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Abstract: Currently, there is no therapy targeting septic cardiomyopathy (SC), a key contributor to
organ dysfunction in sepsis. In this study, we used a machine learning (ML) pipeline to explore
transcriptomic, proteomic, and metabolomic data from patients with septic shock, and prospectively
collected measurements of high-sensitive cardiac troponin and echocardiography. The purposes of
the study were to suggest an exploratory methodology to identify and characterise the multiOMICs
profile of (i) myocardial injury in patients with septic shock, and of (ii) cardiac dysfunction in
patients with myocardial injury. The study included 27 adult patients admitted for septic shock.
Peripheral blood samples for OMICS analysis and measurements of high-sensitive cardiac troponin
T (hscTnT) were collected at two time points during the ICU stay. A ML-based study was designed
and implemented to untangle the relations among the OMICS domains and the aforesaid biomarkers.
The resulting ML pipeline consisted of two main experimental phases: recursive feature selection (FS)
assessing the stability of biomarkers, and classification to characterise the multiOMICS profile of the
target biomarkers. The application of a ML pipeline to circulate OMICS data in patients with septic
shock has the potential to predict the risk of myocardial injury and the risk of cardiac dysfunction.

Keywords: machine learning; feature selection; septic cardiomyopathy; myocardial injury;
septic shock

J. Clin. Med. 2021, 10, 4354. https://doi.org/10.3390/jcm10194354 https://www.mdpi.com/journal/jcm

https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-1281-543X
https://orcid.org/0000-0003-1167-1259
https://orcid.org/0000-0002-0981-0208
https://orcid.org/0000-0003-2168-8425
https://orcid.org/0000-0001-8646-5463
https://orcid.org/0000-0001-7371-3624
https://orcid.org/0000-0003-2978-1704
https://orcid.org/0000-0002-7921-7207
https://doi.org/10.3390/jcm10194354
https://doi.org/10.3390/jcm10194354
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcm10194354
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm10194354?type=check_update&version=1


J. Clin. Med. 2021, 10, 4354 2 of 15

1. Introduction

Sepsis is a life-threatening organ dysfunction caused by a dysregulated immune
response to infection [1] and septic shock is its most severe form associated with higher
mortality [2]. More than half of the patients with septic shock present elevated levels of
circulating cardiac biomarkers, such as troponin (herein referred as myocardial injury)
and some degree of impairment in echocardiographic indices of diastolic and/or systolic
function (herein referred as cardiac dysfunction), conditions commonly grouped under the
terminology of septic cardiomyopathy (SC) [3]. Patients with SC have higher mortality
rates than those without it [3].

At present, there is no therapy specially targeting SC. While positive inotropes, mainly
dobutamine, are used clinically to ameliorate cardiac functions and improve both cardiac
output and systemic oxygen delivery, excessive β-adrenergic stimulation can be associated
with harm [4]. Initial enthusiasm with Levosimendan, a calcium sensitizer [5], has not been
confirmed in a subsequent large randomised-control trial [6], although the latter did not
target to treat overt SC, per se. One likely reason for the lack of successful interventions tar-
geting SC is that we fail to understand the root causes of heart affection (myocardial injury
and cardiac dysfunction) in patients with septic shock. The underlying pathophysiology is
certainly complex and studies performed in sub-optimal animal models have proposed a
number of events and pathways [7] that have rarely been confirmed in human subjects.

The characterisation of patients at the molecular level is a promising approach to iden-
tify pathophysiological mechanisms and specific targets for new therapeutic interventions
in critically-ill patients with a particular condition [8]. For example, we have previously
shown that changes in the metabolome (lipidome in particular) and transcriptome may play
a relevant role in early recovery of organ dysfunction in patients with septic shock [9,10].

In this work, we used a machine learning (ML) pipeline to investigate the prospects of
its application to analyse transcriptomic, proteomic and metabolomic data gathered at two
time points during Intensive Care Unit (ICU) stay in patients with septic shock and prospec-
tively collected measurements of high-sensitive cardiac troponin and echocardiography.
Our primary aim was to identify and characterise the multiOMICs profile of myocardial
injury in patients with septic shock. Second, we aimed at identifying if a distinct profile
exists when cardiac dysfunction in patients is associated with myocardial injury.

2. Materials and Methods
2.1. Study Design and Participants

This manuscript follows the STROBE guidelines for reporting observational studies
(Table S1) [11].

This study is part of the multicentre prospective observational trial “ShockOmics”
(ClinicalTrials.gov Identifier NCT02141607) [12]. Patients were recruited in the Intensive
Care Units (ICU) of Hopitaux Universitaires de Genève (Geneva, Switzerland) and Hôpital
Erasme—Cliniques Universitaires de Bruxelles (Brussels, Belgium). The study was ap-
proved by the Geneva Regional Research Ethics Committee (study number 14-041) and
the Ethical committee of Hôpital Erasme-Université Libre De Bruxelles (study number
P2014/171). Informed consent was obtained from the patients or their representatives.

