Effects of Blood Pressure According to Age on End-Stage Renal Disease Development in Patients With Diabetes: A Nationwide PopulationBased Cohort Study

Eun Hui Bae, Sang Yeob Lim, Bongseong Kim, Tae Ryom Oh, Su Hyun Song©, Sang Heon Suh, Hong Sang Choi©, Eun Mi Yang, Chang Seong Kim©, Seong Kwon Ma, Kyung-Do Han,* Soo Wan Kim(©*

Abstract

BACKGROUND: Recent hypertension guidelines have recommended lower blood pressure (BP) targets in high-risk patients. However, there are no specific guidelines based on age or systolic and diastolic blood pressure (SBP and DBP, respectively). We aimed to assess the effects of age-related BP on development of end-stage renal disease (ESRD) in patients with diabetes.

METHODS: A total of 2563870 patients with diabetes aged >20 years were selected from the Korean National Health Screening Program from 2009 to 2012 and followed up until the end of 2019. Participants were categorized into age and BP groups, and the hazard ratios for ESRD were calculated.

RESULTS: During a median follow-up of 7.15 years, the incidence rates of ESRD increased with increasing SBP and DBP. The hazard ratio for ESRD was the highest in patients younger than 40 years of age with DBP $\geq 100 \mathrm{mmHg}$. The effect of SBP and DBP on ESRD development was attenuated with age (interaction P was <0.0001 for age and SBP, and 0.0022 for age and DBP). The subgroup analysis for sex, antihypertension medication, and history of chronic kidney disease showed higher hazard ratios for ESRD among males, younger than 40 years, not taking antihypertension medications and chronic kidney disease compared to those among females, older than 40 years, antihypertension medication, and nonchronic kidney disease groups.

CONCLUSIONS: Higher SBP and DBP increase the risk of developing ESRD in patients with diabetes, and in particular, younger individuals face greater risk. Therefore, intensive BP management is warranted in younger patients to prevent ESRD. (Hypertension. 2022;79:1765-1776. DOI: 10.1161/HYPERTENSIONAHA.121.18881.) • Supplemental Material

Key Words: blood pressure \quad cardiovascular diseases \square hypertension \square kidney diseases \square young adult

Diabetes is a strong risk factor for end-stage renal disease (ESRD). ${ }^{1}$ Hypertension also plays a crucial role in the development and progression of kidney failure. ${ }^{2,3}$ Blood pressure (BP) rises with declining kidney function which in turn aggravates hypertension. Moreover, as chronic kidney disease (CKD) worsens, BP becomes more difficult to control, propagating a vicious
cycle of worsening BP and renal function. Therefore, early diagnosis and prompt treatment of hypertension in high-risk patients are crucial. In addition, hypertension is common among young people and can cause harmful health effects even at a young age. ${ }^{4}$

In recent hypertension guidelines, lower BP targets are recommended for high-risk patients, such as those

[^0]
NOVELTY AND RELEVANCE

What Is New?

This is the first study demonstrating the effects of agerelated blood pressure (BP) and end-stage renal disease (ESRD) development in patients with diabetes using a well-established and validated longitudinal national database.
The hazard ratio for ESRD was the highest in patients younger than 40 years of age with diastolic $B P \geq 100$ mmHg , and the effects of BP on ESRD development were prominent in males, younger than 40 years, not taking antihypertension medications and chronic kidney disease compared to those among females, older than 40 years, antihypertension medication and non-chronic kidney disease groups.
The effect of systolic BP and diastolic BP on ESRD development was attenuated with age.

What Is Relevant?

The 2017 American College of Cardiology/American Heart Association guidelines have recommended lower BP target in high-risk patients such as diabetes or chronic kidney disease, but the effect of age-based BP on ESRD development in patients with diabetes was not elucidated.

Clinical/Pathophysiological Implications?

Higher systolic BP and diastolic BP increase the risk of developing ESRD in patients with diabetes, and in particular, younger individuals face greater risk. Therefore, intensive BP management is warranted in younger patients to prevent ESRD.

Nonstandard Abbreviations and Acronyms	
BP	blood pressure
CKD	chronic kidney disease
CVD	cardiovascular disease
DBP	diastolic blood pressure
ESRD	end-stage renal disease
HR	hazard ratio
ICD-10	International Statistical Classification of
KNHIS	Diseases, Tenth Revision Korean National Health Insurance Service
SBP	systolic blood pressure

with renal disease or diabetes. ${ }^{5}$ However, the effects of BP on the development of ESRD according to age in patients with diabetes have not been investigated. In addition, a recent study identified numerous barriers to good BP control in young adults. ${ }^{6}$

Therefore, this nationwide population-based study aimed to investigate the association between BP categories according to age and the risk of ESRD among patients with diabetes using the Korean National Health Insurance Service (KNHIS) database.

METHODS

KNHIS Data

In this study, we used the national health insurance claims database established by the KNHIS, which includes all claims data provided by the KNHIS and Medical Aid programs. The KNHIS database is considered to represent the entire South Korean population, and the details of this database have been previously
described. ${ }^{7}$ Depending on their occupations, all insured Koreans undergo an annual or biennial health examination that is supported by the KNHIS. The sociodemographic data and all medical expenses for both inpatient and outpatient services, pharmacy dispensing claims, and mortality information are included in the database. Anonymized data are publicly available from the National Health Insurance Sharing Service and can be accessed at https://nhiss.nhis.or.kr/bd/ab/bdaba000eng.do.

This study was approved by the institutional review board of Chonnam National University Hospital, Korea (CNUH-EXP-2021-289) informed consent was waived and was performed in accordance with the ethical standards of the committee responsible for human experimentation and the Helsinki Declaration of 1975, as revised in 2013.

Subjects

Initially, 2746079 patients with diabetes who underwent health checkups from 2009 to 2012 were identified. Of these, we included patients who had undergone a repeat health checkup after 2 years. The index date was the date of the last health check-up. We excluded those aged <20 years because ESRD development is rare in this subpopulation. We also excluded subjects with malignancy or a history of ESRD before the index date and those with missing health examination data. Finally, 2563870 subjects with diabetes were included in the study. Systolic blood pressure (SBP) values from <100 to ≥ 160 mmHg were divided into 5 groups at 20 mmHg intervals, and DBP values from <70 to $\geq 110 \mathrm{mmHg}$ were divided into 6 groups at 10 mmHg intervals. The detailed flowchart of the selection of study subjects is presented in Figure S1. The participants were followed up until one of the following occurred: a new diagnosis of ESRD, death, loss of health insurance qualification, or end of the study (December 31, 2019).

Definitions

Patients with diabetes were defined as follows: (1) having at least one claim per year for a prescription of antidiabetic

Table 1. Baseline Characteristics of Subjects According to the Incident ESRD

Variable	None ESRD $(\mathrm{N}=2537 \text { 790) }$	ESRD $(\mathrm{N}=26580)$	P value	ASD
Age	57.36 ± 12.37	60.97 ± 11.15	<0.0001	0.306
Age group			<0.0001	
20s	35846 (1.41)	192 (0.72)		0.0951
30s	159595 (6.29)	671 (2.52)		0.2609
40s	461749 (18.2)	3239 (12.19)		0.2376
50s	732459 (28.87)	6828 (25.69)		0.101
60s	673610 (26.55)	8892 (33.45)		0.2135
70s	474031 (18.68)	6758 (25.43)		0.231
Sex (male), \%	1520300 (59.92)	17235 (64.84)	<0.0001	0.1438
Smoking			<0.0001	
Never	1411859 (55.64)	14643 (55.09)		0.0156
Ex	466818 (18.4)	5462 (20.55)		0.0768
Current	658613 (25.96)	6475 (24.36)		0.0522
Drinking			<0.0001	
None	1449838 (57.14)	18633 (70.1)		0.3845
Moderate	833634 (32.86)	6273 (23.6)		0.2925
Heavy*	253818 (10)	1674 (6.3)		0.1917
Income-lowt	531120 (20.93)	6377 (23.99)	<0.0001	0.1038
PA-regular	521065 (20.54)	5186 (19.51)	<0.0001	0.0364
Systolic BP	128.97 ± 15.78	134.6 ± 18.97	<0.0001	0.323
Diastolic BP	79.05 ± 10.27	79.57 ± 11.58	<0.0001	0.0475
Hypertension	1171500 (46.17)	21056 (79.22)	<0.0001	1.0284
Dyslipidemia	1053471 (41.52)	15799 (59.44)	<0.0001	0.5152
Antihypertension medication number			<0.0001	
0	1365790 (53.83)	5524 (20.78)		1.0284
1	665477 (26.23)	7613 (28.64)		0.0764
2	384634 (15.16)	7929 (29.83)		0.5047
3	104963 (4.14)	4115 (15.48)		0.5492
4	14855 (0.59)	1161 (4.37)		0.3463
≥ 5	1571 (0.06)	238 (0.89)		0.171
Antihypertension medication type			<0.0001	
Alpha blocker	28404 (1.12)	1255 (4.72)	<0.0001	0.3041
ACE inhibitor	141640 (5.58)	4076 (15.33)	<0.0001	0.4565
ARB	802640 (31.63)	17089 (64.29)	<0.0001	0.9783
Beta blocker	282195 (11.12)	7201 (27.09)	<0.0001	0.5867
CCB	529698 (20.88)	10952 (41.2)	<0.0001	0.6367
Diuretics	25177 (0.99)	656 (2.47)	<0.0001	0.1608
Others	7266 (0.29)	453 (1.7)	<0.0001	0.2014
WC, cm	85.43 ± 8.89	86.05 ± 9.2	<0.0001	0.1113
BMI, kg/m ${ }^{2}$	25.07 ± 3.67	24.68 ± 3.51	<0.0001	0.0684
BMI_5 level			<0.0001	
<18.5	40416 (1.59)	589 (2.22)		0.0652
18.5-23	630023 (24.83)	7926 (29.82)		0.1586

