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Abstract

Background

Monitoring and treating metastatic progression remains a formidable task due, in part, to an

inability to monitor specific differential molecular adaptations that allow the cancer to thrive

within different tissue types. Hence, to develop optimal treatment strategies for metastatic

disease, an important consideration is the divergence of the metastatic cancer growing in

visceral organs from the primary tumor. We had previously reported the establishment of

isogenic human metastatic breast cancer cell lines that are representative of the common

metastatic sites observed in breast cancer patients.

Methods

Here we have used proteomic, RNAseq, and metabolomic analyses of these isogenic cell

lines to systematically identify differences and commonalities in pathway networks and

examine the effect on the sensitivity to breast cancer therapeutic agents.

Results

Proteomic analyses indicated that dissemination of cells from the primary tumor sites to vis-

ceral organs resulted in cell lines that adapted to growth at each new site by, in part, acquir-

ing protein pathways characteristic of the organ of growth. RNAseq and metabolomics

analyses further confirmed the divergences, which resulted in differential efficacies to com-

monly used FDA approved chemotherapeutic drugs. This model system has provided data

that indicates that organ-specific growth of malignant lesions is a selective adaptation and

growth process.

Conclusions

The insights provided by these analyses indicate that the rationale of targeted treatment of

metastatic disease may benefit from a consideration that the biology of metastases has
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diverged from the primary tumor biology and using primary tumor traits as the basis for treat-

ment may not be ideal to design treatment strategies.

Introduction

Breast cancer is the most common malignant neoplasm among women in the United States.

Recently, the American Cancer Society reported a 5-year survival rate near 86–99% for

regional and local breast cancer, respectively [1]. On the other hand, the 5-year survival for

metastatic breast cancer that involves distant organs is only 27% [1]. This latter low survival

rate is likely due in part to a difference in clonal divergence of the metastatic tumor growth as

well as to the use of primary tumor characteristics as the rationale for treatment strategies of

metastatic disease (e.g., [2]). Thus, there is a growing consensus that matched primary breast

tumor and metastatic lesion biopsy samples often exhibit divergent expression of markers, for

example, hormone receptors (HR: estrogen (ER) & progesterone (PR)) as well as HER2, which

influences outcomes [3–8]. In addition, genomic sequencing studies are providing strong cor-

roborating evidence that metastatic progression represents evolutionary processes that results

in distinct biological entities at metastatic sites that have greatly diverged from the primary

tumor [9–11]. Consequently, the current practice of primary tumor-based selection of chemo-

therapy is limited with respect to patient specific precision therapeutic targeting of a patient’s

metastatic lesions as well as general therapeutic resistance.

Notably, monitoring and treating metastatic progression remains a formidable task due to

many gaps in our knowledge including an inability to monitor specific differential molecular

adaptations that allow the cancer to survive and thrive within different tissue types. This is a

consequence of the fact that visceral organs differ vastly from one another with unique attri-

butes of metabolism, developmental programs, microenvironments, and function resulting in

defined physiological identities. Hence, in order to develop optimal treatment strategies for

metastatic disease, an important consideration is the divergence of the metastatic cancer grow-

ing in visceral organs from the primary tumor [2, 4, 5, 11]. Accordingly, in order to gain

insight into new treatment regimens aimed at controlling and ablating metastatic progression,

there is an urgent need to evaluate the distinct molecular differences that exist between iso-

genic tumor cells growing at different metastatic sites and their sensitivity to different chemo-

therapeutic agents. To address this issue, as previously reported [12, 13], we established

isogenic (analogous to patient metastatic cells) human metastatic breast cancer cell lines and

have now included two additional cell lines starting from a well-established aggressive breast

cancer cell line (MDA-MB-231). In all cases, these metastases spontaneously arose through

dissemination from the primary mammary fat pad tumor site in a mouse model system. The

resulting six metastatic cell lines are representative of the common metastatic sites of lymph

node, lung, bone, liver, and brain observed in breast cancer patients [14]. This model system

has provided excellent data that supports our principal hypothesis that organ-specific growth

of malignant lesions is a selection process that results in cancer cells that have adapted distinct

biochemical and molecular attributes that allow them to thrive at each site outside of the pri-

mary tumor site [12, 13].

