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Diabetic retinopathy is one of the main causes of blindness in human eyes, and lesion segmentation is an important basic work for
the diagnosis of diabetic retinopathy. Due to the small lesion areas scattered in fundus images, it is laborious to segment the lesion of
diabetic retinopathy effectively with the existing U-Net model. In this paper, we proposed a new lesion segmentation model named
FFU-Net (Feature Fusion U-Net) that enhances U-Net from the following points. Firstly, the pooling layer in the network is
replaced with a convolutional layer to reduce spatial loss of the fundus image. Then, we integrate multiscale feature fusion
(MSFF) block into the encoders which helps the network to learn multiscale features efficiently and enrich the information
carried with skip connection and lower-resolution decoder by fusing contextual channel attention (CCA) models. Finally, in
order to solve the problems of data imbalance and misclassification, we present a Balanced Focal Loss function. In the
experiments on benchmark dataset IDRID, we make an ablation study to verify the effectiveness of each component and
compare FFU-Net against several state-of-the-art models. In comparison with baseline U-Net, FFU-Net improves the
segmentation performance by 11.97%, 10.68%, and 5.79% on metrics SEN, IOU, and DICE, respectively. The quantitative and
qualitative results demonstrate the superiority of our FFU-Net in the task of lesion segmentation of diabetic retinopathy.

1. Introduction

Diabetic retinopathy is one of the main causes of blindness in
human eyes, and regular fundus screening is an effective way
to discover the location of disease [1-6]. At present, fundus
screening is mainly diagnosed by analyzing fundus images
manually, which requires ophthalmologists to have expert
clinical experience. Therefore, the automatic screening and
diagnosis of diabetic retinopathy have important practical
significance. Moreover, the lesion segmentation of diabetic
retinopathy is the prerequisite work for screening and diag-
nosing diabetic retinopathy, and it also lays a foundation
for the subsequent grading of the severity of diabetic retinop-
athy. Generally, common diabetic retinopathy consists of
microaneurysms (MA), hard exudates (EX), soft exudates
(SE), and hemorrhage (HE).

In the past few decades, numerous researchers have
devoted themselves to solving the segmentation of diabetic
retinopathy. In early years, the researchers focused on tradi-
tional image processing methods, such as morphological
operations and threshold segmentation [7-9]. Limited by
the heavy dependence of the design level, the traditional
methods of lesion segmentation are relatively infeasible in
real-world application.

With the rapid development of deep learning technology,
many researchers resort to deep learning methods to segment
the lesion of diabetic retinopathy [3]. Although deep learning
models can avoid handcrafted complex image features, it is
difficult to segment tiny lesions composed of relatively mac-
rostructures, such as microaneurysms and hemorrhage. As
a classical medical semantic segmentation network, the
symmetry-driven U-Net model [10] is weak in processing
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tiny lesions. In order to achieve more accurate results, we
propose a deep neural model called FFU-Net with an
encoder-decoder structure. In detail, the pooling layer of U-
Net is substituted with a convolutional layer to reduce the
spatial loss of the fundus image. For the purpose of extracting
multiscale lesion features, the MSFF block is embedded in the
encoder by considering splitting operations and residual
modules into account. For the decoders, contextual channel
attention modules is integrated with the concatenation of
skip connection and lower-resolution decoder. To alleviate
the imbalance problem between lesion area and normal area
in a fundus image, an improved Focal Loss named Balanced
Focal Loss is proposed to train our model. In comparison
with the state of the art, the experimental results on the pub-
lic IDRID demonstrate that our model surpasses other
models on metrics SEN, 10U, and DICE.

Our contributions are summarized as follows: (1) We
replace the pooling layer of U-Net with a convolutional layer
for downsampling, which helps to preserve spatial loss of
fundus images as much as possible. (2) In the encoders, we
integrate MSFF block with U-Net to extract multiscale lesion
features by taking splitting operation and residual module
into account, which is beneficial to representing informative
features. (3) In the decoders, we propose the CCA module
to fuse the information between skip connection and lower-
resolution decoder, which share attentions and enhance their
representative ability efficiently. (4) We propose a new loss to
address the imbalance data problem when training our
model, which facilitates the discrimination ability of our
model. (5) We conduct several evaluations of the compara-
tive methods on the benchmark dataset to figure out the
superiority of our model.