(Continued)

Table 1. Continued

Variable	None ESRD $(\mathrm{N}=2537790)$	ESRD $(\mathrm{N}=26580)$	P value	ASD
$23-25$	$628821(24.78)$	$6562(24.69)$		0.0029
$25-30$	$1041399(41.04)$	$9616(36.18)$		0.1413
≥ 30	$196631(7.75)$	$1887(7.1)$		0.0351
CKD	$285389(11.25)$	$15938(59.96)$	<0.0001	1.6709
MI	$29576(1.17)$	$732(2.75)$	<0.0001	0.1615
Stroke	$124822(4.92)$	$2872(10.81)$	<0.0001	0.3113
CHF	$50156(1.98)$	$1537(5.78)$	<0.0001	0.2796
Insulin user	$208309(8.21)$	$19181(72.16)$	<0.0001	1.138
Diabetes $\geq 5 \mathrm{y}$	$765905(30.19)$	$7562(28.45)$	<0.0001	0.9251
OHA ≥ 3	$361482(14.25)$	161.61 ± 78.82	<0.0001	0.3519
Glucose, $\mathrm{mg} / \mathrm{dL}$	144.6 ± 46.46	196.52 ± 56.31	<0.0001	0.2629
TC, mg/dL	196.85 ± 46.04	49.62 ± 31.45	0.2556	0.0063
HDL, mg/dL	52.27 ± 29.32			0.087
LDL, mg/dL	112.69 ± 84.44	112.44 ± 107.6	0.6384	0.0025
Creatinine, mg/dL	1.02 ± 1.07	1.7 ± 2.06	<0.0001	0.4141
eGFR (CKD- EPI)	55.09 ± 26.95	<0.0001	1.1623	

eGFR $<60 \mathrm{~mL} /\left(\min \cdot 1.73 \mathrm{~m}^{2}\right)$ using CKD-EPI formula. ACE indicates angio-tensin-converting enzyme; ARB, angiotensin receptor blocker; ASD, absolute standardized difference; BMI, body mass index; BP, blood pressure; CCB, calcium channel blocker; CHF, congestive heart failure; CKD, chronic kidney disease, CKD-EPI, CKD Epidemiology Collaboration; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MI, myocardial infarction; OHA, oral hypoglycemic agents; PA, physical activity; TC, total cholesterol; and WC, waist circumference.
*Alcohol consumption $\geq 30 \mathrm{~g} / \mathrm{d}$.
tLow income 25\%.
medication under the International Statistical Classification of Diseases, Tenth Revision (ICD-10) codes E11 to E14 from the insurance claims data, or (2) having a fasting plasma glucose $\geq 126 \mathrm{mg} / \mathrm{dL}$ in the health examination without a prescription for antidiabetic medication. ${ }^{7}$ Antidiabetic medications included sulfonylureas, metformin, dipeptidyl-peptidase 4 inhibitors, thiazolidinediones, alpha-glucosidase inhibitors, meglitinides, and insulins. Comorbidities were defined using ICD-10 diagnosis codes with health care usage and medication or health examination results, as in the previous studies. ${ }^{8-10}$ Hypertension was defined as a previous diagnosis of hypertension according to the ICD-10, Clinical Modification codes (I10-I13, I15) or a recorded systolic BP (SBP) ≥ 140 mmHg or diastolic BP (DBP) $\geq 90 \mathrm{~mm} \mathrm{Hg}$. BP was measured by trained clinicians at least twice using mercury or automatic sphygmomanometer in a sitting position, following a minimum of 5 min of rest in the appropriate position, after obtaining the anthropometric measurements. CKD was defined as an estimated glomerular filtration rate $<60 \mathrm{~mL} /\left(\mathrm{min} \cdot 1.73 \mathrm{~m}^{2}\right)$ and was calculated using CKD Epidemiology Collaboration equation. ${ }^{11}$ Dyslipidemia was defined as a presence of ICD10, Clinical Modification code E78, and history of lipid-lowering drug use or a total serum cholesterol concentration of $\geq 240 \mathrm{mg} / \mathrm{dL}$ in the health examination data. Congestive heart

Table 2. Baseline Characteristics of Study Population by SBP Group

Variables	$\begin{aligned} & S B P<100 \\ & (N=31874) \end{aligned}$	$\begin{aligned} & S B P<120 \\ & (N=578750) \end{aligned}$	$\begin{aligned} & S B P<140 \\ & (N=1367969) \end{aligned}$	$\begin{aligned} & S B P<160 \\ & (N=460020) \end{aligned}$	$\begin{aligned} & S B P \geq 160 \\ & (N=125257) \end{aligned}$	P value
Age	55.97 ± 12.11	55.67 ± 12.29	57.02 ± 12.39	59.89 ± 11.9	60.79 ± 12.18	<0.0001
Age group						<0.0001
20s	720 (2.26)	11791 (2.04)	19676 (1.44)	3096 (0.67)	755 (0.6)	
30s	1580 (4.96)	39782 (6.87)	93353 (6.82)	20239 (4.4)	5312 (4.24)	
40s	6593 (20.68)	122190 (21.11)	254442 (18.6)	64858 (14.1)	16905 (13.5)	
50s	10673 (33.48)	179787 (31.06)	396402 (28.98)	121944 (26.51)	30481 (24.33)	
60s	7628 (23.93)	139684 (24.14)	358340 (26.2)	139593 (30.34)	37257 (29.74)	
70s	4680 (14.68)	85516 (14.78)	245756 (17.97)	110290 (23.98)	34547 (27.58)	
Sex (male), \%	14906 (46.77)	330007 (57.02)	846317 (61.87)	273631 (59.48)	72674 (58.02)	<0.0001
Smoking						<0.0001
Never	19276 (60.48)	323613 (55.92)	743234 (54.33)	265416 (57.7)	74963 (59.85)	
Ex	4583 (14.38)	97766 (16.89)	259514 (18.97)	88812 (19.31)	21605 (17.25)	
Current	8015 (25.15)	157371 (27.19)	365221 (26.7)	105792 (23)	28689 (22.9)	
Drinking						<0.0001
None	22394 (70.26)	353579 (61.09)	765066 (55.93)	257799 (56.04)	69633 (55.59)	
Moderate	8031 (25.2)	181490 (31.36)	463593 (33.89)	147521 (32.07)	39272 (31.35)	
Heavy*	1449 (4.55)	43681 (7.55)	139310 (10.18)	54700 (11.89)	16352 (13.05)	
Income-lowt	7289 (22.87)	121976 (21.08)	281558 (20.58)	98192 (21.35)	28482 (22.74)	<0.0001
PA-regular	6236 (19.56)	117852 (20.36)	284461 (20.79)	94011 (20.44)	23691 (18.91)	<0.0001
Systolic BP	93.02 ± 4.34	111.06 ± 5.51	128.27 ± 6	145.79 ± 5.44	167.93 ± 10.46	<0.0001
Diastolic BP	60.52 ± 5.98	70.16 ± 6.72	78.95 ± 6.96	87.23 ± 8.9	96.09 ± 11.65	<0.0001
Antihypertensive medication number						<0.0001
0	22919 (71.91)	383782 (66.31)	754724 (55.17)	171384 (37.26)	38505 (30.74)	
1	5361 (16.82)	118185 (20.42)	354838 (25.94)	153821 (33.44)	40885 (32.64)	
2	2648 (8.31)	59632 (10.3)	198798 (14.53)	100088 (21.76)	31397 (25.07)	
3	824 (2.59)	14920 (2.58)	51707 (3.78)	29675 (6.45)	11952 (9.54)	
4	110 (0.35)	2014 (0.35)	7146 (0.52)	4535 (0.99)	2211 (1.77)	
≥ 5	12 (0.04)	217 (0.04)	756 (0.05)	517 (0.11)	307 (0.24)	
Antihypertensive medication type						<0.0001
Alpha blocker	337 (1.06)	5235 (0.9)	14981 (1.1)	6937 (1.51)	2169 (1.73)	
ACE inhibitor	1431 (4.49)	25423 (4.39)	74321 (5.43)	33712 (7.33)	10829 (8.65)	
ARB	6423 (20.15)	134915 (23.31)	417190 (30.5)	198770 (43.21)	62431 (49.84)	
Beta blocker	2387 (7.49)	45042 (7.78)	142440 (10.41)	73433 (15.96)	26094 (20.83)	
CCB	2776 (8.71)	75336 (13.02)	274430 (20.06)	142708 (31.02)	45400 (36.25)	
Diuretics	228 (0.72)	4338 (0.75)	13183 (0.96)	6169 (1.34)	1915 (1.53)	
Others	49 (0.15)	1074 (0.19)	3417 (0.25)	2065 (0.45)	1114 (0.89)	
MI	620 (1.95)	7405 (1.28)	15187 (1.11)	5458 (1.19)	1638 (1.31)	
Stroke	1638 (5.14)	25283 (4.37)	64995 (4.75)	27488 (5.98)	8290 (6.62)	
CHF	1047 (3.28)	12136 (2.1)	25614 (1.87)	9843 (2.14)	3053 (2.44)	
WC, cm	79.67 ± 9.83	83.24 ± 8.71	85.72 ± 8.7	87.21 ± 8.89	87.35 ± 8.99	<0.0001
BMI, $\mathrm{kg} / \mathrm{m}^{2}$	22.87 ± 3.19	24.27 ± 3.24	25.18 ± 3.34	25.71 ± 4.75	25.75 ± 3.74	<0.0001
BMI 5 level						<0.0001
<18.5	2253 (7.07)	15156 (2.62)	17473 (1.28)	4563 (0.99)	1560 (1.25)	
18.5-23	14872 (46.66)	186928 (32.3)	320748 (23.45)	90009 (19.57)	25392 (20.27)	
23-25	7224 (22.66)	150668 (26.03)	342028 (25)	107099 (23.28)	28364 (22.64)	
25-30	6820 (21.4)	198803 (34.35)	581084 (42.48)	209390 (45.52)	54918 (43.84)	
≥ 30	705 (2.21)	27195 (4.7)	106636 (7.8)	48959 (10.64)	15023 (11.99)	