Dissecting metastatic cancers based on objective molecular markers and metabolic path-

ways remains an outstanding challenge. Standard histochemical techniques are limited to

identification of relatively few markers in, most frequently, primary tumor sections that may

no longer be present at metastases [4–8]. Consequently, a goal of the presented study was to
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obtain proteomic and RNAseq data sets for our isogenic metastatic cell lines and analyze the

resulting proteomes and transcriptomes with pathway analysis tools. Analyses of both data sets

revealed that the metastatic cell lines had diverged from the primary tumor, consistent with

our previous studies [12, 13]. We found, relative to the primary tumor, overlapping general

common metastatic associated pathways, but importantly unique organ-specific pathways

have also been uncovered. We hypothesize that the latter reflect processes of adaptation, i.e.,

the gaining of site (organ) specific attributes that reflects local microenvironmental influences

resulting in selected gene expression and protein pathway preferences for each organ. Similar,

to previous studies of comparisons of proteomic and RNAseq data [15–18], we discovered dis-

cordance between proteomes and transcriptomes as well as some common characteristic path-

ways. Consistent with the RNAseq data, RT-PCR, in general, only provided confirmation of

very few of the expressed proteins discovered during proteomic screening. In addition, path-

way analyses of metabolomes provided confirmations corresponding to associations to the

proteomic-based and transcriptomic-based pathways. Finally, in vitro drug efficacy assays

showed significant differential responses of ten cell lines, i.e., two parental cell lines, two pri-

mary tumor cell lines, and six metastatic cell lines, to the drugs that were tested. This latter

data has provided evidence that chemotherapeutic regimes based on primary tumor markers

may result in ineffective control of metastatic tumors due to the changes that have occurred

within the tumor cells at those metastatic sites that affect a drug’s killing ability at the site.

Results

Phenotypic characterization of isogenic cell lines

As we previously reported for the isogenic cell lines generated from the MDA-MB-435 cells:

parental-435 and its primary-tumor (1˚-tumor), brain, liver, lung, and spine isogenic cell lines

(S1 Fig) [12], the parental MDA-MB-231 (parental-231) and its isogenic cell lines (1˚-tumor,

lung, and lymph node) exhibited somewhat different morphologies when grown on plastic

(All bright-field images: Fig 1 and S2 Fig). As has been reported [19], parental-231 cultures

had a mixture of several cell morphologies that differed in shape and size and that grew in a

chaotic overlapping manner (Far-left bright-field images: Fig 1 and S2 Fig). 1˚-tumor-231 cells

grew in a similar manner but appeared to have fewer cell morphologies with the majority of

the cells in these cultures being relatively large, broad, and elongated with some extended spin-

dle characteristics and few or no small cells (Middle-left bright-field images: Fig 1 and S2 Fig).

In contrast, lung-231 cell cultures had even fewer small cells and the majority were medium

sized spindly cells with some broadly larger elongated cells (Middle-right bright-field images:

Fig 1 and S2 Fig). On the other hand, the majority of lymph node-231 cells appeared to be rela-

tively more epithelial-like and formed “cobble-stone”-like monolayers with some overlapping

board-spindly cells (Right bright-field images: Fig 1 and S2 Fig). Also, reflected in the bright-

field images of the four cultures, which were plated at the same time and in the same numbers,

were differences in growth-rates between the lung-231 and lymph node-231 cell lines and

between these two cell lines relative to the parental and 1˚-tumor cell line (Lower panels of Fig

1). Thus, the lung-231 cells had the lowest growth-rate (36 hr: Lower panels of Fig 1), which is

visible as a sparser covering of the plastic in the bright-field images, along with an apparently

higher death-rate/senescence as indicated by the stable or plateauing/declining growth-rate by

day 4 and 5. In contrast, the lymph node-231 cells had the fastest growth rate (22 hr: Lower

panels of Fig 1) and these cultures (in the bright-field images) appeared to be nearly confluent

relative to the other three cultures. We previously reported similar differential growth-rates in

growth-rate comparisons for cultures of 435 isogenic cell lines (S3 Fig) [12]. Overall, the char-

acteristics of the in vitro growth of all the isogenic cell lines has indicated that fundamental
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underlining inherent molecular changes had occurred during in vivo growth and, at least dur-

ing these early passages on plastic, these differential characteristics endured as reflected in dif-

fering morphologies and growth-rates.

General “omics”

Other than for the principle component analysis (PCA) and hierarchical clustering analyses

(indicated below), we focused on the expression level fold changes (FCs: range -1.25 to +1.25)

of the individual proteins or transcripts (genes) or aqueous metabolites from each isogenic

metastatic cell line relative to their cognate counterparts from the 1˚ tumors. Our hypothesis is

that metastatic progression, starting from the 1˚ tumor, is an evolutionary process that evolves

in situ at each specific tissue site under the influence of inherent microenvironmental signaling

and site-specific selection pressures. As such, we have been interested in understanding the

Fig 1. Phenotypic characterization of MDA-MB-231 isogenic cell lines. Phase-contrast images of the parental-231, primary tumor (1˚

tumor)-231, lung-231, and lymph node-231 cell lines are shown in the top two rows. The top row images were photographed using a X10

objective coupled with a X4 phase-contrast ring while the second-row images were duplicate images obtained with a X10 objective coupled with

a X10 phase-contrast ring. The optical configuration of the top row gave 3D images. The black scale bars = 50 μM. Growth curves of each cell

line are presented below the images of the corresponding cell line with the mean growth-rate given in the bottom right-hand corner of the

curves.