The rest of this paper is organized as follows. Materials
and Methods displays the related work, methodology, and
experiment settings. The experimental results and the discus-
sion are presented in Results and Discussion. Finally, Con-
clusion and Future Work concludes our work and suggests
possible topics for future research.

2. Materials and Methods

2.1. Related Work. In the early years, the medical researchers
focused on the segmentation of diabetic retinopathy based on
traditional digital image processing methods, such as mor-
phological operations and threshold segmentation. For
example, Fleming et al. [7] used morphological operations
and Gaussian matched filters to extract candidate regions of
microaneurysms and then collected various statistical fea-
tures to eliminate false positive points in blood vessels,
yielding accurate segmentation of microaneurysms. Antal
and Hajdu [11] adopted an ensemble learning strategy to
integrate a series of image preprocessing approaches to
improve final segmentation of microaneurysms. Kavitha
and Duraiswamy [8] extracted exudate features using a
multilayer threshold method, but this model has require-
ments for the input image quality. In conclusion, the tra-
ditional methods of lesion segmentation are relatively
inefficient with poor generalization.

BioMed Research International

Recently, the development of deep learning has been
widely concerned in the field of medical treatment. Medical
image segmentation [12] has also become a hot topic. Most
existing models with excellent performance in medical image
segmentation tasks are reconstructed based on FCN or U-
Net. In FCN [13, 14], the last full connection layer was
replaced with a convolution layer. Rather than a fixed input
size required by the classical CNN model, it allowed input
image with arbitrary size. Also, skip connections were
employed to combine local information learned from shallow
layers and complex information learned from deeper layers.
In U-Net, a contracting path was used for capturing context
and a symmetric expanding path is designed for precise local-
ization. With reference to the upsampling strategy, FCN
applied upsampling operation to the last feature map while
U-Net transformed high-level features to low-level features
by deconvolution operations. References [15, 16] advanced
in U-Net by using max-pooling indices and multipath input,
respectively. Van Grinsven et al. [17] sped up the training by
dramatically selecting misclassified negative samples.
Sambyal et al. [18] presented a modified U-Net architecture
based on the residual network and employ periodic shuftling
with subpixel convolution initialized to convolution nearest-
neighbor resize.

2.2. Methodology

2.2.1. Network Description. The overall pipeline of our pro-
posed model is depicted in Figure 1. U-net was originally
designed and developed for biomedical image segmentation.
Its architecture is broadly regarded as an encoder network
followed by a decoder network. For the encoder network, it
is usually a pretrained classification network in which a
downsampling pooling layer is appended at multiple differ-
ent levels. For the decoder network, it includes upsampling
and concatenation followed by regular convolution opera-
tions. The discriminative feature obtained by the encoder is
projected onto pixel space to predict pixel-wise classification.
As an extension of U-Net, our model makes the following
three improvements adapted for lesion segmentation of dia-
betic retinopathy. (1) In the encoder stage, the maximum
pooling layer of the original U-Net model for downsampling
is substituted with a convolutional layer, in which the kernel
size is 3 x 3 and stride = 2. The motivation behind this strat-
egy could be explained as two points. (a) Compared with the
pooling layer, downsampling with the convolution layer
could keep structure information of diabetic retina images
as much as possible. (b) It promotes the fusion of informa-
tion between different channels, which is beneficial to the
lesion segmentation task of diabetic retinopathy. Moreover,
inspired by Inception block [19] and channel splitting idea
[20], we design a new multiscale feature-fused block named
MSEFF to capture the features of the diabetic retinopathy
image at different scales. As illustrated in Figure 2(a), the
MSEF uses a series of multiscale residual splitting operations
to extract different scale features. Firstly, as dilated convolu-
tion [21] could increase the receptive field under the condi-
tion that the resolution of the feature map is unchanged, we
use a 3 x 3 dilated convolution followed by the RReLu layer
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FIGURE 1: The overall architecture of the proposed FFU-Net model.
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FiGure 2: The improvements in the encoders and decoders of FFU-Net: (a) the structure of MSFF; (b) the CCA module in the decoders.