(Continued)

Table 2. Continued

Variables	$\begin{aligned} & S B P<100 \\ & (N=31874) \end{aligned}$	$\begin{aligned} & S B P<120 \\ & (N=578750) \end{aligned}$	$\begin{aligned} & S B P<140 \\ & (N=1367969) \end{aligned}$	$\begin{aligned} & S B P<160 \\ & (N=460020) \end{aligned}$	$\begin{aligned} & S B P \geq 160 \\ & (N=125257) \end{aligned}$	P value
Hypertension	8955 (28.09)	194968 (33.69)	613245 (44.83)	288636 (62.74)	86752 (69.26)	<0.0001
Dyslipidemia	12492 (39.19)	231494 (40)	568366 (41.55)	202460 (44.01)	54458 (43.48)	<0.0001
CKD	4155 (13.04)	60544 (10.46)	153756 (11.24)	63087 (13.71)	19785 (15.8)	<0.0001
Insulin user	4594 (14.41)	55648 (9.62)	109925 (8.04)	38093 (8.28)	10729 (8.57)	<0.0001
Diabetes $\geq 5 \mathrm{y}$	11411 (35.8)	179340 (30.99)	409349 (29.92)	145997 (31.74)	38989 (31.13)	<0.0001
$\mathrm{OHA} \geq 3$	5696 (17.87)	90018 (15.55)	193078 (14.11)	63903 (13.89)	16349 (13.05)	<0.0001
Glucose, mg/dL	145.14 ± 55.87	144.46 ± 48.66	144.48 ± 46.19	144.87 ± 45.48	149.16 ± 49.42	<0.0001
TC, mg/dL	185.34 ± 44.28	192.53 ± 44.12	197 ± 46.26	200.31 ± 46.76	205.31 ± 49.81	<0.0001
HDL, mg/dL	52.32 ± 26.53	52.04 ± 27.63	52.06 ± 28.53	52.63 ± 33.02	53.6 ± 31.86	<0.0001
LDL, mg/dL	108.71 ± 93.28	111.52 ± 78.56	112.58 ± 82.29	113.76 ± 90.12	116.34 ± 111.09	<0.0001
Creatinine, mg/dL	1.01 ± 1.01	1.01 ± 1.03	1.04 ± 1.12	1.02 ± 1.07	1.03 ± 1.11	<0.0001
eGFR (CKD-EPI)	82.99 ± 22.02	83.74 ± 20.36	82.78 ± 20.43	80.73 ± 20.3	79.63 ± 20.85	<0.0001

eGFR $<60 \mathrm{~mL} /\left(\right.$ min $\left.\cdot 1.73 \mathrm{~m}^{2}\right)$ using CKD-EPI formula. ACE indicates angiotensin-converting enzyme; ARB, angiotensin receptor blocker; BMI, body mass index; BP, blood pressure; CCB, calcium channel blocker; CHF, congestive heart failure; CKD, chronic kidney disease, CKD-EPI, CKD Epidemiology Collaboration; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MI, myocardial infarction; OHA, oral hypoglycemic agents; PA, physical activity; SBP, systolic BP; TC, total cholesterol; and WC, waist circumference.
*Alcohol consumption $\geq 30 \mathrm{~g} / \mathrm{d}$.
tLow income 25\%.
failure was defined as ICD-10, Clinical Modification code I50 diagnosed at least once in the year based on the index date, regardless of outpatient visit or inpatient hospitalization. A low income was defined as the lowest 20% of socioeconomic status. Body mass index was calculated as the weight (in kilograms) divided by the height (in meters squared). Subjects were categorized into 5 groups according to body mass index: underweight ($<18.5 \mathrm{~kg} / \mathrm{m}^{2}$), normal weight ($18.5-22.9 \mathrm{~kg} /$ m^{2}), overweight ($23-24.9 \mathrm{~kg} / \mathrm{m}^{2}$), obese stage I (25-29.9 $\left.\mathrm{kg} / \mathrm{m}^{2}\right)$, and obese stage II ($\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$), according to World Health Organization recommendations for Asians. Smoking history was categorized as never, ex, or current smoker. Alcohol consumption was categorized into none, moderate, or heavy drinkers ($\geq 30 \mathrm{~g}$ of alcohol per day). Regular exercise was defined as moderate physical activity for at least 20 min per day over >5 days during the last week.

Outcomes

The end point of the study was incident ESRD, which was defined using a combination of $I C D-10$ codes ($\mathrm{N} 18-19$, Z49, Z94.0, and Z99.2) and a special code (V code) that was assigned in the initiation of renal replacement therapy (hemodialysis, V001; peritoneal dialysis, V003) or kidney transplantation (V005) during hospitalization. All medical expenses for dialysis are reimbursed using the Korean Health Insurance Review and Assessment Service database. These patients are also registered as special medical aid beneficiaries. Therefore, we were able to identify every patient with ESRD in the entire South Korean population and were able to analyze the data for all patients with ESRD who underwent dialysis. Codes for treatment or medical expense claims included V005 for kidney transplantation, V001 for hemodialysis, and V003 for peritoneal dialysis. We excluded individuals without previous CKD who had a transplant or dialysis code on the same date as an acute renal failure code. Subjects on continuous renal replacement therapy or acute peritoneal dialysis were also excluded.