https://doi.org/10.1371/journal.pone.0242384.g001
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fundamental molecular (proteomic and genetic) and associated metabolic (biochemical)

changes that metastatic cells have undergone relative to their 1˚ tumor. Consequently, for pro-

teomics (S1–S6 Spreadsheets) we attained, from a total of 6500 FCs for all isogenic cell lines,

the following numbers of proteins with FCs� -1.25 of: 1189 for brain-435, 805 for liver-435,

940 for lung-435, 606 for spine-435, 1076 for lung-231, and 1563 for lymph node-231 and with

FCs� +1.25 of: 680 for brain-435, 255 for liver-435, 735 for lung-435, 316 for spine-435, 1414

for lung-231, and 1197 for lymph node-231 cell lines. Similarly, from RNAseq (transcriptomic)

analyses we had a total of ~16000 (range: 15945–16375) for all isogeneic metastatic cell lines of

which transcripts (S7–S12 Spreadsheets) with FCs� -1.25 were: 541 for brain-435, 1285 for

liver-453, 3075 for lung-435, 1125 for spine-435, 2484 for lung-231, and 3103 for lymph node-

231 cell lines and FCs� +1.25 were: 1205 for brain-435, 1823 for liver-435, 3061 for lung-435,

1108 for spine-435, 2374 for lung-231, and 3785 for lymph node-231 cell lines. For aqueous

metabolites we found metabolites with FCs� -1.25 of: 277 for brain-435, 309 for liver-435,

249 for lung-435, and 303 for spine-435 cell lines and FCs� +1.25 of: 56 for brain-435, 109 for

liver-435, 151 for lung-231, and 647 for spine-435 cell lines.

Proteomic-based PCA and proteomic- transcriptomic-based hierarchical

clustering

Similar to our previous metabolomic and Raman spectroscopic based PCA and hierarchical

clustering analyses, proteomic-based PCA indicated that 231 isogenic cell lines (Fig 2A) as well

as 435 isogenic cell lines (Fig 2B) were separated into distinct tissue defined clusters, which

was an indication that each isogenic cell line differs from its isogenic counterparts at the prote-

ome level. The heat map shown in Fig 2C is complementary evidence that all isogenic cell lines

have distinct proteomes. Thus, similar to the relative distances indicated in Fig 2B and 2C indi-

cates that the proteome of parental-435 cells was most closely related to that of the 1˚ tumor-

435 with the latter being more closely related to the liver-435 cell line, while the proteomes of

the spine-435 and lung-435 cell lines formed a subclade and that brain-435 cells had a prote-

ome that was least related to the other isogenic family of cell lines. However, Fig 2C shows that

the parental-231 and 1˚ tumor-231cells formed a subclade, which was not apparent from Fig

2A, but, as in Fig 2A, the lymph node-231 (LN-231) and lung-231 cell lines were closely related

relative to their distance from the parental-231 and 1˚ tumor-231 cell lines’ subclade. From Fig

2C it was found that the proteomes of the 435 cell lines and 231 cell lines formed two distinct

general separate clades that was likely due to their parental cells being from different individu-

als. This is also likely why the two lung proteomes were not closely related, which provided

some evidence that proteomes from distinct individuals remain generally discrete even after

growth within very similar microenvironments.

The transcriptomic-based clustering analysis depicted in Fig 2D is complementary to Fig

2C and again indicates that the 435 cell lines and 231 cell lines formed two distinct general sep-

arate clades. In addition, the two 231 isogenic metastatic cell lines (lung-231 and lymph node

(LN)-231) had, similar to their proteomes, transcriptomes that were closely related while in

this case, unlike the proteomic-based analysis (Fig 2C), the parental-231 and 1˚ tumor-231 cell

line transcriptomes were more distantly related. A similar distinction between proteomic-

based and transcriptomic-based clustering was exhibited by the parental-435 and 1˚ tumor-

435 cell lines with the latter forming a subclade with brain-435 and these three grouped sepa-

rately from the lung-, liver- and spine-435 cell lines with the latter two of these forming a sub-

clade. Hence, although proteomic-based and transcriptomic-based PCA/hierarchical analyses

gave consistent complementary result with respect to providing evidence that each cell line dis-

play distinct transcriptomes and proteomes there was not an exact match in clustering patterns
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Fig 2. Principle component analyses (PCAs) and hierarchical clustering of all cell lines. (A) Proteomic-based PCA plots of 231

isogenic cell lines (PC-1, PC-2, and PC-3 represented 44.1, 37.0, and 18.9% of the respectively) and (B) 435 isogenic cell lines (PC-1,

PC-2, and PC-3 represented 29.0, 25.7, and 21.5% of the respectively). (C) Proteomic-based hierarchal clustering (heat map) of six

435 isogenic cell lines along with four 231 isogenic cell lines. (D) Transcriptomic-based hierarchal clustering of all cell lines. All

analyses indicated that each cell line had distinct proteomic/transcriptomic signatures, which resulted in the cell lines’ clustering into

separate groups/clades. As shown beneath the heat maps, proteins (C) or transcripts (D) distributed across rows have been presented
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between to the two data sets. This was consistent with the known phenomena that proteomic

and transcriptomic data sets do not generally exhibit large expression overlaps between tran-

scripts with their protein products [17, 18, 20], which has been described as being due to a

variety of regulatory distinctions associated with mRNAs and proteins [15, 16, 18, 20–25].