to perceive more information. Then, we put forward a series
of splitting steps to produce multiscale features efficiently.
For each step, MSFF employs 3 x 3 and 5 x 5 convolution
layers to split the preceding features into two parts. One part
is retained, and the other part is fed into the next step. After

three splitting steps, all the distilled features are concatenated
together and then fed into a 1 x 1 convolution to reduce the
channels and parameters. In our implementation, only 1/3
channels in each splitting step are kept. (2) In the decoder
stage, the concatenation procedure between skip connection



and lower-resolution decoder is improved with the contex-
tual channel attention (CCA) module. We borrow the idea
from SeNet [22] and depict the detail in Figure 2(b). Given
lower-resolution decoder LD and skip connection SK with
the size hxw X ¢, the proposed concatenation procedure
with CCA can be described as

Cip = Convl(RReLu(Convl_BN(GAPool(UP(LD))))),
Cgk = Convl(RReLu(ConvlBN(GAPool(SK))),
CCA =RReLu(Cyp @ Cgy),
F = Concat((CCA®LD), CCA ®SK),
(1)

where UP and GAPool denote upsampling operation and
global average pooling. Convl_BN is the 1 x 1 convolution
followed by batch normalization while Convl is the common
1 x 1 convolution. RReLu and Concat represent the RReLu
activation function and concatenation operation along the
channel dimension. After the GAPooling operation, 1 x 1 x
(c/r) (r=2) is employed to extract channel-wise statistics
efficiently. As a contextual channel attention, CCA carries
the channel-wise attentions from both LR and SK and then,
respectively, multiply itself by LR and SK. Later, these two
features are concatenated to replace the original concatena-
tion procedure appearance in U-Net. In this way, LR and
SK fully fuse the context information and share channel
attention to provide more informative representation, which
is conducive to the segmentation accuracy.

Besides, all the activation layers are replaced with nonlin-
ear activation RReLu layers [23]. The reason why we prefer
RReLu than other activation functions is that it could provide
a random value from a uniform distribution to reduce over-
fitting during training. Herein, benefiting from the above-
mentioned improvements, our FFU-Net achieves segmenta-
tion accuracy of the four lesions of diabetic retinopathy
effectively.

2.2.2. Loss Function. Apart from the network architecture,
loss function also plays a key part in network design. In a dia-
betic retinopathy image, huge contrast could be found
between the lesion and the normal from the perspective of
appearance. Additionally, the size of the lesion area is always
much smaller than the rest. Provided that we still insist on
training our model to minimize the classification cross-
entropy loss, the performance might not be like what it is
supposed to be. This phenomenon can be ascribed to the
imbalance problem occurring in the medical dataset. To
address this issue, one can resort to data augmentation tech-
nology which duplicates samples to make the overall training
set balanced. However, on account of the lack of diversity, the
new dataset cannot provide clear improvement for our
model. Alternatively, we turn to loss function according to
the intrinsic distribution of data samples. Generally, the error
penalties for the majority class and the minority class are dif-
ferent. Thus, we attempt to assign different weights to differ-
ent classes and construct a Balanced Focal Loss for our model
[24]. When training with this loss function, our model high-
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lights the lesions of diabetic retinopathy. Different from orig-
inal focal loss, in the task of medical segmentation in our
application, the difference between easy and hard examples
is more imperceptible. Mathematically, the loss function is
formulated as follows:

Z= Y ~w(ly-@))(1-y)log (1-@) +ylog @), (2)

1

where n represents the number of pixels in a diabetic retinop-
athy image and i denotes the ith sample. Here, |- | guarantees
the nonnegativity. If the pixel is normal, its corresponding
value is set to 0. If the pixel belongs to the lesion area, its cor-
responding value is set to 1. The parameter w represents the
weight coeflicient, which refers to the ratio between the pixels
labeled as abnormal and the number of pixels in all samples.
Q; is the probability predicted by our proposed model; y is
the tunable focusing parameter which is always set to 2 in
practice. As a comparison, we depict the values of Balanced
Focal Loss and Focal Loss in Figure 3. As can be seen, when
Q;—1 and y=1, the loss for well-classifier examples is
downweighted. For instance, when y =1, an example with
Q,;=0.9 and w=0.1 would be 5x lower (0.002) than cross-
entropy (0.010). Although the case with Focal Loss shows
100x lower (0.0001), the gap between Balanced Focal Loss
and Focal Loss is 0.0019. Besides, another example with
Q;=0.1 and w=0.1 generates 0.227, which is closer to
the result of cross-entropy (0.230). By this means, this
proposed Balanced Focal Loss increases the importance
of correcting misclassified examples.