As detailed elsewhere [12], we included consecutive adult (>18 years old) patients,
admitted for septic shock in the ICUs of two University Hospitals, with an admission
SOFA score ≥6, and an arterial lactate ≥2 mmol/L. Although septic shock was defined
according to the recommendations and international guidelines at the time of inclusion [13],
all patients fulfil the criteria of Sepsis-3 [1]. Peripheral blood samples for OMICS analysis
and measurements of high-sensitive cardiac troponin T (hscTnT) were collected within
16 h of ICU admission (T1) and 48 h after admission (T2). A certified intensivist performed
an echocardiography at the same time points. Left ventricle ejection fraction (LVEF) was
measured in apical view, according to the biplane modified Simpson’s method.

We excluded patients expected to die within 24 h after ICU admission and with ter-
minal illness; those receiving more than four units of red blood cells or >1 fresh frozen
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plasma transfused; with active haematological malignancy, metastatic cancer, chronic im-
munodepression, pre-existing end-stage renal disease requiring renal replacement therapy,
recent cardiac surgery, and Child-Pugh C cirrhosis. The main reason for our exclusion
criteria was to avoid confounding factors that would make it difficult to distinguish at
transcriptomic, proteomic, and metabolomic levels what is due to septic shock and what to
the comorbidities. We also excluded patients who did not have data in the three OMICS
domains. Furthermore, we prospectively planned at least two time points in our study
using expensive technologies, hence the two exclusion criteria of “terminal illness” and
high risk of death within 24 h of ICU admission. Demographic and clinical characteristics
in patients with and without myocardial injury (Table 1 and Table 2) were compared using
Fisher’s exact test or Mann–Whitney U test, as appropriate.

2.2. OMICS Data

Blood samples were collected in EDTA tubes and treated as follows:

• For transcriptomics: after adding 400 µL of 2X Denaturing solution (Ambion, Austin,
Texas, USA) to an equal volume of blood, samples were stored at −20 ◦C until analysis;

• For proteomics, metabolomics and hscTnT quantification: after adding 900 µL of a
protease inhibitor solution (Roche Applied Science, Penzberg, Germany) to 6 mL of
blood, 0.5 mL plasma aliquots were obtained by two-step centrifugation and stored at
−80 ◦C until analysis.

All subsequent analytic steps were performed in batches.

2.3. Transcriptomics Analysis

As detailed elsewhere [14], total RNA was extracted from blood samples with a
MirVana Paris Kit (Applied Biosystems, Waltham, Massachusetts, United States)and treated
with Turbo DNA-free Kit (Ambion, Austin, Texas, USA). RNA Quality was assessed on
Agilent Bioanalyzer with the RNA 6000 Nano Kit (Agilent, Santa Clara, CA, USA) and
samples were considered suitable for processing if RNA Integrity Number was greater than
7.5. Sequencing libraries were prepared with the TruSeq Stranded Total RNA with Ribo-
Zero Globin Kit (Illumina, San Diego, CA, USA) using 800 ng of total RNA. Final libraries
were validated with the Agilent DNA1000 kit (Agilent, Santa Clara, California, United
States) and sequenced on a HiSeq2500 platform producing 50 × 2 bp paired end reads. High
quality paired-end reads were aligned to the human reference genome (GRCh38) using
STAR (v2.5.2b) (Github, San Francisco, CA, USA) [15] emitting only uniquely mapping
reads. Reads were assigned to genes with featureCounts (v1.5.1) [16] using the GENCODE
(v.25) (GENCODE reference annotation for the human and mouse genomes”) primary
assembly gene transfer file (GTF) as the reference annotation file for genomic features
boundaries.

DESeq2 package (Bioconductor) [17] built-in functions were used to perform data
pre-processing and export of normalised counts.

2.4. Proteomics Analysis

The proteomics analysis was performed using Tandem Mass Tag, TMT-10plex (Thermo
Scientific) technique. Firstly, immunoaffinity depletion of highly abundant proteins from
plasma samples was performed using IgY14 Seppro® column (Sigma—St. Louis, MO,
USA). Eluted proteins were reduced, alkylated, and double trypsin digested. Seven TMT-
10plex experiments were performed. After peptide labelling, samples were subjected to
high pH fractionation with a high pH reversed phase peptide fractionation kit (Pierce, ref.
84868—Thermo Fisher, Waltham, MA, USA). A total of eight fractions from each TMT-
10plex batches were analysed using an Orbitrap Fusion Lumos™ Tribrid mass spectrometer
(Thermo Scientific, Waltham, MA, USA). The mass spectrometer was operated in a data-
dependent acquisition (DDA) mode. MS2-MS3 analysis was conducted with a top speed
approach. Thermo Proteome Discover (v.2.1) Thermo Scientific, Waltham, MA, USA) was
used to search with Sequest HT search engine against the Swiss-Prot human public database.
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For each TMT batch, eight raw files corresponding to the eight fractions injections from the
MS analyses were used to perform a single search against this database. The quantification
of proteins was conducted by summing, within each TMT™ 10plex experiment, the reporter
ion intensities of unique peptides. Libra channel normalization was performed for each
TMT™ 10plex experiment.

