyze a specific problem. The paradigm that we employed is 
known to highlight the frontal language areas (BA) rather than the temporal language areas (WA). Additionally, 
we delivered the paradigm visually. This means that the information traveled as follows: visual cortex (occipital 
lobe) → frontal eye fields (posterior aspect of the middle frontal gyrus, or preMA(L)) → Exner’s area (posterior 

a) Monolingual vs. Bilingual English

b) Monolingual vs. Bilingual Spanish

c) Bilingual English vs. Bilingual Spanish

Figure 7.   Sum of square errors (SSE) of k-shell occupancy for each module. For all three pair of groups, as 
shown in (a) to (c) WA(L) distribution had the largest SSE compared to the “core” modules. Bilingual English 
and Spanish speakers’ SSE in WA, as seen in (c), has the largest value, while monolingual and bilingual Spanish-
speakers have the smallest SSE in WA.
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aspect of the middle frontal gyrus, or preMA(L)) → the language network (including Broca’s, Wernicke’s, pre-
SMA and the anterior aspect of the MFG, which houses verbal working memory).

Exner’s area coordinates visual information from the occipital lobe (primary visual cortex) and the frontal 
eye fields with the language network27, and is critically involved in transforming phonological representations of 
words into motor commands for handwriting37. Therefore, although we eliminated the activation in the occipital 
lobes (the primary visual cortex), a consequence of the paradigm design was the heightened activation of the 
preMA(L). Had we delivered the same paradigms aurally, we may have seen activation of the language network 
plus the auditory network that leads up to the language network. This activation would likely have included 
Heschl’s gyrus (the primary auditory network) but not the visual cortex, frontal eye fields and Exner’s area. This 
difference has, in fact, been our clinical experience with brain tumor patients when we moved from an aural 
presentation fMRI paradigm to a visual paradigm.

Nevertheless, our results confirm the important role played by the left ventral preMA in language processing, 
regardless of which language the subject speaks. The premotor cortex is known to participate in bilingualism 
through the dorsolateral prefrontal cortex (DLPFC). Nevertheless, its participation in the core and its relation-
ships with other components is incompletely understood. As mentioned in “Introduction” section, the premotor 
area should control language selection. In our results, the consistent activation of preMA can be partly explained 
by its role in the extended BA, as discussed in our previous work15, which may be valid regardless of the language 
spoken. Particularly, the strong link between the opercular BA and the ventral premotor cortex should constitute 
a hub for language production by connecting with the SMA13.

Increasing evidence pointed to a more comprehensive role of the cerebellum in language processing besides 
motor coordination38. This is also true in pathologic conditions. For example, cerebellar activations showed 
interesting reorganization phenomena in the setting of brain tumors39, which may help predicting the behavior of 
main language areas. However, a consensus regarding the exact role of the human cerebellum in linguistic func-
tion is still missing38. In this study, we wanted to investigate core-components of the language network of bilingual 
versus monolingual subjects. As a consequence, most of secondary language areas did not appear in the k-core, 
although they may display distinctive features in bilinguals. We believe that different approaches are needed to 
investigate interdependency of primary and secondary language areas in detail, including cerebellar activations.

Although the correspondence between structural and functional connectivity is not yet fully understood19,40, 
our results may be supported by structural evidence such as known white matter bundles connecting the network 
core nodes such as the frontal aslant tract and the dual pathways of language15.

As a minor difference between the groups, we found more frequent activation of secondary language areas 
in bilinguals. This result aligns with previous studies that demonstrated that the left Caudate and Angular Gyrus 
are relatively more involved with bilingualism41,42.

With respect to the k-core analysis, we see in Fig. 5 that the WA in the bilingual English-speaking group 
does not populate the lower k shells, and that WA populates more in the lower k shells of the bilingual Spanish-
speaking group than in the monolingual group. Monolinguals populate the k-max core, whereas the bilingual 
groups do not. WA populates the k-max core less than in the core, but still significantly.

The k-core max must be highly connected to other highly connected nodes, whereas the low shells resemble 
dangling ends of the system. In general, the k-shell represents a hierarchy of nodes. Bilingualism manifests itself 
in a reduction of the most important nodes, at least as far as WA is concerned. These results cannot be obtained 
with methods based only on the activity of the brain, and network analysis is necessary to differentiate the three 
states of the WA. Our network analysis captured differences in the role of WA usually unnoticed in conventional 
task-based fMRI evaluation.

We consistently observed that the greatest portion of the three modules pre-SMA, BA(L), and v-preMA(L) 
occupied the largest, k-max shell. This suggests that the triangle’s modules are the most resilient part of the net-
work, which prevents cascading failures in the event of network failures3,18,43. This sub-structure may thus prevent 
network collapse in the event of removal of links caused by pathological conditions and/or subsequent surgical 
intervention. In either case, damage to these core links may result in irreversible damage to the language network.