2.3. Data Preparation and Processing

2.3.1. Data Preparation. The dataset we adopted is the Indian
Diabetic Retinopathy Image Dataset (IDRID) [25], which is
derived from a patient’s fundus image during a real clini-
cal examination at an ophthalmology clinic in India. All
images in the dataset were taken by a Kowa VX-10a color
fundus camera with a 50-degree field of view close to the
macular area. All images have a resolution of 4288 x 2848
in JPG format. In our experiment, we select 81 color fun-
dus images from 516 images along with pixel-level annota-
tions. As illustrated in Figure 4(a), four typical diabetic
retinopathy abnormalities appear in this dataset. The
IDRID is split into the training set and testing set accord-
ing to different lesion labels. Empirically, the distribution
results are displayed in Table 1.

2.3.2. Fundus Image Preprocessing. A fundus image is taken
with a color fundus camera. In most cases, influenced by
uneven light intensity and camera lens contamination, the
resultant fundus images are corrupted by uneven brightness,
resulting in blurry and noisy areas. If the corrupted images
are trained by the deep neural model directly, the noises will
have adverse impact on the subsequent lesion segmentation
of diabetic retinopathy.

To address the above problems, we take measures before
feeding the fundus images into our network, such as image
cropping, image denoising, image enhancement [26], image
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weights. (b) The zoom results of Balanced Focal Loss and Focal Loss when w = 1.

normalization, data augmentation, and image dicing. Here,
we will illustrate the detail of preprocessing procedures.
(1) Image cropping: the original samples are usually
enclosed with a black border. To get the Region of Interest
(ROI), OTSU and maximum connected components are
used to obtain the optimal treatment threshold and
remove outliers, respectively. (2). Image denoising: in the
nature scenery, most photos are collected in Gaussian
noise environment. To improve the robustness, Gaussian
filter with 3 x 3 kernel is utilized to depress image noises.
(3) Image enhancement: it can be observed that microa-
neurysms, hemorrhage, and blood vessel have indistin-
guishable appearance in color space. If one aims to
enhance image quality towards the direction of color var-
iance, it is in vain for recognizing the three objects. There-
fore, CLAHE (Contrast Limited Adaptive Histogram
Equalization) is applied to enhance images in contrast
[27]. (4) Image normalization: considering that the color
and brightness of fundus images are quite different, we
need to confine some parameters in our network model
to a reasonable range. Otherwise, the overlarge parameters

will slow the convergence speed of our model. Thus, we
use normalization operation to speed up and boost the
performance of our model at the same time. Formally,
the normalized image can be generated as follows:

X—Uu

xnorm = 9 >

(3)

where x and x,,,,, denote the original image and normal-
ized image, respectively. 4 and 0 are the mean value and
standard derivation of all the samples in dataset IDRID.
(5) Data augmentation: in contrast with traditional RGB
images, collecting medical images is arduous. However,
the performance of a deep neural network relies heavy
on the scale of training data. Hence, we resort to
common-used data augmentation strategies: random hori-
zon flips, rotation, random crop, shift, and rescaling. (6)
Image dicing: as we can see, the resolution of the original
image in dataset IDRID is 4288 x 2848, which hinders the
deep model from running in low-capacity devices. Besides,
the areas occupied by lesions are usually relatively small,
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TaBLE 1: The distribution of IDRID.

Lesion type Training set Testing set
Microaneurysms 54 27
Hard exudates 54 27
Soft exudates 26 14
Hemorrhage 53 27

and the locations of lesions are scattered. So, we resolve to
improving the performance of our model via image dicing
technology. In Figures 4(b) and 4(c), motivated by the
sliding window method, the dataset is divided into positive
samples (with lesions) and negative samples (without
lesions). As depicted in Figure 5, the detailed characteris-
tics of the lesion area are clear enough, which is conducive
to the subsequent lesion segmentation.