Statistical Analyses

Data are presented as the mean \pm SD for continuous variables and numbers with proportions for categorical variables. Nonnormally distributed variables are presented as geometric means ($95 \% \mathrm{CI}$). Intergroup differences were tested using a χ^{2} test or ANOVA, as appropriate. The incidence rates of ESRD are presented per 1000 person-years. The absolute standardized difference, which is unaffected by the population number (unlike P), was calculated since the number of participants in the study was large. Multivariable Cox proportional hazard regression analysis was used to estimate the hazard ratios (HRs) and 95% Cls of the risk of ESRD associated with BP along with adjustment for age, sex, smoking, alcohol consumption, regular exercise, low-income status, use of insulin, number of oral hypoglycemic agents, duration of diabetes, previous history of hypertension and dyslipidemia, estimated glomerular filtration rate, antihypertension medication numbers and type, myocardial infarction, stroke, and congestive heart failure. In addition, subgroup analyses were performed in patients with diabetes according to sex, antihypertensive medication, and history of CKD. All data analyses were conducted using SAS software (version 9.4; SAS Institute, Cary, NC), and P<0.05 was considered statistically significant.

RESULTS

Baseline Characteristics

Table 1 shows the baseline characteristics of the participants with respect to the development of ESRD. Of the total population, 26580 (1.04\%) patients (median follow-up of 7.15 years) developed ESRD. The mean age of those who developed ESRD was higher than that of those who did not (60.97 ± 11.15 years versus 57.36 ± 12.37 years, respectively; $\mathrm{p}<0.001$). The proportion of men (64.84\%) and low-income

Table 3. Baseline Characteristics of Study Population by DBP Group

Variables	$\begin{aligned} & \mathrm{DBP}<70 \\ & (\mathrm{~N}=322176) \end{aligned}$	$\begin{aligned} & \mathrm{DBP}<80 \\ & (\mathrm{~N}=806626) \end{aligned}$	$\begin{aligned} & \mathrm{DBP}<90 \\ & (\mathrm{~N}=1006786) \end{aligned}$	$\begin{aligned} & \mathrm{DBP}<100 \\ & (\mathrm{~N}=305 \text { 817) } \end{aligned}$	$\begin{aligned} & \mathrm{DBP}<110 \\ & (\mathrm{~N}=97580) \end{aligned}$	$\begin{aligned} & D B P \geq 110 \\ & (N=24885) \end{aligned}$	P value
Age	59.4 ± 12.51	57.63 ± 12.4	56.72 ± 12.35	57.75 ± 11.89	55.69 ± 12.25	53.82 ± 12.54	<0.0001
Age group							<0.0001
20s	5268 (1.64)	12914 (1.6)	14266 (1.42)	2268 (0.74)	1021 (1.05)	301 (1.21)	
30s	14595 (4.53)	48759 (6.04)	70373 (6.99)	16405 (5.36)	7517 (7.7)	2617 (10.52)	
40s	47172 (14.64)	139359 (17.28)	193468 (19.22)	55906 (18.28)	22212 (22.76)	6871 (27.61)	
50s	83587 (25.94)	228564 (28.34)	298004 (29.6)	92528 (30.26)	29559 (30.29)	7045 (28.31)	
60s	94412 (29.3)	222773 (27.62)	256743 (25.5)	81806 (26.75)	22086 (22.63)	4682 (18.81)	
70 s	77142 (23.94)	154257 (19.12)	173932 (17.28)	56904 (18.61)	15185 (15.56)	3369 (13.54)	
Sex (male), \%	162242 (50.36)	462374 (57.32)	635594 (63.13)	193248 (63.19)	66465 (68.11)	17612 (70.77)	<0.0001
Smoking							<0.0001
Never	197148 (61.19)	461530 (57.22)	540050 (53.64)	166649 (54.49)	49197 (50.42)	11928 (47.93)	
Ex	52996 (16.45)	142794 (17.7)	191572 (19.03)	60714 (19.85)	19522 (20.01)	4682 (18.81)	
Current	72032 (22.36)	202302 (25.08)	275164 (27.33)	78454 (25.65)	28861 (29.58)	8275 (33.25)	
Drinking							<0.0001
None	220904 (68.57)	490018 (60.75)	544630 (54.1)	158429 (51.81)	44231 (45.33)	10259 (41.23)	
Moderate	83958 (26.06)	249851 (30.97)	351713 (34.93)	106654 (34.88)	37630 (38.56)	10101 (40.59)	
Heavy*	17314 (5.37)	66757 (8.28)	110443 (10.97)	40734 (13.32)	15719 (16.11)	4525 (18.18)	
Income-lowt	67333 (20.9)	167972 (20.82)	209306 (20.79)	65687 (21.48)	21541 (22.08)	5658 (22.74)	<0.0001
PA-regular	69182 (21.47)	168688 (20.91)	205866 (20.45)	60051 (19.64)	18111 (18.56)	4353 (17.49)	<0.0001
Systolic BP	113.61 ± 12.72	122.56 ± 11.73	131.14 ± 10.83	144.09 ± 12.66	154.42 ± 13.93	168.23 ± 17.94	<0.0001
Diastolic BP	63.25 ± 4.14	73.09 ± 3.29	82.13 ± 2.99	91.46 ± 2.49	100.97 ± 2.12	114.51 ± 7.83	<0.0001
Antihypertensive medication number							<0.0001
0	189471 (58.81)	463610 (57.48)	539391 (53.58)	127827 (41.8)	40948 (41.96)	10067 (40.45)	
1	76972 (23.89)	200510 (24.86)	264476 (26.27)	94973 (31.06)	29015 (29.73)	7144 (28.71)	
2	42282 (13.12)	109606 (13.59)	154405 (15.34)	61417 (20.08)	19645 (20.13)	5208 (20.93)	
3	11509 (3.57)	28467 (3.53)	41857 (4.16)	18479 (6.04)	6729 (6.9)	2037 (8.19)	
4	1739 (0.54)	4012 (0.5)	5983 (0.59)	2786 (0.91)	1121 (1.15)	375 (1.51)	
≥ 5	203 (0.06)	421 (0.05)	674 (0.06)	335 (0.11)	122 (0.12)	54 (0.21)	
Antihypertensive medication type							<0.0001
Alpha blocker	4475 (1.39)	9053 (1.12)	10855 (1.08)	3824 (1.25)	1152 (1.18)	300 (1.21)	
ACE inhibitor	17419 (5.41)	42476 (5.27)	56767 (5.64)	20991 (6.86)	6440 (6.6)	1623 (6.52)	
ARB	92894 (28.83)	234509 (29.07)	317536 (31.54)	123052 (40.24)	40558 (41.56)	11180 (44.93)	
Beta blocker	32581 (10.11)	79156 (9.81)	111740 (11.1)	46005 (15.04)	15530 (15.92)	4384 (17.62)	<0.0001
CCB	52709 (16.36)	148716 (18.44)	216463 (21.5)	87149 (28.5)	28176 (28.87)	7437 (29.89)	<0.0001
Diuretics	3189 (0.99)	7517 (0.93)	9973 (0.99)	3705 (1.21)	1139 (1.17)	310 (1.25)	<0.0001
Others	781 (0.24)	1876 (0.23)	2872 (0.29)	1373 (0.45)	604 (0.62)	213 (0.86)	<0.0001
MI	5179 (1.61)	9815 (1.22)	10764 (1.07)	3347 (1.09)	947 (0.97)	256 (1.03)	<0.0001
Stroke	19107 (5.93)	39728 (4.93)	47265 (4.69)	15908 (5.2)	4562 (4.68)	1124 (4.52)	<0.0001
CHF	9021 (2.8)	16423 (2.04)	18168 (1.8)	5887 (1.93)	1720 (1.76)	474 (1.9)	<0.0001
BMI, $\mathrm{kg} / \mathrm{m}^{2}$	24.02 ± 3.19	24.74 ± 3.27	25.31 ± 3.39	25.8 ± 5.27	26.12 ± 3.77	26.54 ± 4.1	<0.0001
WC, cm	82.89 ± 8.93	84.57 ± 8.67	86.02 ± 8.75	87.34 ± 8.78	88.08 ± 9.39	88.95 ± 9.58	<0.0001
BMI 5 level							<0.0001
<18.5	9527 (2.96)	14372 (1.78)	12660 (1.26)	3098 (1.01)	1080 (1.11)	268 (1.08)	
18.5-23	112489 (34.92)	221658 (27.48)	225458 (22.39)	57567 (18.82)	16786 (17.2)	3991 (16.04)	
23-25	84543 (26.24)	209407 (25.96)	246636 (24.5)	69138 (22.61)	20853 (21.37)	4806 (19.31)	
25-30	102855 (31.93)	312715 (38.77)	436825 (43.39)	141872 (46.39)	45280 (46.4)	11468 (46.08)	
≥ 30	12762 (3.96)	48474 (6.01)	85207 (8.46)	34142 (11.16)	13581 (13.92)	4352 (17.49)	