It should be noted that the presence of WA in the weaker k cores does not necessarily imply that WA is less 
important to the language network. Rather, weakly connected nodes sometimes play pivotal roles in the network 
processes. Morone et al.44 have shown that nodes with low degrees are sometimes the most important essential 
nodes when they hold the keys to connections between hubs (modules). In this context, the k-core results may 
indicate that WA(L) has at least a distinctive functional nature to the other three core members of the FLN, with 
respect to the network path structure. Recent studies evidenced distinct anatomical substrates for the motor-
speech and lexico-semantic systems, suggesting a double triangular network serving lexico-semantic processes 
and speech articulation13. The areas wired in this network show an intriguing correspondence with our results 
and structural evidence from the literature45.

The results of our k-core analysis may also be supported by structural evidence. We found a significant differ-
ence in the k-shell distribution of WA(L) nodes between the L1 and L2 tasks. The other common fROIs occupied 
the maximum shell with different proportions in L1 versus L2 as shown in Fig. 5. In fact, there is evidence for 
significant differences in structural connections between monolinguals and bilinguals. Diffusion tensor imag-
ing (DTI) studies have demonstrated that the representation of uncinate fasciculus, which connects the deep 
opercular cortex with the superior anterior temporal lobe46 is increased in bilinguals16,47. Similarly, increased 
fractional anisotropy of the superior longitudinal fascicle, connecting the preMA(L) with the superior temporal 
gyrus, has been reported in bilinguals16,47. These results may support an individualized approach regarding task 
choice for clinical fMRI in bilingual patients: administration of language tasks in L1 instead of L2, or both L1 
and L2, may provide more information about the bilingual network. This consideration is based on the higher 
task engagement of L1 language processing systems, as evidenced by the higher common network link weights 
and more frequent involvement of the “V-structure”.
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Limitations.  A potential limitation of this study is the sample size, which may affect the statistical signifi-
cance of network properties due to inter- and intra- subject variability. Further studies are needed to confirm 
our results in larger populations and to provide additional evidence to support our hypotheses. In this study, 
we evaluated only one language paradigm. Although the selected task is highly relevant for clinical practice, as 
confirmed by the literature and our own experience, valuable information is certainly contained in other lan-
guage tasks, which should be investigated in future studies. It is important to mention that language network 
organization changes substantially with age, especially for challenging tasks like phonological word generation. 
Our group-age was limited to adult patients, where lateralization is considered less variable48, and we deem our 
age group homogeneous enough to prevent significant age-related biases. We stress that future analysis on the 
matter should include more subjects from a wider age range and consider chronological age as an additional 
factor in the analysis.

Few limitations affected the interpretation of cerebellar activity in our study. This included exuberant visual/
occipital activation and/or venous flow artifacts from transverse sinuses masking cerebellar activation. As pointed 
out above, future researches with different approaches will unravel the interdependency of primary and second-
ary language areas in detail, including cerebellar activations.

This study investigated the language network connectivity from the fMRI paradigms suggested as clinical 
reference by the ASFNR49, which are covert tasks. However, covert versions of word generation paradigms are 
not exempt from limitations, including difficulties in response monitoring and activation of extralinguistic 
functional components (related to divided attention, response conflict, and inhibition) which may affect the 
linguistic interpretation of regional activations50. Paced overt fluency paradigms with sparse/clustered acquisition 
showed promising results in clinical contexts51,52 and may represent a valuable alternative to covert paradigms. 
The application of our method on overt tasks may further improve our understanding of language areas inter-
dependency, representing an avenue for future research.

Finally, although language skills were evaluated through the LEAP-Q and proficiency questionnaires, a for-
mal and more extensive neuropsychological evaluation could provide further information regarding subject 
performance. This should be taken into account in future studies.

Summary
Both monolingual and bilingual subjects share a common language network formed by BA, preMA, and pre-SMA 
that occupies the kmax shell and shows features of a central core for language across groups, consistent with our 
previous results on healthy subjects15. Moreover, WA is engaged by the network core with variable extent across 
groups (8/8 bilingual Spanish-speaking subjects, 6/8 monolingual subjects, and 4/8 bilingual English-speaking 
subjects), reflecting different k-core occupancies. The major difference in groups is that the bilingual L2 group’s 
nodes occupied only the lower half of the k shells. The bilingual L2 group also showed weaker connection 
strengths between core fROIs compared to when the same subjects performed the task in L1.

Data availability
This data set is publicly available at: http://​www-​levich.​engr.​ccny.​cuny.​edu/​webpa​ge/​hmakse/​brain/.
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