After the above image preprocessing operations, as dis-
played in Figures 4(b) and 4(c), the original high-
resolution fundus images are transformed into several sub-
images with 256 x 256 pixels using the sliding window
strategy with stride = 64. Then, the subimages with a black
background are eliminated, and the remaining are treated
as the valid input.

2.3.3. Fundus Image Postprocessing. After the above-
mentioned image preprocessing, the whole image has been

transformed into a group of subimages. For our trained
model, the segmentation output has the same shape with
the input subimage. Nevertheless, in real-world applica-
tion, the pixels of the original image should be assigned
with predicted labels in the final segmentation output.
To achieve it, we attempt to merge these subimages to
form the final segmentation result. The predicted label of
a pixel is jointly determined by averaging the segmentation
results of multiple subimages.

As mentioned in Fundus Image Preprocessing, the subi-
mages are generated by the sliding window strategy. In this
way, several subimages are overlapped inevitably. For the
pixel inside the boundary, its final label will be assigned by
averaging 16 subimage blocks. For the pixel on the boundary,
it should be processed individually.

2.4. Experiments and Analysis

2.4.1. Training Parameters. All the experiments are executed
on hardware devices with Intel Xeon CPU, 128 GB memory,
and NVIDIA Tesla P100 GPU. The software environment is
Ubuntu 16.04 operating system and PyTorch 1.0 framework.
The input size is 256 x 256, and the batch size is set to 64.
Since no pretrained model is provided, He initialization is
used to initialize our model [28]. The network is trained by
optimizing loss L for 100 epochs. As we all know, a higher
and fixed learning rate cannot guarantee to bring better
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(a) Original diabetic retina image

(b) Diabetic retina image after preprocessing

FIGURE 5: The comparison between the original diabetic retinopathy image and its corresponding preprocessed result.

convergence to the deep neural network. Consequently, we
adjust the learning rate as the training procedure goes on.
The initial learning rate is set to 2 x 10>. When the loss stops
decreasing during training, the learning rate is reduced by a
factor of 10. Also, the Adam optimizer with setting
(B, =0.9, B, =0.999) is adopted. To be fair, all the compara-
tive methods are implemented and line with the hyperpara-
meters and parameters in their papers.

2.4.2. Evaluation Metrics. Evaluation metrics play an impor-
tant role in measuring the performance of comparative
models. In order to analyze the experimental results quanti-
tatively, we use several specific metrics to evaluate the perfor-
mance in the task of segmenting diabetic retinopathy image,
including Sensitivity (SEN), Intersection-over-Union (IOU),
and Dice coefficient (DICE). To implement them, we first
calculated true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). TP here refers to the intersec-
tion of the true lesion area and predicted lesion area, FP
denotes the intersection of the true normal area and pre-
dicted lesion area, TN is the intersection of the true normal
area and predicted normal area, and FN is defined as the
intersection of the true lesion area and predicted normal
area. Based on the above concepts, we introduce the fol-
lowing metrics:

SEN (sensitivity) = 7TP
( ty)= TP + FN’
TP
1 = 4
ou TP + FP + FN “)
2TP
DICE= ———M —.
¢ 2TP + FP + FN

Let us take a close look at the three metrics. Sensitivity
can be treated as the misdiagnosis rate of a disease. In our
work, it refers to the proportion of TP and true lesion
area, which is a critical and foremost factor for patients
and doctors. In real-world application, we try to decrease
the misdiagnosis rate to the best of our ability. IOU is
an evaluation metric used to measure the accuracy of a

semantic segmentation model, and it specifies the amount
of overlap between the predicted results and the ground-
truth. DICE is a measure of how similar the prediction
and groundtruth are, which not only is a measure of
how many positives the models predict but also penalizes
for the false positives of the models. Regarding the above
commonly used metrics, the closer they are to 1, the better
the segmentation performance.