(Continued)

Table 3. Continued

Variables	$\begin{aligned} & \mathrm{DBP}<70 \\ & (\mathrm{~N}=322 \text { 176) } \end{aligned}$	$\begin{aligned} & \mathrm{DBP}<80 \\ & (\mathrm{~N}=806626) \end{aligned}$	$\begin{aligned} & \mathrm{DBP}<90 \\ & (\mathrm{~N}=1006786) \end{aligned}$	$\begin{aligned} & \mathrm{DBP}<100 \\ & (\mathrm{~N}=305817) \end{aligned}$	$\begin{aligned} & \mathrm{DBP}<110 \\ & (\mathrm{~N}=97580) \end{aligned}$	$\begin{aligned} & \mathrm{DBP} \geq 110 \\ & (\mathrm{~N}=24885) \end{aligned}$	P value
Hypertension	132705 (41.19)	343016 (42.52)	467395 (46.42)	177990 (58.2)	56632 (58.04)	14818 (59.55)	<0.0001
Dyslipidemia	138402 (42.96)	335198 (41.56)	413789 (41.1)	131187 (42.9)	40442 (41.44)	10252 (41.2)	<0.0001
CKD	47234 (14.66)	94545 (11.72)	110717 (11)	36021 (11.78)	10316 (10.57)	2494 (10.02)	<0.0001
Insulin user	39978 (12.41)	74080 (9.18)	75899 (7.54)	21702 (7.1)	5947 (6.09)	1383 (5.56)	<0.0001
Diabetes $\geq 5 \mathrm{y}$	127744 (39.65)	264586 (32.8)	284507 (28.26)	82214 (26.88)	21575 (22.11)	4460 (17.92)	<0.0001
OHA ≥ 3	56993 (17.69)	124848 (15.48)	136390 (13.55)	38481 (12.58)	10244 (10.5)	2088 (8.39)	<0.0001
Glucose, mg/dL	140.07 ± 47.47	143.44 ± 46.54	145.76 ± 46.71	147.22 ± 46.63	150.99 ± 48.55	155.47 ± 51.65	<0.0001
TC, mg/dL	187.12 ± 43.74	194.07 ± 45.61	198.91 ± 45.74	202.91 ± 47.61	207.55 ± 48.65	212.75 ± 52	<0.0001
HDL, mg/dL	51.39 ± 21.81	52.1 ± 29.39	52.25 ± 28.83	52.97 ± 31.84	53.34 ± 30.92	54.07 ± 68.28	<0.0001
LDL, mg/dL	108.88 ± 73.44	111.82 ± 75.9	113.51 ± 90.67	114.75 ± 93.16	115.84 ± 89.58	118.81 ± 108.03	<0.0001
Creatinine, mg/dL	1.02 ± 1.12	1.02 ± 1.06	1.04 ± 1.09	1.02 ± 1.14	1.03 ± 1.1	1.02 ± 0.85	<0.0001
eGFR (CKD-EPI)	80.79 ± 21.43	82.4 ± 20.37	82.94 ± 20.3	82.39 ± 20.22	83.66 ± 20.08	84.62 ± 20.27	<0.0001

eGFR $<60 \mathrm{~mL} /\left(\min \cdot 1.73 \mathrm{~m}^{2}\right)$ using CKD-EPI formula. ACE indicates angiotensin-converting enzyme; ARB, angiotensin receptor blocker; BMI, body mass index; BP, blood pressure; CCB, calcium channel blocker; CHF, congestive heart failure; CKD, chronic kidney disease, CKD-EPI, CKD Epidemiology Collaboration; DBP, diastolic BP; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MI, myocardial infarction; OHA, oral hypoglycemic agents; PA, physical activity; TC, total cholesterol; and WC, waist circumference.
*Alcohol consumption $\geq 30 \mathrm{~g} / \mathrm{d}$.
tLow income 25\%.
patients (23.99\% versus 20.93\%) was higher in the incident ESRD group than in the non-ESRD group. SBP (134.6 ± 18.97 versus 128.97 ± 15.78), DBP (79.57 ± 11.58 versus 79.05 ± 10.27), antihypertension medication numbers and waist circumference (86.05 ± 9.2 versus 85.43 ± 8.89) was higher, whereas body mass index (24.68 ± 3.51 versus 25.07 ± 3.67) was lower in the incident ESRD group compared with the non-ESRD group. Comorbidities such as hypertension, dyslipidemia, myocardial infarction, stroke, congestive heart failure, and CKD were more prevalent in the ESRD group than in the non-ESRD group. The ESRD group showed a higher frequency of insulin use, higher frequency of patients with diabetes duration >5 years, higher number of patients taking more than 3 oral hypoglycemic agents, greater number of patients with higher fasting glucose levels but showed lower levels of high-density lipoprotein cholesterol and estimated glomerular filtration rate than that of the nonESRD group (Table 1).

The baseline characteristics of all participants according to SBP (Table 2) and DBP (Table 3) were evaluated. The mean SBP increased with increasing age of patients, whereas patients with $D B P \geq 110 \mathrm{~mm} \mathrm{Hg}$ were the youngest. Of all participants, the number of patients with SBP $<100 \mathrm{mmHg}, 120 \mathrm{mmHg}, 140 \mathrm{mmHg}, 160 \mathrm{mmHg}$, and $\mathrm{SBP} \geq 160 \mathrm{mmHg}$ were 31874 (1.24\%), 578750 (22.57\%), 1367969 (23.36\%), 460020 (17.94\%), and 125257 (4.89\%), respectively. The number of patients with DBP less than $70 \mathrm{mmHg}, 80 \mathrm{mmHg}, 90 \mathrm{~mm} \mathrm{Hg}$, $100 \mathrm{mmHg}, 110 \mathrm{mmHg}$, and DBP $\geq 110 \mathrm{mmHg}$ were 322176 (12.57\%), 806626 (31.46\%), 1006786 (39.27\%), 305817 (11.93\%), 97580 (3.81\%), and 24885 (0.97\%), respectively.

Effects of Systolic BP or Diastolic BP on ESRD According to Age

The incidence rate for ESRD increased according to age and BP in both SBP and DBP categories (interaction P was <0.0001 for age and SBP, and 0.0022 for age and DBP). $\mathrm{SBP}<100 \mathrm{mmHg}$ was taken as the reference. In patients aged under 40 years old, the multivariableadjusted HR ($95 \% \mathrm{Cl}$) for ESRD was 2.184 (1.2073.950) for $\mathrm{SBP} \geq 160 \mathrm{mmHg}$ (Table 4, Figure [A]), whereas for DBP $\geq 110 \mathrm{mmHg}$ it was 4.518 (3.0626.666; Table 5, Figure [B]). Among patients aged over 70 years old, the HR ($95 \% \mathrm{Cl}$) for SBP $\geq 160 \mathrm{mmHg}$ was 1.839 (1.039-3.254) and that of DBP $\geq 110 \mathrm{~mm} \mathrm{Hg}$ was 2.338 (1.619-3.377). The composite HR for ESRD attenuated in DBP groups with increasing age (Table 5).

Subgroup Analyses

In subgroup analysis according to sex, male patients under 40 years old with $S B P \geq 160 \mathrm{mmHg}$ showed a higher HR (HR, 3.368 [$95 \% \mathrm{Cl}, 1.226-9.248]$) compared with females (HR, 2.018 [$95 \% \mathrm{Cl}, 0.677-6.013]$) of the same age, but there was no significant difference with respect to sex among patients older than 40 years (Table S1). DBP also showed a similar pattern to SBP; compared to DBP $<70 \mathrm{~mm} \mathrm{Hg}$, the HR ($95 \% \mathrm{Cl}$) for male patients under 40 years old with DBP $\geq 110 \mathrm{mmHg}$ was 6.023 (3.826-9.484) and that of female patients was 3.168 (0.964-10.409; Table S2).