2.5. Metabolomics Analysis

We performed a targeted quantitative approach using a combined direct flow injection
and liquid chromatography (LC) tandem mass spectrometry (MS/MS) assay (AbsoluteIDQ
180 kit, Biocrates, Innsbruck, Austria), as detailed elsewhere [9]. This method combines
derivatisation and extraction of analytes with the selective mass-spectrometric detection
using multiple reaction monitoring (MRM) pairs. Isotope-labelled internal standards are
integrated into the platform for absolute quantification of metabolites. MRM detection
was used for quantification applying spectra parsing algorithm integrated into the Metiq
software (Biocrates Life Science AG, Innsbruck, Austria). Concentrations were calculated
and evaluated by comparing measured analytes in a defined extracted ion count section to
those of specific labelled internal standards or non-labelled ones, provided by the kit. This
strategy allows simultaneous quantification of up to 186 metabolites. Metabolites were
excluded from further analysis if: (1) fewer than 20% of missing values (non-detectable
peak) for each quantified metabolite, (2) 50% of all sample concentrations for the metabolite
had to be above the limit of detection (LOD). In total, 130 of the 186 metabolites were used
for statistical analysis.

2.6. Definition of Myocardial Injury and Cardiac Dysfunction

Myocardial injury was defined as a circulating hscTnT level >14 ng/L, the 99th per-
centile upper reference limit of the assay, according to the Fourth universal definition of
myocardial infarction [18]. Cardiac dysfunction was prospectively defined as a (LVEF)
< 50% or treatment with positive inotropic drugs to improve cardiac output and tissue
perfusion as judged necessary by the treating physician. Echocardiography image acquisi-
tion was performed by skilled Intensivists with a National Diploma of echocardiography.
Analysis of the echocardiography images was performed by two assessors with a National
Diploma of echocardiography and extensive teaching experience in echocardiography
(KB and AH). Both assessors were blinded for the cardiac troponin measurements and
OMICS results.

2.7. Multiscale Modelling of OMICS Data

Metabolomics and transcriptomics data have been previously published. Proteomics
data has not. No analyses regarding the phenotypes of myocardial injury and cardiac
dysfunction or the construction of multiOMICS models have been previously published
for this cohort.

The ML pipeline presented in this paper is divided into two main experimental
phases: FS and classification. The FS experiments started with the execution of tests
to compare distributions where the data from our analysis pipeline has been further
divided into six groups. Each group corresponds to its own dataset: transcriptomics at
T1, transcriptomics at T2, proteomics at T1, proteomics at T2, metabolomics at T1, and
metabolomics at T2. The FS phase started with a one-way ANOVA and a Kruskal–Wallis
test to select the variables that yield a significant p-value and a reduced q-value [19], as
appropriate. The normality of all OMICS data were assessed through the Shapiro–Wilk test
and the variance homogeneity through Bartlett’s test. After comparing the distributions,
the FS phase was completed with a recursive feature selection implemented with random
forests. In this analysis, we also calculated the stability score for each biomarker, presented
as a frequency (i.e., number of times a particular biomarker has been selected in the reported
number of experiments). Due to the high dimensionality of the data, we propose to reduce
first its dimensionality and later study the relation among the biomarkers. However, in
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case of working with lower dimensional data, the step of reducing dimensionality could
be omitted.

The set of markers obtained in our FS phase was further analysed in an enrichment and
pathway analysis. Particularly, the transcripts were analysed with Enrichr [20], proteins
were analysed with Impala [21] and metabolites with MetaboAnalyst [22].

Since this is a knowledge discovery study, our main assumption here is that the
biomarker sets yielding the best performances to assess myocardial injury and cardiac
dysfunction (based on troponin and ejection fraction or an inotrope requirement) will also
shed light on the pathophysiological processes involved in SC. For this reason, the set of
biomarkers that result from the FS phase was used to create a set of classifiers to predict
cardiac injury and dysfunction. In our case, we used logistic regression, classification
trees (CART), and a support vector classifier (SVC) [23]. All of these methods are well
suited for knowledge discovery from small-sized data sets for their interpretability and
their execution time, which allow efficient implementations for training through leave-
one-out cross-validation (LOOCV). The performance of each classifier has been evaluated
through its accuracy, sensitivity, and specificity. The accuracy is strengthened by the p-value
obtained in the McNemar’s test, and the sensitivity and specificity are shown together with
their binomial confidence interval.

All of the analyses were performed using R and the main packages employed were:
stats, caret, randomForest, rpart, and e1071.