3. Results and Discussion

In this section, we conduct our experiments to evaluate
the performance of our segmentation methods. The exper-
iments include three parts: the first part makes ablation
study of our method. It demonstrates the different perfor-
mance brought by the components appearing in our
methods. The second part makes user study to evaluate
our method against several state-of-the-art methods on
dataset IDRID. The last part describes the parameters
and costs of all the methods to verify their efficiency.

3.1. Ablation Study. To better evaluate our proposed method,
we design an ablation study by replacing each component
and keeping the rest unchanged. We place particular empha-
sis on differences brought by four improvements discussed in
Network Description. Thus, we conduct the following
experiments.

Experiment I: the original U-Net model is trained and
tested on our testing samples.

Experiment 2: based on the original U-Net, the cross-
entropy loss is replaced with Balanced Focal Loss function
(denoted as U-Net-FL for convenience).

Experiment 3: based on Experiment 2, the pooling layers
in encoders are replaced with 3 x 3 convolution layers, and all
the activation functions are set to RReLu (denoted as U-Net
V1 for convenience).

Experiment 4: on the basis of Experiment 3, the MSFF
block to extract multiscale features is integrated into
encoders (denoted as U-Net V2 for convenience).



TaBLE 2: Ablation study of the proposed model against U-Net, U-
Net V1, U-Net V2, and U-Net-FL on EX and SE.

EX SE
Methods SEN IOU DICE SEN IOU  DICE
FFU-Net  0.8755 0.8414 0.9138 0.7933 0.7876 0.8812
U-Net V2 0.8440 0.8159 0.8986 0.7547 0.7535 0.8594
U-Net V1  0.8033 0.7867 0.8769 0.6934 0.7028 0.8191
U-Net-FL  0.7929 0.7763 0.8704 0.6801 0.6893 0.8099
U-Net 0.7819 0.7602 0.8638 0.6713 0.6707 0.8029

TaBLE 3: Ablation study of the proposed model against U-Net, U-
Net V1, U-Net V2, and U-Net-FL on MA and HE.

MA HE
Methods SEN IOU DICE SEN IOU  DICE
FFU-Net  0.5933 0.5610 0.7188 0.7342 0.7365 0.8450
U-Net V2 0.5508 0.5267 0.6669 0.6936 0.6917 0.8177
U-Net V1  0.5172 0.4891 0.6334 0.6598 0.6562 0.7897
U-Net-FL  0.4968 0.4626 0.6255 0.6447 0.6425 0.7797
U-Net 0.4810 0.4490 0.6197 0.6366 0.6333 0.7755

Experiment 5: on the basis of Experiment 4, the CCA
module is deployed to fuse skip connection and lower-
resolution decoder (denoted as FFU-Net for convenience).

All the above experiments are performed on a prepro-
cessed dataset, and the quantitative results are illustrated in
Tables 2 and 3. Obviously, FFU-Net consistently outper-
forms U-Net on all metrics in the task of segmenting lesions.
This improvement is mainly attributed to MSFF, CCA, and
Balanced Focal Loss. Using Balanced Focal Loss, U-Net-FL
increase IOU by up to an average 0.031 points on all lesion
types, which proves that Balanced Focal Loss function is
capable of coping with data imbalance and misclassification
in the segmentation task. After the pooling layers are
replaced with 3 x 3 convolution layers and all the activations
are set to RReLu, U-Net V1 achieve slightly better than U-
Net-FL. The introduction of MSFF brings more improve-
ment on metrics SEN, IOU, and DICE, which verifies the
effectiveness of MSFF block to lesion segmentation for dia-
betic retinopathy. With the help of CCA, FFU-Net achieves
the DICE value increased by 0.0291 points, and the IOU
value increased by 0.0347 points. Note that in the analyses
of CCA and MSFF, we find that they surpass U-Net V1 by
a large margin on all metrics. This indicates that the compo-
nents of CCA and MSFF play more critical roles in segmen-
tation of medical images.