In subgroup analysis according to the use of antihypertensive medication, the nonantihypertensive medication group showed a higher HR (HR, $3.120[95 \% \mathrm{Cl}, 1.506-$ 6.466]) for ESRD compared to the antihypertensive

Table 4. Multivariate Cox Analysis for Incident ESRD and Competing Risk of Death by SBP According to Age

Age group	SBP group	Total (n)	ESRD (n)	Duration	Incidence rate	Adjusted HR (95\% CI)		Subdistribution HR (95\% CI)	
						Composite	Subgroup	Composite	Subgroup
Age <40 y	<100	2300	13	15850.22	0.82	1 (Ref.)	1 (Ref.)	1 (Ref.)	1 (Ref.)
	<120	51573	197	360747.62	0.55	$\begin{aligned} & 0.772 \\ & (0.441-1.354) \end{aligned}$	$\begin{aligned} & 0.772 \\ & (0.441-1.354) \end{aligned}$	$\begin{aligned} & 0.783 \\ & (0.444-1.381) \end{aligned}$	$\begin{aligned} & 0.783 \\ & (0.444-1.382) \end{aligned}$
	<140	113029	433	790675.65	0.55	$\begin{aligned} & 0.811 \\ & (0.467-1.409) \end{aligned}$	$\begin{aligned} & 0.811 \\ & (0.467-1.409) \end{aligned}$	$\begin{aligned} & 0.814 \\ & (0.465-1.423) \end{aligned}$	$\begin{aligned} & 0.814 \\ & (0.466-1.423) \end{aligned}$
	<160	23335	150	162527.52	0.92	$\begin{aligned} & 1.413 \\ & (0.801-2.492) \end{aligned}$	$\begin{aligned} & 1.413 \\ & (0.801-2.492) \end{aligned}$	$\begin{aligned} & 1.392 \\ & (0.785-2.471) \end{aligned}$	$\begin{aligned} & 1.393 \\ & (0.785-2.472) \end{aligned}$
	≥ 160	6067	70	41920.36	1.67	$\begin{aligned} & 2.184 \\ & (1.207-3.950) \end{aligned}$	$\begin{aligned} & 2.184 \\ & (1.207-3.950) \end{aligned}$	$\begin{aligned} & 2.227 \\ & (1.212-4.092) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.227 \\ & (1.212-4.092) \\ & \hline \end{aligned}$
$\begin{aligned} & \text { Age 40-49 } \\ & \text { y } \end{aligned}$	<100	6593	71	45516.75	1.56	$\begin{aligned} & 1.268 \\ & (0.701-2.296) \end{aligned}$	1 (Ref.)	$\begin{aligned} & 1.353 \\ & (0.739-2.474) \end{aligned}$	1 (Ref.)
	<120	122190	653	858351.69	0.76	$\begin{aligned} & 0.879 \\ & (0.507-1.526) \end{aligned}$	$\begin{aligned} & 0.693 \\ & (0.543-0.886) \end{aligned}$	$\begin{aligned} & 0.941 \\ & (0.539-1.645) \end{aligned}$	$\begin{aligned} & 0.696 \\ & (0.539-0.899) \end{aligned}$
	<140	254442	1533	1780773.99	0.86	$\begin{aligned} & 1.044 \\ & (0.603-1.806) \end{aligned}$	$\begin{aligned} & 0.823 \\ & (0.648-1.044) \end{aligned}$	$\begin{aligned} & 1.118 \\ & (0.642-1.949) \end{aligned}$	$\begin{aligned} & 0.827 \\ & (0.645-1.061) \end{aligned}$
	<160	64858	675	450571.58	1.50	$\begin{aligned} & 1.650 \\ & (0.951-2.864) \end{aligned}$	$\begin{aligned} & 1.301 \\ & (1.018-1.663) \end{aligned}$	$\begin{aligned} & 1.798 \\ & (1.029-3.143) \end{aligned}$	$\begin{aligned} & 1.330 \\ & (1.029-1.717) \end{aligned}$
	≥ 160	16905	307	116077.65	2.64	$\begin{aligned} & 2.688 \\ & (1.539-4.695) \end{aligned}$	$\begin{aligned} & 2.119 \\ & (1.636-2.745) \end{aligned}$	$\begin{aligned} & 3.005 \\ & (1.708-5.289) \end{aligned}$	$\begin{aligned} & 2.222 \\ & (1.695-2.913) \end{aligned}$
$\begin{aligned} & \text { Age 50-59 } \\ & \text { y } \end{aligned}$	<100	10673	122	73207.87	1.67	$\begin{aligned} & 1.056 \\ & (0.593-1.883) \end{aligned}$	1 (Ref.)	$\begin{aligned} & 1.198 \\ & (0.667-2.153) \end{aligned}$	1 (Ref.)
	<120	179787	1218	1261002.44	0.97	$\begin{aligned} & 0.883 \\ & (0.508-1.534) \end{aligned}$	$\begin{aligned} & 0.835 \\ & (0.693-1.006) \end{aligned}$	$\begin{aligned} & 1.01 \\ & (0.577-1.767) \end{aligned}$	$\begin{aligned} & 0.843 \\ & (0.695-1.022) \end{aligned}$
	<140	396402	3165	2777845.07	1.14	$\begin{aligned} & 1.091 \\ & (0.629-1.894) \end{aligned}$	$\begin{aligned} & 1.033 \\ & (0.862-1.238) \end{aligned}$	$\begin{aligned} & 1.253 \\ & (0.717-2.19) \end{aligned}$	$\begin{aligned} & 1.046 \\ & (0.867-1.262) \end{aligned}$
	<160	121944	1569	846282.93	1.85	$\begin{aligned} & 1.602 \\ & (0.922-2.786) \end{aligned}$	$\begin{aligned} & 1.517 \\ & (1.261-1.825) \end{aligned}$	$\begin{aligned} & 1.887 \\ & (1.079-3.301) \end{aligned}$	$\begin{aligned} & 1.575 \\ & (1.301-1.907) \end{aligned}$
	≥ 160	30481	754	209195.08	3.60	$\begin{aligned} & 2.569 \\ & (1.474-4.477) \end{aligned}$	$\begin{aligned} & 2.432 \\ & (2.007-2.947) \end{aligned}$	$\begin{aligned} & 3.220 \\ & (1.835-5.651) \end{aligned}$	$\begin{aligned} & 2.688 \\ & (2.200-3.283) \end{aligned}$
$\begin{aligned} & \text { Age 60-69 } \\ & \text { y } \end{aligned}$	<100	7628	112	51204.04	2.19	$\begin{aligned} & 0.846 \\ & (0.470-1.522) \end{aligned}$	1 (Ref.)	$\begin{aligned} & 1.009 \\ & (0.557-1.829) \end{aligned}$	1 (Ref.)
	<120	139684	1286	974361.37	1.32	$\begin{aligned} & 0.752 \\ & (0.429-1.316) \end{aligned}$	$\begin{aligned} & 0.889 \\ & (0.733-1.078) \end{aligned}$	$\begin{aligned} & 0.905 \\ & (0.514-1.594) \end{aligned}$	$\begin{aligned} & 0.897 \\ & (0.735-1.094) \end{aligned}$
	<140	358340	4057	2511682.13	1.62	$\begin{aligned} & 0.985 \\ & (0.564-1.722) \end{aligned}$	$\begin{aligned} & 1.165 \\ & (0.965-1.406) \end{aligned}$	$\begin{aligned} & 1.221 \\ & (0.694-2.146) \end{aligned}$	$\begin{aligned} & 1.209 \\ & (0.997-1.467) \end{aligned}$
	<160	139593	2354	970900.39	2.42	$\begin{aligned} & 1.331 \\ & (0.761-2.329) \end{aligned}$	$\begin{aligned} & 1.574 \\ & (1.302-1.903) \end{aligned}$	$\begin{aligned} & 1.709 \\ & (0.972-0.008) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.694 \\ & (1.393-2.059) \end{aligned}$
	≥ 160	37257	1083	257164.68	4.21	$\begin{aligned} & 2.023 \\ & (1.155-3.545) \end{aligned}$	$\begin{aligned} & 2.392 \\ & (1.968-2.907) \end{aligned}$	$\begin{aligned} & 2.668 \\ & (1.513-4.705) \end{aligned}$	$\begin{aligned} & 2.644 \\ & (2.163-3.232) \end{aligned}$
Age ≥ 70 y	<100	4680	64	26656.52	2.40	$\begin{aligned} & 0.855 \\ & (0.461-1.584) \end{aligned}$	1 (Ref.)	$\begin{aligned} & 0.921 \\ & (0.493-1.719) \end{aligned}$	1 (Ref.)
	<120	85516	932	532475.75	1.75	$\begin{aligned} & 0.885 \\ & (0.500-1.565) \end{aligned}$	$\begin{aligned} & 1.035 \\ & (0.804-1.334) \end{aligned}$	$\begin{aligned} & 1.033 \\ & (0.581-1.838) \end{aligned}$	$\begin{aligned} & 1.122 \\ & (0.868-1.449) \end{aligned}$
	<140	245756	3086	1567821.53	1.97	$\begin{aligned} & 1.075 \\ & (0.609-1.897) \end{aligned}$	$\begin{aligned} & 1.258 \\ & (0.982-1.612) \end{aligned}$	$\begin{aligned} & 1.313 \\ & (0.740-2.33) \end{aligned}$	$\begin{aligned} & 1.426 \\ & (1.110-1.832) \end{aligned}$
	<160	110290	1824	700047.99	2.61	$\begin{aligned} & 1.357 \\ & (0.769-2.396) \end{aligned}$	$\begin{aligned} & 1.588 \\ & (1.237-2.038) \end{aligned}$	$\begin{aligned} & 1.694 \\ & (0.954-3.008) \end{aligned}$	$\begin{aligned} & 1.839 \\ & (1.429-2.366) \\ & \hline \end{aligned}$
	≥ 160	34547	852	216119.46	3.94	$\begin{aligned} & 1.839 \\ & (1.039-3.254) \end{aligned}$	$\begin{aligned} & 2.152 \\ & (1.669,2.775) \end{aligned}$	$\begin{aligned} & 2.406 \\ & (1.351-4.283) \end{aligned}$	$\begin{aligned} & 2.612 \\ & (2.019-3.378) \end{aligned}$
P for interaction									<0.0001