3. Results
3.1. Characteristics of the Patients

Between October 2014 and December 2015, we screened 529 patients for the whole
ShockOmics study, of which 27 patients with septic shock were included in the present
analysis (Figure S1). Twenty patients (74%) had an elevated troponin fitting the pre-defined
criteria of myocardial injury (Figure 1). Of these, 13 (65%) patients presented with cardiac
dysfunction. Eight patients were treated with positive inotropes (all with dobutamine).
Tables 1 and 2 resume the characteristics of the patients at ICU admission. Overall, ten
patients (37%) had a respiratory infection and nine (33%) an abdominal infection.
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more details, please refer to Materials and Methods. n—number of patients.
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Table 1. Patient characteristics at ICU admission. Part I. Data are presented as median (interquartile
range) or number (percentage). BMI—body mass index.

All Patients No Injury Injury p-Value
27 7 (26%) 20 (74%) -

Demographic parameters
Age (years) 70 (21) 63 (48) 72 (20) 0.314
Sex (female) 8 (30%) 2 (29%) 6 (30%) 1.000
BMI (kg/m2) 26 (6) 27 (7) 26 (7) 0.646

Co-morbidities
Heart failure 1 (4%) 0 (0%) 1 (5%) 1.000
Coronary artery disease 4 (15%) 1 (14%) 3 (15%) 1.000
Peripheral vascular disease 1 (4%) 1 (14%) 0 (0%) 0.259
Stroke 2 (7%) 0 (0%) 2 (10%) 1.000
Arterial hypertension 12 (44%) 3 (43%) 9 (45%) 1.000
Diabetes 8 (30%) 0 (0%) 8 (40%) 0.068
Chronic renal failure 1 (4%) 0 (0%) 1 (5%) 1.000
Chronic lung disease 6 (22%) 1 (14%) 5 (25%) 1.000
Patients on beta-blockers 5 (19%) 1 (14%) 4 (20%) 1.000

Table 2. Patient characteristics at ICU admission. Part II. Data are presented as median (interquartile
range) or number (percentage). NonCV SOFA was calculated by subtracting the points of cardiovascu-
lar (CV) dysfunction to the total SOFA score. AKI—acute kidney injury according to “kidney disease:
improving global outcomes” classification; APACHE II—acute physiology and chronic health evalua-
tion II score; bpm—beats per minute; GCS—Glasgow coma scale; fluid balance—from the last 24 h;
hscTnT—high sensitive cardiac troponin T; INR—international normalised ratio; PEEP—positive
end-expiratory pressure; SAS—sedation-agitation scale; SOFA sequential organ failure assessment
score; SvcO2—central venous oxygen saturation.

All Patients No Injury Injury p-Value
27 7 (26%) 20 (74%) -

Cardiovascular parameters
hscTnT (ng/mL) 33 (61) 10.1 (5.9) 47.7 (80.8) <0.000
EF (%) 50 (20) 60 (18) 45 (20) 0.019
Heart rate (bpm) 100 (33) 107 (39) 99 (27) 0.533
Cardiac output (L/min) 5.9 (2.9) 7.0 (1.6) 5.0 (3.0) 0.045
Mean arterial pressure (mmhg) 59 (7) 61 (5) 59 (10) 0.893
Systolic arterial pressure (mmhg) 88 (19) 85 (18) 88 (18) 0.725
Diastolic arterial pressure (mmhg) 47 (5) 47 (5) 45 (5) 0.431
Patients on vasopressors 26 (96%) 6 (86%) 20 (100%) 0.259
Norepinephrine dose (ug/kg/min) 0.33 (0.48) 0.26 (0.33) 0.32 (0.59) 0.533
Patients on inotropes 8 (30%) 1 (14%) 7 (35%) 0.633
Dobutamine dose (ug/kg/min) 5.0 (4.4) - 4.9 (5.2) -
Patients receiving steroids 0 (0%) 0 (0%) 0 (0%) -
Fluid balance (L/kg) 0.02 (0.05) 0.02 (0.05) 0.03 (0.04) 0.911
Lactate (mmol/L) 4.3 (2.9) 3.4 (2.5) 4.8 (3.3) 0.263
SvcO2 (%) 76 (11) 68 (9) 78 (12) 0.012

APACHE II 24 (8) 20 (9) 24 (7) 0.063
SOFA 12 (4) 11 (4) 13 (4) 0.162
NonCV SOFA 8 (4) 7 (4) 9 (3) 0.179
Temperature (◦C) 37.6 (1.2) 38.0 (1.3) 37.5 (1.6) 0.400
Glucose (mg/dL) 169 (70) 167 (50) 170 (91) 0.766
GCS 5 (7) 6 (7) 5 (8) 0.978
SAS 2 (1) 2 (1) 3 (2) 0.935
Mechanical ventilation 23 (85%) 6 (86%) 17 (85%) 1.000
PEEP (cmH2O) 8 (3) 10 (1.3) 8.0 (4.5) 0.155
PaO2/FiO2 (mmhg) 170 (103) 184 (55) 160 (116) 0.607
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Table 2. Cont.