Pathway discovery analyses

Proteome-based pathway discovery. The lists of proteins from each isogenic metastatic

cell line with FCs� -1.25 and� +1.25, relative to their 1˚ tumors (S13–S18 Spreadsheets)

were loaded into the ConsenusPathDB online interactive pathway discovery tool. The Consen-

susPathDB integrates a total of 11 human databases for the pathway discovery analyses and we

used the default setting of 2 interacting proteins to define a pathway.

In order to find out how the proteomic-based pathway analyses could be used to find how

the isogenic metastatic cell lines were related, we submitted the lists of up- and down-regulated

pathways to hierarchical clustering analysis and the resulting heat maps are shown in Fig 3A.

These analyses showed that both the up- and down-regulated pathway data sets, separated the

isogenic cell lines into two, in broadest terms, clades of 435 and 231 metastatic cell lines with

the lung-231 and lymph node-231 cell lines closely related, although in the up-regulated set

the lymph node-231 cells formed a somewhat ‘outside’ separate grouping while in the down-

regulated set the lung-231 and lymph node-231 cell lines were highly related. In the case the

435 cell lines, based on the up-regulated pathways, the liver-435 and spine-435 were closely

related and grouped into one subclade while the brain-435 and lung-435 cell lines formed

another subclade. However, this patterned differed in the down-regulated heat map where

lung-435 grouped with spine-435 while brain-435 and liver-435 were grouped together.

Abridged data sets, i.e., the top 10 up- and down-regulated pathways for each isogenic met-

astatic cell line, ranked on the lowest to highest q-values, i.e., adjusted p-values, (q� 0.05) are

provided in: S1–S6 Tables with the complete pathway lists given in S19 Spreadsheet. The

abridged pathway lists provided a means of exploring examples of trends found in the com-

plete pathway lists. The integration of 11 Source databases used in ConsensusPathDB analyses

provided built-in consistency/verification controls in that 2 or more Sources (databases) often

identified the same pathways even though the discovery of the pathway by each Source is

based on different protein list processing algorithms and different statistical criteria [26]. For

example, in: S1 Table, within the top 10 up-regulated pathways the ‘citric acid cycle’ (Source:

Reactome) was also given as the ‘TCA cycle’ (Source: Wikipathways). Similarly, in the same

table within the top 10 down-regulated pathways, ‘pyrimidine metabolism’ (Source: Wikipath-

ways) was repeated (Source: KEEG). Another example is exhibited in the 10 top down-regu-

lated pathways of: S4 Table, where ‘glycolysis’ (Source: HumanCyc) is repeated (Source:

Reactome) as well as, under different descriptive titles, twice more (Sources: INOH & Wiki-

pathways). A disadvantage is that all the Sources include very ill-defined vague general path-

way terms. For example, in S1 Table the designated: ‘amino acid metabolism’ pathway (in the

top 10 up-regulated list) leads one to consider a variety of metabolic pathways; e.g., ranging

from catabolism, to several types of modifications as well as the incorporation into nascent

protein chains. Similarly (same table), in the top 10 down-regulated list is the ‘cell cycle’ path-

way with its set of 564 proteins, which was also represented as several more specific sub-path-

ways: ‘cell cycle, mitotic’, ‘cell cycle checkpoints’, ‘mitotic spindle checkpoints’, and ‘mitotic

anaphase’. Other examples of such broad pathway designations include: ‘vesicle-mediated

as gradations of color from dark blue-to-dark pink, i.e., relative minimal-to-maximal expression levels. Thus, each row of proteins

(C) or transcripts (D) has been placed the left of the cell line designations and the associated trees is at the right.

https://doi.org/10.1371/journal.pone.0242384.g002
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transport’ (S2 Table), ‘metabolism’ as well as ‘hemostasis’ (S3 Table), ‘cellular responses to

stress’ along with ‘metabolism of carbohydrates’ (S4 Table), and ‘metabolism of RNA’, ‘ribo-

some’ and ‘innate immune system’ (S5 Table). Nevertheless, many pathways listed (S1–S6

Tables) were relatively specific. Moreover, the pathway analyses allowed for an inspection of

up- and down-regulated pathways that were common to 2 or more metastatic sites and thus,

provided a means to assess those pathways that promote general metastatic processes,