In Figure 6, we visually present the segmentation results
of different methods on dataset IDRID. It can be seen that
U-Net and U-Net-FL cause too many defects with lower
accuracy. Seen from the prediction results by U-Net V1, we
observe that it can provide more clear boundaries than
U-Net-FL. Since MSFF is utilized in the encoders, it
appears that U-Net V2 produce clear and pleasing seg-
mentation results. Nevertheless, we find that U-Net V2
fails to recognize the lesion with smaller size (MA). By
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incorporating the CCA module, FFU-Net aid in refining
the details of lesions, leading to closer segmentation result
to the groundtruth. Therefore, we can safely draw the con-
clusion that the improvements mentioned in FFU-Net are
effective quantitatively and qualitatively.

3.2. User Study. To confirm the effectiveness and robustness
of our proposed method, we conduct a user study against
the state of the art on metrics SEN, IOU, and DICE. The
comparative methods include the Dai et al. method [29],
Zhang et al. method [30], Van Grinsven et al. method [17],
M-Net [31], FC-DenseNet [32], Sambyal et al. method [18],
and original U-Net. To further show our superiority, we,
respectively, display the segmentation quantitative results
on four lesion types in Tables 4 and 5. As can be seen,
FFU-Net claims its superiority over the others on segmenting
all the lesions. In comparison with the second best method
(Sambyal et al.), FFU-Net achieves the DICE value increased
by 2.0% and the IOU value increased by 3.5%. As reported in
[29], the Dai et al. method is designed for timely detection
and treatment of MA, which is consistent with our results
in Table 5. However, it is unable to cope with the detection
of other lesion types (EX and SE). Similarly, Zhang et al.
aim to automatically detect exudates in color eye fundus
images and perform better in segmenting EX and SE but
work worse in segmenting MA and HE. Van Grinsven et al.
solve the unbalanced problem by dynamically selecting mis-
classified negative samples and apply CNN to HE segmenta-
tion. The results reported in work [17] are verified in our
experiment. Limited by the lack of generalization ability,
Van Grinsven et al. are incapable of processing EX, SE, and
MA perfectly. Although M-Net achieves state-of-the-art
OD and OC segmentation results on the glaucoma dataset,
it fails to transfer to our IDRID well. Besides, FC-DenseNet
extends DenseNet to deal with the problem of semantic seg-
mentation on natural images. When applying it to IDRID, it
cannot show enough ability of presenting irregular microle-
sions. Sambyal et al. employ periodic shuffling with subpixel
convolution initialized to convolution nearest neighbor
resize. As we all know, the subpixel strategy is a common
trick in the superresolution task. Whereas in Figure 7, we
found more holes in the segmentation results, leading to
unsatisfactory quantitative results on all metrics. Benefiting
from the MSFF, CCA, and Balanced Focal Loss, our proposed
FFU-Net achieves consistent improvement to all existing
methods on all three performance metrics. Figure 7 shows
some visual examples of four lesion types, where we observe
that our method could generate closer results to the ground-
truth without introducing additional artifacts. Apparently,
we can see that Dai et al., Zhang et al., and Van Grinsven
et al. suffer from inaccurate prediction for the boundaries
of all lesion types. Also, the failure of M-Net and FC-
DenseNet in transferring to all image samples is attributed
to their poor generalization ability. Therefore, it can safely
come to the conclusion that FFU-Net achieves comparable
performance quantitatively and qualitatively.