All Patients No Injury Injury p-Value
27 7 (26%) 20 (74%) -

Creatinine (mg/dL) 1.4 (1.0) 1.0 (0.9) 1.5 (0.9) 0.041
Renal replacement therapy 1 (4%) 0 (0%) 1 (5%) 1.000
AKI 16 (59%) 2 (29%) 14 (70%) 0.084
Urinary output (L/d/kg) 0.02 (0.02) 0.02 (0) 0.02 (0.02) 0.750
Bilirubin (mg/dL) 1.3 (1.3) 1.3 (0.8) 1.2 (1.4) 0.725
INR 1.3 (0.3) 1.3 (0.3) 1.4 (0.3) 0.766
Total leucocyte count (103/mm3) 12.7 (12.7) 10.5 (11.2) 14.5 (13.8) 0.145
C-reactive protein (mg/L) 210 (230) 267 (261) 197 (226) 0.850
Fibrinogen (mg/L) 4.7 (1.3) 4.7 (1.0) 4.6 (2.2) 1.000
Platelets (×103/mm3) 168 (82) 195 (17) 138 (90) 0.033

Five (25%) patients with myocardial injury died in the ICU, while no patients died in
the no-injury group (p = 0.143). At 100 days after admission, there were 7 (35%) deaths in
the injury group and none (0%) death in the no-injury group (p = 0.168).

3.2. Multiscale Analysis

There were a total of 58,572 attributes, all numerical. Following the analysis pipeline
outlined in the Materials and Methods presented above, we selected the biomarkers with
a p-value < 0.05 for proteomics and metabolomics separately. Regarding transcriptomics,
we also selected a q−value < 0.5 to further decrease the dimensionality of this set, which
originally contained 8215 attributes. The normality of all OMICS data were assessed
through the Shapiro–Wilk test with a Bonferroni correction of α = 0.05 and the variance
homogeneity through Bartlett’s test. This study concluded that 58,514 attributes met the
requirements to run one-way ANOVA whilst 58 did not. None of the 58 attributes analysed
through the Kruskal–Wallis test presented a significant association with the aforesaid target
biomarkers. As previously stated, we ran these analyses twice: the former focusing on the
patients with myocardial injury in the whole cohort, and the latter focusing on the patients
with cardiac dysfunction in patients presenting myocardial injury.

Table 3 presents the list of markers related to myocardial injury resulting from this
analysis. Next, we applied the same ML methodology to identify biomarkers related to
cardiac dysfunction in the patients presenting myocardial injury (Table 4). Figure 2 displays
these results jointly to ease their interpretation. Only the attributes that had a stability
score larger than 900/1000 were selected. From this process, we obtained 17 attributes
(20 if we take into consideration the significance at T1 and T2) for the myocardial injury
study. For cardiac dysfunction, we obtained 22 from the patients who also presented
myocardial injury.

Table 3. One-way ANOVA for the biomarkers related to myocardial injury in the whole cohort (MI: nT1 = 20 and nT2 = 19—
no MI: nT1 = 7 and nT2 = 8).

ID Name Biomarker Time p-Value q-Value

MADL1 Mitotic arrest deficient 2 like 1 Transcript T1 <0.005 0.41
WDR76 WD repeat domain 76 Transcript T2 <0.005 0.44
SNORD104 Small nucleolar RNA, C/D box 104 Transcript T2 <0.005 0.50
AL035420.3 Non-coding sequence Transcript T2 <0.005 0.35
AC092807.3 Non-coding sequence Transcript T2 <0.005 0.35
P00488 Coagulation factor XIII A chain Protein T1 <0.005 0.06
P01011 Alpha-1-antichymotrypsin Protein T1 <0.005 <0.003
P05160 Coagulation factor XIII B chain Protein T1 <0.005 0.06
P27169 Serum paraoxonase/arylesterase 1 Protein T1 <0.005 0.02

Q12805 EGF-containing fibulin-like extracellular matrix
protein 1 Protein T1 <0.005 0.06

P00488 Coagulation factor XIII A chain Protein T2 0.006 0.41
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Table 3. Cont.

ID Name Biomarker Time p-Value q-Value

P01011 Alpha-1-antichymotrypsin Protein T2 <0.005 0.21
P06727 Apolipoprotein A-IV Protein T2 0.02 0.47
P07360 Complement component C8 gamma chain Protein T2 0.01 0.46
P13591 Neural cell adhesion molecule 1 Protein T2 0.05 0.51
P27169 Serum paraoxonase/arylesterase 1 Protein T2 <0.005 0.40

Q12805 EGF-containing fibulin-like extracellular matrix
protein 1 Protein T2 <0.005 0.41

PC ae C36:5 Phosphatidylcholine (1x O-acyl, 1x O-alkyl) Metabolite T1 0.009 0.12
PC ae C38:6 Phosphatidylcholine (1x O-acyl, 1x O-alkyl) Metabolite T1 <0.005 0.12
Total DMA Dimethylarginine Metabolite T2 0.01 0.24

Table 4. One-way ANOVA for the biomarkers related to cardiac dysfunction in patients presenting myocardial injury (MI
with dysfunction: nT1 = 13 and nT2 = 9—MI without dysfunction: nT1 = 7 and nT2 = 10).