Fig 3. Cellular pathway hierarchical clustering’s of isogenic metastatic cell lines. (A) Proteomic-based up- and down-regulated pathway

clustering’s. (B) Transcriptome-based up- and down-regulated pathway clustering’s. As shown beneath the heat maps (colored bar),

pathways were distributed across rows and shown as gradations of color from dark blue-to-dark pink, i.e., relative minimal-to-maximal

expression levels. Each row of pathways is to the left of the cell line designations and the associated tree is at the right.

https://doi.org/10.1371/journal.pone.0242384.g003
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regardless of being up- or down-regulated. The abridged datasets already include several

examples of shared pathways, such as up-regulated ‘spliceosome’ of brain-435 and lymph

node-231 and very closely related ‘mRNA splicing—major pathway’ along with ‘mRNA splic-

ing’ of lung-231, up-regulated ‘lysosome’ brain-435 and liver-435, down-regulated ‘cell cycle’

of brain-435 and liver-435, down-regulated ‘pyrimidine metabolism’ brain-435 and liver-435,

up-regulated ‘TCA cycle’ of brain-435 and the very closely related ‘TCA cycle & respiratory

electron transport’ of lung-435, up-regulated ‘metabolism of RNA’, ‘cell cycle’, and ‘cell cycle,

mitotic’ of lung-231 and lymph node-231, and down-regulated ‘EGFR1’, ‘neutrophil degranu-

lation’, ‘metabolism’, ‘vesicle-mediated transport’, ‘membrane trafficking’ as well as ‘post-

translational protein phosphorylation’ of lung-231 and lymph node-231. Also, there were

examples of pathways that were up-regulated at one site while being down-regulated at other

sites. Examples, (S1–S6 Tables) are: up-regulation of ‘insulin-like growth factor (IGF) trans-

port & uptake by IGF binding proteins (IGFBPs)’ and ‘neutrophil degranulation’ in liver-435

and the down-regulation of both pathways in lung-435 and the former is in lymph node-231

and the latter is in spine-435, lung-231, and lymph node-231.

At the same time, pathway analysis allowed for the discovery of up- and down-regulated

pathways that are unique to each metastatic site, which provides insights into how the cells

may have evolved by adapting attributes of their site of growth that would have been induced

by signaling cascades that were inherent to each tissue. Similar to the analysis of all pathways

given above, the top 10 unique up-regulated and top 10 unique down-regulated proteome

based pathways for each isogenic metastatic cell line, ranked on the lowest to highest q-values

(q� 0.05), are provided in Tables 1–6 with the complete pathway lists given in S19 Spread-

sheet. The general top 10 summaries shown in Tables 1–6 indicate that: in brain-435 cells the

‘mitochondrial TCA’ pathway was up-regulated, which may have occurred either as a response

to energy needs, i.e., as an energy associated pathway via metabolism of glucose to pyruvate

(see the listed superpathway) and then to acetyl-CoA for use in the TCA cycle or was up-regu-

lated in response to an anaplerosis need, the ‘mitochondrial fatty acid β-oxidation’ (energy

generating) pathway was also up-regulated while a down-regulation of mitochondrial biogene-

sis and DNA repair pathways was found for brain-435; in the liver-435 cell line relatively liver-

specific pathways were up-regulated including ‘fibrin clot formation’, general ‘hemostasis’,

heparan sulfate-glcNAc-glcA (HS-GAG) degradation along with scavenger pathways while

‘mitotic checkpoint’, glucose uptake, apoptosis, and ‘RNA metabolism’ pathways were down-

regulated; in lung-435 cells components of the innate immune system (lung, similar to skin,

must safe-guard against airborne pathogens), i.e., interferon signaling pathways, were up-regu-

lated along with oxidative phosphorylation pathways, which were likely induced by the high

O2 tension of the lung, as well as disease pathways, such as Parkinson’s, Alzheimer’s, etc.,
which have been associated with mitochondrially generated reactive oxygen species while

down-regulations included the translation (EIF-4e) but proapoptotic (p70s6) pathway, the

hypoxia driven VEGF pathway, which was likely due to the high O2 tension of the lung as well

as estrogen and androgen signaling; the spine-435 cell line had an up-regulation of histone

modification, amino acid and oligopeptide solute transport, ‘terpenoid backbone biosynthesis’,

‘FOXA1 transcription factor network’, with a down-regulation of several toll-like receptor

(innate immune response) pathways; the pathways up-regulated in lung-231 cells were several

involved with translation including mitochondrial translation and DNA repair, with down-

regulated pathways involved with extracellular matrix degradation, apoptosis, IL-7 (hemato-

poietic growth factor), epidermal growth factor (EGF) signaling, and stress induced heat shock

protein; in the lymph node-231 cell line RUNX3 transcriptional regulation and HDAC Class I

signaling were up-regulated along with up-regulated ‘hematopoietic stem cell regulation by

GABP-α/β complex’, which might reflect influences on the cells during lymph node site
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growth as these pathways are involved with regulation of hematopoietic lineages, RHO

GTPases, ‘EPHA-mediated growth cone collapse’, ‘TGF-β receptor’, and ‘glucocorticoid recep-

tor regulatory network’ were also up-regulated with ‘mitochondria β-oxidation of short chain

saturated fatty acids’, ‘urea cycle and metabolism of arg, pro, glu, asp, & asn’, and one-carbon

metabolism were down-regulated.