Adjusted for age, sex, smoking, alcohol drinking, physical activity, BMI, low income, hypertension, dyslipidemia, chronic kidney disease, diabetes duration $\geq 5 y$, insulin user, oral hypoglycemic agents >3, estimated glomerular filtration rate, antihypertensive medication number, and type, myocardial infarction, stroke, congestive heart failure. BMI indicates body mass index; ESRD, end-stage renal disease; HR, hazard ratio; Ref, references; and SBP, systolic blood pressure.
medication group under 40 years old with $\mathrm{SBP} \geq 160$ (HR, 1.905 [$95 \% \mathrm{Cl}, 0.591-6.145]$), but this effect was attenuated with aging (Table S3). A similar observation
was observed for DBP (HR, 8.197 [95\% Cl, 4.64814.456] versus $\mathrm{HR}, 1.956$ [$95 \% \mathrm{Cl}, 1.116-3.426$] under 40 years old with $D B P \geq 110$), including an attenuation of

Figure. Incidence rate (IR) and hazard ratios (HR) for end-stage renal disease according to blood pressure group with age.
Systolic blood pressure (A) and diastolic blood pressure (B). Adjusted for age, sex, income-low 25\%, current smoker, alcohol consumption, regular exercise, hypertension, dyslipidemia, chronic kidney disease, diabetes duration $\geq 5 y$, insulin, oral hypoglycemic agents ≥ 3.
the effect of DBP on ESRD development with increasing age (Table S4).

In subgroup analysis according to history of CKD, the CKD group showed a higher HR compared to the non-CKD group for SBP (Table S5) in all age groups. However, the non-CKD group showed higher HR (HR, 5.514 [$95 \% \mathrm{Cl}, 3.494-8.703$] versus HR, 4.362 [95% $\mathrm{Cl}, 2.061-9.233]$) for ESRD compared to the CKD group for DBP ≥ 110 with patients under 40 years old, and effects of DBP for ESRD development was attenuated with aging in both non-CKD and CKD groups (Table S6).

DISCUSSION

The present study demonstrated that increased levels of both SBP and DBP were associated with a higher risk of

ESRD. Furthermore, the younger the age, the greater the effect of hypertension on the development of ESRD was, and this effect was especially notable in men under 40 years of age, those with DBP $\geq 110 \mathrm{mmHg}$, and those not taking antihypertensive drugs.

In general, diabetic nephropathy is the major cause of ESRD and hypertension contributes to further progression of kidney disease and cardiovascular disease (CVD) risk in this population. ${ }^{12}$ ESRD is an important determinant of morbidity and mortality in patients with diabetes. ${ }^{13}$ Hypertension is a major risk factor for CVD, which is also an important contributor to morbidity and mortality in patients with diabetes. ${ }^{14}$ The importance of BP reduction is strengthened by previous studies which have indicated that $\approx 10 \mathrm{mmHg}$ decline in SBP reduced the risk of CVD by 20%, heart failure by 28%, stroke by 27%, and all-cause mortality by $13 \% .^{15}$ In addition,

Table 5. Multivariate Cox Analysis for Incident ESRD and Competing Risk of Death by Diastolic Blood Pressure According to Age

Adjusted for age, sex, smoking, alcohol drinking, physical activity, BMI, low income, hypertension, dyslipidemia, chronic kidney disease, diabetes, diabetes duration ≥ 5 y, insulin user, oral hypoglycemic agents >3, estimated glomerular filtration rate, antihypertensive medication number, and type, myocardial infarction, stroke, congestive heart failure. BMI indicates body mass index; ESRD, end-stage renal disease; HR, hazard ratio; Ref, references; and SBP, systolic blood pressure.
hypertension is a known independent risk factor for the development of ESRD. ${ }^{16}$ Using a historical cohort study, Hsu et al. reported that compared with subjects with a BP less than 120/80 mmHg , the adjusted relative risks for developing ESRD increased according to BP level and the risk for ESRD was higher in patients with diabetes compared to that in patients without. ${ }^{17}$ A study using a large cohort of CKD showed that the risk of ESRD increased with SBP of 140 mmHg or higher. ${ }^{18}$ However, other studies have shown that an association exists between BP and ESRD risk at high DBP and that DBP is also known as an independent risk factor for ESRD. ${ }^{19}$ Our study also showed that the risk for ESRD increased according to increasing SBP or DBP in all age groups, but effect of BP on ESRD weakened with age.

The presence of hypertension at a young age increases the risk of cardiovascular events in middle age. ${ }^{20}$ Hypertension contributes to early-onset coronary heart disease, heart failure, stroke, and transient ischemic attacks. ${ }^{21}$ Although good national guidelines exist, the guidelines do not serve low-risk young patients with hypertension as effectively as they do older patients. Furthermore, risk assessment is challenging in young patients because of the limited validity of established risk assessment tools, and a greater focus on SBP, which is less well correlated with CVD outcome. ${ }^{20,22}$ Additionally, the causes of high SBP and DBP among young adults may differ. A higher systemic vascular resistance is a major contributor to high DBP, whereas increased aortic stiffness and a reduced aortic diameter contribute to high SBP among young adults. ${ }^{23}$ In the current study, the highest DBP $(\geq 110 \mathrm{mmHg})$ group showed the highest HR compared to the highest $\operatorname{SBP}(\geq 160 \mathrm{mmHg})$ group, especially in the male patient subgroup.

Although intrinsic mechanisms that regulate arterial BP are similar in men and women, marked variations exist at the molecular, cellular, and tissue levels. Previous studies have reported that compared to the BP pattern in men, women tend to show a steeper elevation in BP with age, starting from young adulthood and continuing throughout life. ${ }^{24}$ However, women have a longer lifespan than men and develop age and CVD-related pathologies later in life; these outcomes might be due in part to sex differences in cell injury and repair pathways that delay the chronic accumulation of senescent cells, end-organ damage, and the progression of CVD. ${ }^{25}$ In this study, the subgroup analysis for sex also showed that the ESRD risk was higher in men than in women for both SBP and DBP.

The strengths of this study include the use of a large nationwide longitudinal health screening database with high participation and outcome ascertainment rates owing to electronic linkages to universal health insurance records. This database covers a wide range of the Korean diabetes population over a long follow-up duration and, hence, allows a sizable inclusion of young adults. The events in these young participants are considered
premature ESRD, an important population health outcome measure, that has rarely been studied in a large sample size to date.

However, our study also has some limitations. First, although the 2017 American College of Cardiology/ American Heart Association guidelines recommend that at least 2 BP readings be obtained before determining the stage of BP, in the current study, participants were classed based on their BP readings assessed based on an average of two readings obtained during a single visit. However, in a real-world screening environment taking place on a nationwide scale, adherence to the protocol may be limited. Therefore, the BP measurements used for the classification might not have fully reflected a person's BP phenotype. Second, possible residual confounding, including sodium intake and psychological factors, may affect the association between BP and ESRD events. Third, our study was based on Korean patients with diabetes subscribing to a universal health insurance and screening program; the results should be interpreted with caution when applied to different populations or healthcare systems. Finally, longitudinal BP control or other covariates over time such as kidney function was not considered in this study.

In conclusion, among Korean patients with diabetes, those with elevated SBP or DBP were associated with a higher ESRD risk in all age groups than those with normal BP. The ESRD risk associated with BP was attenuated with age. In addition, the male patients with diabetes with high DBP and without antihypertensive medications should be screened and treated more aggressively given their particularly high risk of ESRD.