ID Name Biomarker Time p-Value q-Value

ZNF474 Zinc finger protein 474 Transcript T1 <0.005 0.19

ANP32BP1 Acidic nuclear phosphoprotein 32
family member B pseudogene 1 Transcript T1 <0.005 0.19

SERBP1P6 SERPINE1 mRNA binding protein 1
pseudogene 6 Transcript T1 <0.005 0.44

TMPRSS12 Transmembrane serine protease 12 Transcript T1 <0.005 0.44

LINC02489 Long intergenic non-protein coding
RNA 2489 Transcript T1 <0.005 0.44

SDS Serine dehydratase Transcript T1 <0.005 0.44
KRT89P Keratin 89 pseudogene Transcript T1 <0.005 0.44
AC073534.2 Non-coding sequence Transcript T1 <0.005 0.44

HOTAIRM1 HOXA transcript antisense RNA,
myeloid-specific 1 Transcript T1 <0.005 0.44

AL627309.2 Non-coding sequence Transcript T1 <0.005 0.44
CTNNA3 Catenin alpha 3 Transcript T2 <0.005 0.01
A2ML1 Alpha-2-macroglobulin like 1 Transcript T2 <0.005 0.02
P00748 Coagulation factor XII Protein T1 0.02 0.99
P07359 Platelet glycoprotein Ib alpha chain Protein T1 0.03 0.99
P27169 Serum paraoxonase/arylesterase 1 Protein T2 0.04 0.99
Q9ULI3 Protein HEG homolog 1 Protein T2 0.04 0.99
Cit Citrulline Metabolite T1 0.05 0.93
PC aa C40:3 Phosphatidylcholine (2x O-acyl) Metabolite T1 0.05 0.93
Val Valine Metabolite T2 0.03 0.93
Met Methionine Metabolite T2 0.04 0.93
C0 Carnitine Metabolite T2 0.05 0.93
t4 OH Pro trans-4-Hydroxyproline Metabolite T2 0.05 0.93

3.3. Enrichment Analysis

All elements considered significant in the multiscale analysis were used as input
for the enrichment analysis. The enrichment analysis with impala for transcripts and
myocardial injury has yielded an overlap with the inactivation of the anaphase-promoting
complex (APC/C) via direct inhibition of the APC/C complex pathway (p-value � 0.05
with non-significant q-value). The same analysis for proteins and cardiac injury has shown
a significant gene overlap with the complement and coagulation cascades. In particular,
the coagulation factor XIII A chain (P00488), the complement C8 gamma chain (P07360),
and the coagulation factor XIII B chain (F13B) are significant with p-value � 0.005 and
q-value 0.014. An enrichment analysis with Enrichr has shown that the genes considered
significant in relation to myocardial injury are related to the pathways listed in Table 5.
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Figure 2. One-way ANOVA for the biomarkers related to myocardial injury in the whole cohort (MI:
nT1 = 20 and nT2 = 19—not MI: nT1 = 7 and nT2 = 8), and to cardiac dysfunction in patients presenting
myocardial injury (MI and CD: nT1 = 13 and nT2 = 9—MI and not CD: nT1 = 7 and nT2 = 10). The
significance of each biomarker is interpreted by means of its p-value, where dark colours stand for
higher significance (p-value < 1 × 10−3) and light colours for lower significance (max p-value 0.05).
Blank cells represent biomarkers considered not stable enough in the FS for the specific time point
and symptomatology.

Table 5. Enrichment analysis ranking pathways based on significant overlaps between given genes
and annotated gene sets.

Pathway Adjusted p-Value

Mitotic Spindle Checkpoint Homo sapiens
R-HSA-69618 0.0374

APC/C pathway 0.0374

The enrichment analysis for cardiac dysfunction in patients with myocardial injury
with Impala has shown that catenin alpha 3 is related to arrhythmogenic right ventricular
cardiomyopathy (p-value = 0.01 with non-significant q-value). The same analysis for the
significant proteins yielded a significant overlap with the clotting cascade (p-value � 0.05
and q-value = 0.04) and fibrin clot formation (p-value = 0.05 and q-value = 0.06) pathways.
Finally, the enrichment analysis with MetaboAnalyst has found L-carnitine to be relevant
in the beta oxidation of long chain fatty acids (p-value = 0.0996).