In order to gain an appreciation that the lists of proteome pathways are not isolated inde-

pendent biochemical reaction entities but rather are interconnected systems, we leveraged the

ConsensusPathDB analysis program to construct overlapping pathway interconnection maps

[26, 27]. This analysis revealed that due to the multifunctional attribute of one or more of the

proteins of a pathway two or more pathways have shared proteins that connect pathways into

larger networks of biochemical reaction systems with overlapping functions. Examples of such

maps are shown in Fig 4 (brain-435) and Fig 5 (lung-231) along with Supplemental Informa-

tion: S4–S7 Figs that include, for visualization purposes, only the top 20 up- and down-regu-

lated unique pathways (q� 0.05) for each isogenic metastatic cell line. Figs 4 and 5 are

representative of the examples presented in S4–S7 Figs and depict, in example Fig 4 of the

unique up-regulated proteomic-based pathways of brain-435 two interconnected mappings of

18 pathways with two pathways left disconnected from either of these, i.e.,‘orphan’ pathways.

In this example, one of the interconnected maps (Left-hand side, Fig 4) was dominated by heat

shock factor (HSF1) associated pathways with a relatively high amount of overlapping protein

components and is loosely connected with an insulin/growth hormone signaling group of

pathways that have fewer overlapping protein partners. On the right-hand side of the upper

portion of Fig 4 there emerged a clustered network of strongly associated TCA pathways

Table 1. Proteomic-based unique pathways for the metastatic brain-435 cell line.

Source Up Pathways # of Proteins in

Set

# of Obs.

Proteins

Obs. Proteins (%) q-value

Reactome Citric Acid Cycle 22 7 31.8 0.0022

Wikipathways TCA Cycle 17 6 35.3 0.0030

SMPDB Malonyl-CoA Decarboxylase Deficiency 14 5 35.7 0.0034

SMPDB Malonic Aciduria 14 5 35.7 0.0034

SMPDB Methylmalonic Aciduria Due to Cobalamin-Related Disorders 14 5 35.7 0.0034

Wikipathways Metabolic Reprogramming in Colon Cancer 42 8 19.0 0.0035

HumanCyc Superpathway of Conversion of Glucose to Acetyl CoA & Entry into the TCA

Cycle

48 8 17.0 0.0064

BioCarta IGF-1 Receptor & Longevity 17 5 29.4 0.0071

Reactome Mitochondrial Fatty Acid β-Oxidation 39 7 18.4 0.0085

Reactome Clathrin-mediated Endocytosis 138 14 10.1 0.0090

Down Pathways

PID ATR Signaling Pathway 37 15 40.5 1.57E-06

PID PLK1 Signaling Events 44 16 36.4 2.26E-06

Reactome Mitochondrial Translation Termination 89 22 25.0 6.10E-06

Reactome Mitochondrial Translation Elongation 89 22 25.0 6.10E-06

Reactome Mitochondrial Translation Initiation 89 22 25.0 6.10E-06

Reactome Mitochondrial Translation 95 22 23.4 1.79E-05

PID Fanconi Anemia Pathway 46 14 30.4 8.58E-05

KEGG Hepatitis C 155 27 17.4 0.000209

Reactome DNA Repair 320 43 13.6 0.000269

Reactome Interleukin-27 Signaling 10 6 60.0 0.000451

https://doi.org/10.1371/journal.pone.0242384.t001
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connected via a valine degradation pathway to a group of malonate/vitamin B12 tightly associ-

ated pathways and a relatively high amount of proteins with overlapping functions in a mito-

chondrial fatty acid β-oxidation pathway. In the down-regulated unique protein network map

of Fig 4 two independent networks emerged: a mitochrondrial translation network (lower

right-hand side) along with a complex network composed of least 3–4 relatively strongly over-

lapping pathway networks: the interleukin associated pathways (lower right), the DNA repair

pathways (lower left), the disease/infection associated pathways (central right), and the G1/S

pathways (upper center). Similar examples of interconnected pathway relationships can be dis-

cerned in the pathways shown in Fig 5 as well as in the S4–S7 Figs.