PERSPECTIVES

The incidence of ESRD is increasing according to the increasing prevalence of diabetes, and the social burden of ESRD is becoming greater. Slowing or stopping the progression to ESRD is an important public health goal. As a modifiable risk factor for ESRD, hypertension is a target that can be controlled. Our study demonstrated the enormous impact of BP on the development of ESRD, especially in young adults. Prevention of hypertension should be emphasized as a primary way to prevent ESRD, which means that a controlled study analyzing the multiple risk factors for hypertension is needed. Furthermore, early detection of persons with hypertension and treatment with antihypertensive drug therapy are essential as continuing strategies to prevent ESRD.

ARTICLE INFORMATION

Received December 13, 2021; accepted May 6, 2022.

Affiliations

From the Department of Internal Medicine (E.H.B., T.R.O., S. Hyun Song, S. Heon Suh, H.S.C., C.S.K., S.K.M., S.W.K.) and Department of Pediatrics (E.M.Y.), Chonnam National University Medical School, Gwangju, Korea. Department of Internal

Medicine, Korea University Ansan Hospital (S.Y.L.). Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea (B.K., K.-D.H.).

Sources of Funding

This research was supported by a grant (BCRI22081, 22040, 21046, 20025) of Chonnam National University Hospital Biomedical Research Institute and by the National Research Foundation of Korea (NRF) funded by the Korean Government (MSIT; NRF-2019R1A2C2086276 and NRF2019R1A2C1003971).

Disclosures

None.

REFERENCES

1. Kastarinen M, Juutilainen A, Kastarinen H, Salomaa V, Karhapää P, Tuomilehto J, Grönhagen-Riska C, Jousilahti P, Finne P. Risk factors for endstage renal disease in a community-based population: 26-year follow-up of 25,821 men and women in eastern Finland. J Intern Med. 2010;267:612620. doi: 10.1111/j.1365-2796.2009.02197.x
2. Rosendorff C, Lackland DT, Allison M, Aronow WS, Black HR, Blumenthal RS, Cannon CP, de Lemos JA, Elliott WJ, Findeiss L, et al; American Heart Association, American College of Cardiology, and American Society of Hypertension. Treatment of hypertension in patients with coronary artery disease: a scientific statement from the american heart association, american college of cardiology, and american society of hypertension. Circulation. 2015;131:e435e470. doi: 10.1161/CIR. 0000000000000207
3. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the european society of hypertension (ESH) and of the european society of cardiology (ESC). Eur Heart J. 2013;34:2159-2219. doi: 10.1093/eurheartj/eht151
4. Hinton TC, Adams ZH, Baker RP, Hope KA, Paton JFR, Hart EC, Nightingale AK. Investigation and treatment of high blood pressure in young people: too much medicine or appropriate risk reduction? Hypertension. 2020;75:16-22. doi: 10.1161/HYPERTENSIONAHA.119.13820
5. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/ PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. Hypertension. 2018;71:e13-e115. doi: 10.1161/HYP. 0000000000000065
6. Johnson HM, Warner RC, Bartels CM, LaMantia JN. "They're younger... it's harder." Primary providers' perspectives on hypertension management in young adults: a multicenter qualitative study. BMC Res Notes. 2017;10:9. doi: 10.1186/s13104-016-2332-8
7. Bae EH, Lim SY, Han KD, Oh TR, Choi HS, Kim CS, Ma SK, Kim SW. Association between systolic and diastolic blood pressure variability and the risk of end-stage renal disease. Hypertension. 2019;74:880-887. doi: 10.1161/HYPERTENSIONAHA.119.13422
8. Lee HJ, Choi EK, Lee SH, Kim YJ, Han KD, Oh S. Risk of ischemic stroke in metabolically healthy obesity: a nationwide population-based study. PLoS One. 2018;13:e0195210. doi: 10.1371/journal.pone.0195210
9. Lee HJ, Choi EK, Han KD, Lee E, Moon I, Lee SR, Cha MJ, Oh S, Lip GYH. Bodyweight fluctuation is associated with increased risk of incident atrial fibrillation. Heart Rhythm. 2020;17:365-371. doi: 10.1016/j. hrthm.2019.09.029
10. Lee H, Choi EK, Lee SH, Han KD, Rhee TM, Park CS, Lee SR, Choe WS, Lim WH, Kang SH, et al. Atrial fibrillation risk in metabolically healthy obesity: a nationwide population-based study. Int J Cardiol. 2017;240:221-227. doi: 10.1016/j.ijcard.2017.03.103
11. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604-612. doi: 10.7326/0003-4819-150-9-200905050-00006
12. Van Buren PN, Toto R. Hypertension in diabetic nephropathy: epidemiology, mechanisms, and management. Adv Chronic Kidney Dis. 2011;18:28-41. doi: 10.1053/j.ackd.2010.10.003
13. Ghaderian SB, Hayati F, Shayanpour S, Beladi Mousavi SS. Diabetes and end-stage renal disease; a review article on new concepts. J Renal Inj Prev. 2015;4:28-33. doi: 10.12861/jrip. 2015.07
14. Colosia AD, Palencia R, Khan S. Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: a systematic literature review. Diabetes Metab Syndr Obes. 2013;6:327-338. doi: 10.2147/DMSO.S51325
15. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, Chalmers J, Rodgers A, Rahimi K. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387:957-967. doi: 10.1016/S0140-6736 (15)01225-8
16. Tozawa M, Iseki K, Iseki C, Kinjo K, Ikemiya Y, Takishita S. Blood pressure predicts risk of developing end-stage renal disease in men and women. Hypertension. 2003;41:1341-1345. doi: 10.1161/01.HYP.0000069699.92349.8C
17. Hsu CY, McCulloch CE, Darbinian J, Go AS, Iribarren C. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch Intern Med. 2005;165:923-928. doi: 10.1001/archinte.165.8.923
18. Peralta CA, Norris KC, Li S, Chang TI, Tamura MK, Jolly SE, Bakris G, McCullough PA, Shlipak M; KEEP Investigators. Blood pressure components and end-stage renal disease in persons with chronic kidney disease: the kidney early evaluation program (KEEP). Arch Intern Med. 2012;172:41-47. doi: 10.1001/archinternmed.2011.619
19. Iseki K, Ikemiya Y, Fukiyama K. Blood pressure and risk of end-stage renal disease in a screened cohort. Kidney Int Suppl. 1996;55:S69-S71.
20. Sundström J, Neovius M, Tynelius P, Rasmussen F. Association of blood pressure in late adolescence with subsequent mortality: cohort study of Swedish male conscripts. BMJ. 2011;342:d643. doi: 10.1136/bmj.d643
21. Yano Y,Reis JP,ColangeloLA, Shimbo D,VieraAJ,Allen NB, Gidding SS, Bress AP, Greenland P, Muntner P, Lloyd-Jones DM. Association of blood pressure classification in young adults using the 2017 american college of cardiology/american heart association blood pressure guideline with cardiovascular events later in life. JAMA. 2018;320:1774-1782. doi: 10.1001/jama.2018.13551
22. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R; Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903-1913. doi: 10.1016/ s0140-6736 (02)11911-8
23. McEniery CM, Yasmin, Wallace S, Maki-Petaja K, McDonnell B, Sharman JE, Retallick C, Franklin SS, Brown MJ, Lloyd RC, et al; ENIGMA Study Investigators. Increased stroke volume and aortic stiffness contribute to isolated systolic hypertension in young adults. Hypertension. 2005;46:221-226. doi: 10.1161/01.HYP.0000165310.84801.e0
24. Ji H, Kim A, Ebinger JE, Niiranen TJ, Claggett BL, Bairey Merz CN, Cheng S. Sex differences in blood pressure trajectories over the life course. JAMA Cardiol. 2020;5:19-26. doi: 10.1001/jamacardio.2019.5306
25. Colafella KMM, Denton KM. Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol. 2018;14:185-201. doi: 10.1038/nrneph.2017.189

[^0]: Correspondence to: Kyung-Do Han, Department of Statistics and Actuarial Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea, Email hkd917@naver.com or Soo Wan Kim, Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju 61469, Korea, Email skimw@chonnam.ac.kr
 *K.D. Han and S.W. Kim contributed equally.
 Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/HYPERTENSIONAHA.121.18881.
 For Sources of Funding and Disclosures, see page 1776.
 © 2022 The Authors. Hypertension is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDerivs License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made.
 Hypertension is available at www.ahajournals.org/journal/hyp