3.4. Prediction of SC Phenotypes

The sets of biomarkers obtained in our FS phase were used to predict the risk of
myocardial injury assessed with circulating levels of troponin and the risk of cardiac
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dysfunction in patients with myocardial injury, assessed with the ejection fraction or an
inotrope requirement. LOOCV was applied on the cohort of patients selected to study.
In this manner, as many models as patients for each target variable per time point were
created to obtain a reliable and unbiased estimate of model performance. In our study we
used a logistic regression classifier as the baseline for comparison. CART models were
executed with a maximum tree depth of 5 and 10 trees were explored at a time. With
respect to the SVC, C = 1. The results of this classification are reported in Tables 6 and 7.
The McNemar’s test concluded that the sensitivity and specificity of the predictions were
the same as the one of the original data (p-value � 0.05 for all models).

Table 6. Classification results for myocardial injury in the whole cohort.

Data Method Accuracy Sensitivity Specificity

T1 Logistic 0.33 0.35 (0.15, 0.59) 0.29 (0.04, 0.71)
T2 Logistic 0.81 0.83 (0.59, 0.96) 0.75 (0.35, 0.97)
T1 CART 0.44 0.55 (0.32, 0.77) 0.14 (0.00, 0.58)
T2 CART 0.85 0.89 (0.65, 0.99) 0.75 (0.35, 0.97)
T1 SVC 1.00 1.00 (0.83, 1.00) 1.00 (0.29, 1.00)
T2 SVC 1.00 1.00 (0.81, 1.00) 1.00 (0.63, 1.00)

Table 7. Classification results for cardiac dysfunction in patients with myocardial injury.

Data Method Accuracy Sensitivity Specificity

T1 Logistic 0.63 0.58 (0.28, 0.85) 0.67 (0.38, 0.88)
T2 Logistic 0.68 0.67 (0.35, 0.90) 0.70 (0.35, 0.93)
T1 CART 0.63 0.50 (0.21, 0.79) 0.73 (0.45, 0.92)
T2 CART 0.68 0.58 (0.28, 0.85) 0.80 (0.44, 0.97)
T1 SVC 1.00 1.00 (0.54, 1.00) 1.00 (0.75, 1.00)
T2 SVC 1.00 1.00 (0.63, 1.00) 1.00 (0.63, 1.00)

4. Discussion

The present prospective clinical investigation demonstrates that the application of a
ML pipeline to circulating transcriptomics, proteomics, and metabolomics data in patients
with septic shock has huge potential to predict both the risk of myocardial injury (assessed
with circulating levels of troponin) and the risk of cardiac dysfunction (assessed with
echocardiography-derived left ventricle ejection fraction or an inotrope requirement). To
our knowledge, the present results are the first data linking serial cardiac and hemodynamic
measurements using a ML pipeline of OMICS data. The advantage of such a pipeline lies in
the fact that it can untangle relevant relations between different markers and related them
to a particular outcome (i.e., cardiac injury and cardiac dysfunction) through a data-driven
approach. Thus, the application of ML techniques can improve the standard methods
used in the classical clinical practice to assess these relations. Even though ML approaches
require large amounts of data from big cohorts of patients to draw conclusions, this paper
shows that it is also possible to obtain sensible results even with scarce data.

These results are of great interest as they throw light on the hypothesis that the root
causes of cardiomyocyte injury and cardiac dysfunction in patients with septic shock may
be approached using a ML pipeline tailored for OMICS analysis.

We offer an explanation to reinforce that changes in complement and coagulation
systems were associated with myocardial injury in patients with septic shock. These obser-
vations are coherent with data showing that the coagulation system and microthrombosis
are the main causes of ischemic heart affection and myocardial injury [24]. Microthrombosis
has also been shown to be a main source of respiratory dysfunction and architectural lung
injury in other inflammatory diseases as ARDS [25].

Ischemia-reperfusion injury has been shown to play a role in sepsis-associated organ
dysfunction [26]. In this setting, platelets are critical mediators of thrombo-inflammation
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and have been shown to contribute to an exaggerated ischemia-reperfusion injury re-
sponse [27–29]. However, the mechanisms underlying vulnerability to ischemia-reperfusion
injury in septic shock patients is not well defined, nor the role of platelets in the process of
SC [30].

Changes in the coagulation system have also been associated with myocardial dys-
functions in patients with ischemic myocardial injury. Indeed, there is now ample evidence
supporting the concept of cardiac injury causing local inflammation and increased acti-
vation of pro-coagulant processes in patients with STEMI [31]. Moreover, biomarkers of
coagulation and inflammation have been shown to provide pertinent and relevant distinc-
tion of patients suffering from coronary diseases and ischemic heart failure. In this regard,
it is worth asking the question whether there is a plausible mechanistic basis that would
allow myocardial capillary endothelial dysfunction to worsen right and left ventricular
function in patients with septic shock [32]. The idea behind the present interrogation is to
treat myocardial injury in septic shock patients by targeting pathways that link inflamma-
tion and thrombosis. For instance, several studies demonstrated a reduction in ischemic
and clinical events with early high dose statins [33]. The present hypothesis is in line with
some animal studies demonstrating that changes in systemic haemodynamics, coronary
perfusion pressure, myocardial function, and increased tumour protein 53 expression with
apoptosis related to bacterial exotoxin cause cardiac dysfunction. Indeed, in vivo changes
were significantly inhibited by pretreatment with simvastatin, which provide novel evi-
dence for the pleiotropic mechanisms by which septicaemia causes myocardial depression
and hint at a potential role for simvastatin as an inhibitor of apoptosis in sepsis [34]. In
our opinion, this finding highlights that subendocardial and myocardial ischemia are key
damages induced by inflammation and sepsis causing diastolic and systolic heart dysfunc-
tions [35,36]. The fact that recent data suggest that diastolic dysfunction is more frequent
and associated with prognosis than systolic dysfunction in SC, corroborates our finding, as
diastolic dysfunction is the first functional alteration during myocardial ischemia.