Transcriptome-based pathway discovery. Analogous to the proteome-based analyses,

lists of transcripts from each isogenic metastatic cell line with FCs� -1.25 and� +1.25, rela-

tive to their 1˚ tumors (S7–S12 Spreadsheets) were analyzed with ConsenusPathDB. Abridged

data sets, i.e., the top 10 up- and down-regulated pathways for each isogenic metastatic cell

line, (q� 0.05) are provided in S7–S12 Tables with the complete pathway lists given in S20

Spreadsheet. Although transcriptome-based pathway discovery analyses uncovered pathways

common with those of the proteome-based pathways (see below), overall, the majority of tran-

scriptome-based pathways differed from the above proteome-based pathways.

Similar to the proteomic based pathway lists, we submitted the transcriptomic based lists of

up- and down-regulated pathways to hierarchical clustering analysis and the resulting heat

maps are shown in Fig 3B. Unlike the proteomic-based heat maps, both the up- and down-reg-

ulated pathway data sets of these analyses separated the lung-231 and lymph node-231 cell

lines. In the case of the up-regulated heat map the lung-231 cell line was linked to a clade made

up of closely related spine-435 and lymph node-231 cell lines while at the same time being

closer to the lung-435 cell line that formed a clade with the brain-435 cell line with this clade

Table 2. Proteomic-based unique pathways for the metastatic liver-435 cell line.

Source Up Pathways # of Proteins in Set # of Obs. Proteins Obs. Proteins (%) q-value

Reactome Regulation of IGF Transport & Uptake by IGFBPs 127 11 8.7 0.000201

Reactome Formation of Fibrin Clot 39 6 15.4 0.000953

Reactome Post-translational Protein Phosphorylation 110 9 8.3 0.001048

Reactome Hemostasis 668 22 3.3 0.003980

PID Arf1 pathway 20 4 20.0 0.004781

Reactome HS-GAG Degradation 21 4 19.0 0.005157

Reactome Intrinsic Pathway of Fibrin Clot Formation 22 4 18.2 0.005891

Reactome Binding and Uptake of Ligands by Scavenger Receptors 41 5 12.2 0.006087

Reactome Platelet Degranulation 129 8 6.2 0.008542

PID FOXA2 and FOXA3 Transcription Factor Networks 45 5 11.1 0.008542

Down Pathways

Reactome Cds1 Mediated Inactivation of Cyclin B:Cdk1 Complex 13 8 61.50 8.10E-06

PID Regulation of Nuclear β-Catenin Signaling & Target Gene Transcription 80 17 21.20 2.46E-05

PID Insulin-mediated Glucose Transport 29 10 34.50 5.01E-05

Reactome Activation of BAD & Translocation to Mitochondria 15 7 46.70 0.0001761

PID p38 Signaling Mediated by MAPKAP Kinases 21 8 38.10 0.000203

Reactome Protein Folding 103 17 16.50 0.000364

Reactome Translocation of GLUT4 to the Plasma Membrane 32 9 28.10 0.000560

Reactome Metabolism of RNA 586 51 8.70 0.000747

KEGG Drug Metabolism—Other Enzymes 79 14 17.70 0.000747

PID LKB1 Signaling Events 43 10 23.30 0.000910

https://doi.org/10.1371/journal.pone.0242384.t002
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being more distantly linked to the liver-435 cell line. In the case of the down-regulated heat

map, lung-231 was linked to the clade of closely related spine-435 and liver-435 cell lines while

the lymph node-231 cell line was linked in a separate clade to the liver-435 cell line and more

distantly, both were linked to the brain-435 cell line.

As with the ConsensusPathDB analyses of the proteomic data sets, several of the integrated

databases of ConsensusPathDB uncovered the identical or overlapping similar pathways from

the submitted gene lists. For example, in metastatic brain-435 (S7 Table) the ‘ECM-receptor

interaction’ pathway (Source: KEGG) was up-regulated and confirmed as the ‘extracellular

matrix organization’ pathway (Source: Reactome) and (S7 Table) the down-regulated ‘DNA

replication’ pathway (Source: Reactome) was replicated (Source: Wikipathways). Several of

these types of examples can be seen in the S7–S12 Tables. General vague pathway designations

were also again observed, such as ‘extracellular matrix organization’, ‘cell cycle’, ‘cytokine sig-

naling in immune system’, ‘metabolism of RNA’, ‘gene expression (transcription)’, ‘RNA poly-

merase II transcription’, generic transcription pathway’, ‘chromatin modifying enzymes’,

‘axon guidance’, ‘muscle contraction’, and ‘neutrophil degranulation’.

The top 10 up- and down-regulated transcriptome-based unique pathways for each isogenic

metastatic cell line are listed in the S13–S18 Tables. Pathway duplications or lists of similar

pathways from different integrated Sources along with vague pathways designations were

again obvious. Pathways that provided possible examples of metastatic cell lines acquiring tis-

sue specific assimilations included: for brain-435 up-regulated ‘presynaptic depolarization &

calcium channel opening’, ‘NCAM1 interactions’, and phenylethylamine degradation I’ path-

ways; for liver-435 up-regulated ‘interferon-α/β signaling’ and ‘chondroitin sulfate/dermatan

Table 3. Proteomic-based unique pathways for the metastatic lung-435 cell line.