3.3. The Overhead of Parameters and Computation. It is nec-
essary to analyze the overhead of parameters and
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FIGURE 6: The visual segmentation results of U-Net, U-Net-FL, U-Net V1, U-Net V2, and FFU-Net. Zoom in to see the details.
TaBLE 4: Comparative segmentation results of the proposed model against the state of the art on EX and SE.
EX SE
Methods SEN 10U Dice SEN 10U DICE
Dai et al. 0.8074 0.7843 0.8791 0.7006 0.7071 0.8284
Zhang et al. 0.8418 0.8137 0.8973 0.7523 0.7505 0.8575
Van Grinsven et al. 0.8031 0.7749 0.8732 0.6988 0.692 0.818
M-Net 0.8327 0.8083 0.894 0.7297 0.7156 0.8343
FC-DenseNet 0.8414 0.8099 0.8949 0.7554 0.7623 0.8651
Sambyal et al. 0.8421 0.8183 0.9001 0.7563 0.763 0.8656
FFU-Net 0.8755 0.8414 0.9138 0.7933 0.7876 0.8812
U-Net 0.7819 0.7602 0.8638 0.6713 0.6707 0.8029
TasLE 5: Comparative segmentation results of the proposed model against the state of the art on MA and HE.
MA HE
Methods SEN 10U DICE SEN 10U DICE
Dai et al. 0.5498 0.5237 0.6874 0.6895 0.6990 0.8228
Zhang et al. 0.4897 0.4723 0.6416 0.6418 0.6407 0.7810
Van Grinsven et al. 0.4832 0.4667 0.6364 0.6844 0.6761 0.8068
M-Net 0.5366 0.5097 0.6753 0.6872 0.6796 0.8093
FC-DenseNet 0.5521 0.5276 0.6908 0.6976 0.6960 0.8208
Sambyal et al. 0.5537 0.5438 0.7045 0.6998 0.7038 0.8261
FFU-Net 0.5933 0.5610 0.7188 0.7342 0.7365 0.8450
U-Net 0.4810 0.4490 0.6197 0.6366 0.6333 0.7755

computation of our comparative methods. Notably, all com-
parisons are evaluated on the same machine. Evidently, as
seen in Table 6, the Dai et al. method and Zhang et al.
method are significantly lighter than other models, but this
comes at the price of an apparent performance drop. With
respect to the Van Grinsven et al. method, it solves the seg-
mentation task through a CNN pixel-wise classifier. Whereas
without taking spatial relationship into account, Van Grins-
ven et al. cannot achieve pleasing results. Since FC-
DenseNet has more dense residual modules and more than

100 layers, it needs more time and more parameters in the
testing procedure. As another modified U-Net, the Sambyal
et al. method employs periodic shuffling with subpixel con-
volution based on U-Net, so it will take more time to imple-
ment in our application. By introducing splitting operation
into FFU-Net, we observe that FFU-Net elapses less time
while making noticeable improvement on segmentation per-
formance. From the above discussions, it is observed that
perhaps FFU-Net is the best choice when considering the
influences between various factors.
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details.

TaBLE 6: The overhead of parameters and computation of different
comparative models.

Models Running time Parameters
Dai et al. method 616 ms —
Zhang et al. method 688 ms —
Van Grinsven et al. method 2598 ms 0.98M
M-Net 3745 ms 1.67M
FC-DenseNet 4361 ms 1.73M
Sambyal et al. method 1535 ms 1.33M
FFU-Net 695 ms 0.97M
U-Net 780 ms 1.93M

4. Conclusion and Future Work

Based on the original U-Net network, we propose a new
model named FFU-Net which is suitable for lesion segmenta-
tion of diabetic retinopathy. The FFU-Net network model
mainly has the following contributions: The original pooling
layer is replaced with a convolutional layer to reduce the spa-
tial loss of the fundus image. MSFF block is incorporated to
extract multiscale features and speed up feature fusion with
splitting operation. By virtue of the CCA module, FFU-Net
fuses the information between skip connection and lower-
resolution decoder with shared attention weights. Consider-
ing the data imbalance problem in diabetic retinopathy, we
present a Balanced Focal Loss function. Finally, in order to
verify the effectiveness of our proposed model, ablation study
and user study are carried out on the public benchmark
IDRID. The final experimental results demonstrate the effec-
tiveness and advancement of our proposed FFU-Net in terms
of almost all metrics.

In the future, we will investigate a more general and com-
prehensive segmentation method for diabetic retinopathy
and put emphasis on the following points: (1) Few-shot

learning: though we solve the overfitting problem caused by
insufficient data by data slicing, the burden of collecting
large-scale supervised data for real-world application is still
challenging. Thus, we resort to few-shot learning to achieve
better segmentation. (2) Contaminated labels: different from
the benchmark that is refined and maintained by profes-
sionals, the practical images of diabetic retinopathy are vul-
nerable to be contaminated and damaged. Thus, we should
learn how to segment the lesion images only with incomplete
and contaminated labels. (3) Grading the severity of diabetic
retinopathy: as a foundation work, we plan to expand our
work to grade the severity of diabetic retinopathy and apply
our achievements to real-world application.
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