The underlying cause of SC could be, also, a disorder in communication between
the intracellular contractile apparatus and extracellular matrix, resulting in attenuation of
the myocardial contraction. In this regard, the fact that selected biomarkers could predict
myocardial injury with good accuracy may contribute to underline the main causes of this
transitory contraction interruption observed for the heart during sepsis.

We could also observe an association of alpha-1-antichymotrypsin and serum paraox-
onase/arylesterase with myocardial injury. A recent proteomic study showed that cir-
culating alpha-1-antichymotrypsin level was higher in patients with myocardial injury
compared with stable angina or healthy controls [37]. Alpha-1-antichymotrypsin can in-
hibit the activity of neutrophil cathepsin G and mast cell chymase and with this mechanism
may act as a mediator of inflammatory processes [38]. Paraoxonase is an antioxidant
bioscavenger, responsible for hydrolysing lipid peroxides and decreased serum paraox-
onase/arylesterase activity were related to poor prognosis (30-day mortality) in patients
with sepsis [39]. These circulatory markers suggest a link of inflammation and oxidative
stress with myocardial injury in septic shock.

In defiance of data scarcity, this study casts light on the relation between different
biomarkers that play a role in patients with septic shock and strengthens some of the
hypothesis posed by other aforementioned works. This is an exploratory methodology that
may be further exploited over larger cohorts to elucidate the association between OMICS
data and the biomarkers of interest.

In summary, this study showed that ML methods, applied to circulating OMICS
data, can give an accurate estimation of myocardial injury and cardiac dysfunction in
septic shock patients. This approach was also useful to investigate septic cardiomyopathy
at molecular level and to identify a role of complement, coagulation, and inflammation
pathways in the pathophysiology of myocardial injury. Our results, obtained in a small
sized cohort of septic shock patients, show that the analysis of circulating OMICS data with
a ML pipeline is a valuable tool to conduct research in critically ill patients.
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Limitations

Circulating troponin can be influenced by age and comorbidities (such as heart failure
and renal function) besides the burden of acute illness caused by septic shock. Hence using
a fixed threshold of troponin at ICU admission to classify patients as having myocardial
injury may lead to an overestimation of cases. However, in the current analysis, we focused
on identifying biomarkers acquired at ICU simultaneously to troponin measurements.
In addition, there is no validated method to choose a different cut-off in patients with
impaired renal clearance. Furthermore, elevated troponin has been shown to be associated
with increased mortality independently of renal failure and elevated creatinine [40]. It
is possible that use of inotropes impacts OMICS results. However, our study was not
designed to answer this question and our small cohort does not allow exploring the impact
of inotropes independent of cardiac function. The primary aim of this study was to provide
new insight into the mechanisms of the phenotypes of myocardial injury and cardiac
dysfunction. Hence, we used a large range of biological intermediates covering multiple
levels of information (transcripts, proteins, and metabolites), which is a novelty in the field.
These analyses require important resources and are not easily available in a clinical setting.
However, exploratory studies as our own are often the basis for other mechanistic studies
aimed at identifying biomarkers for prediction of the phenotypes or risk stratification. The
main limitation in this paper is related to the cohort size. On the one hand, the high rate of
non-eligibility and exclusion due to the OMICS techniques constraints and the discard of
the cardiogenic shock patients, reduces the significance with respect to the original cohort.
On the other hand, there is a small amount of data available to implement a ML pipeline to
ascertain the role of circulating OMICS for assessing cardiac dysfunction and injury during
septic shock. This lack of data has also limited the exploitation of the full potential of
ML-based approaches so that we had to apply simple yet powerful methods that perform
well under these circumstances. In our case, we used logistic regression as a baseline,
CART, and SVC. Nevertheless, in the light of the results obtained it is worth exploring and
improving the pipeline presented here in future research with larger patient cohorts.

5. Conclusions

The present findings indicate that the application of a ML pipeline to circulating
OMICS data in patients with septic shock has the potential to predict the risk of myocardial
injury (assessed with circulating levels of troponin) and the risk of cardiac dysfunction
(assessed with echocardiography-derived left ventricle ejection fraction). This study is
part of the multicentre prospective observational trial “ShockOmics” (ClinicalTrials.gov
Identifier NCT02141607) [12].
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