Source Up Pathways # of Proteins in

Set

# of Obs.

Proteins

Obs. Proteins

(%)

q-value

Reactome Interferon Signaling 158 31 19.6 1.41E-10

KEGG Parkinson disease 142 27 19.0 3.12E-09

KEGG Nonalcoholic Fatty Liver Disease 149 26 17.4 3.78E-08

Wikipathways Nonalcoholic Fatty Liver Disease 155 26 16.8 7.95E-08

KEGG Alzheimer Disease 171 26 15.2 4.94E-07

KEGG Oxidative phosphorylation 133 22 16.5 1.39E-06

Wikipathways Electron Transport Chain (OXPHOS) 103 19 18.4 2.07E-06

KEGG Epstein-Barr Virus Infection 201 27 13.5 2.42E-06

KEGG Huntington Disease 193 26 13.5 4.32E-06

Reactome Interferon-α/β Signaling 70 15 21.4 6.76E-06

Down Pathways

BioCarta Regulation of EIF-4e & p70s6 Kinase 25 10 40.0 2.11E-05

Reactome Signaling by VEGF 100 18 18.0 0.0002624

KEGG Estrogen Signaling Pathway 137 21 15.4 0.0004490

Wikipathways 4-Hydroxytamoxifen, Dexa-methasone, & Retinoic Acids Regulation of p27

Expression

17 7 41.2 0.000475

PID AMB2 Integrin Signaling 31 9 29.0 0.000701

Reactome Regulation of PTEN Stability & Activity 25 8 32.0 0.000819

BioCarta Corticosteroids & Cardioprotection 27 8 29.6 0.001382

KEGG Prostate Cancer 97 16 16.5 0.001407

Wikipathways Androgen Receptor Signaling Pathway 89 15 16.9 0.001709

BioCarta VEGF Hypoxia & Angiogenesis 30 8 26.7 0.002542

https://doi.org/10.1371/journal.pone.0242384.t003
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sulfate metabolism’ pathways; for spine-435 (given its neuronal component) up-regulated ‘stri-

ated muscle contraction’, ‘val, leu, and Ile degradation’, ‘ketogenesis’, and ‘ion channel trans-

port’ pathways; and, for lymph node-231 up-regulated ‘non-genomic actions of

1,25-dihydroxyvitamine D3’.

Similar to the case of the proteome pathways, we explored the interconnected pathway net-

works formed by those transcriptome-based pathways that were unique to each isogenic cell

line. Examples of such networks are shown in Fig 6 (brain-435) and Fig 7 (lung-231) as well as

in S8–S11 Figs. However, in these cases the number of pathways that were significantly up- or

down-regulated, i.e., q� 0.05, was not always greater-than or equal to 20. Thus, for those cases

with less-than 20 pathways: brain-435 cells had 9 up- and 7 down-regulated pathways (Fig 6),

lung-435 cells had 11 down-regulated pathways (S9 Fig), spine-435 cells had 13 up-regulated

pathways (S10 Fig), lung-231 cells had 8 up- and 9 down-regulated pathways (Fig 7), and

lymph node-231 cells had 8 down-regulated (and 5 of these were trending down with

q = 0.0.55; S11 Fig). Not only were there often fewer significant (q� 0.05) transcriptomic path-

ways in the networks but, in all cases, the connections between the pathways within the net-

works were weaker, that is, the connections consisted of fewer shared transcript products.

Moreover, several more ‘orphan’, i.e., non-connected pathways emerged during these

analyses.

Common proteomic and transcriptomic pathways. As a means of confirming the prote-

ome-based and transcriptome-based pathway discovery analyses, we compared the protein

lists to their corresponding transcript lists (FCs� -1.25 and� 1.25) to match the proteins to

their identical transcripts. This showed that the resulting matched protein-transcript lists were

generally only a small percentage of either of their source lists, i.e., RNAseq-based transcripts

Table 4. Proteomic-based unique pathways for the metastatic spine-435 cell line.

Source Up Pathways # of Proteins in Set # of Obs. Proteins Obs. Proteins (%) q-value

Wikipathways Ethanol Effects on Histone Modifications 31 5 16.1 0.0095

Reactome Amino Acid Transport Across the Plasma Membrane 32 5 15.6 0.0095

KEGG Terpenoid Backbone Biosynthesis 22 4 18.2 0.0095

Wikipathways mRNA, Protein, & Metabolite Inducation Pathway by Cyclosporin A 6 3 50.0 0.0095

PID FOXA1 Transcription Factor Network 44 5 11.4 0.0154

HumanCyc Superpathway of Geranyl- geranyldiphosphate Biosynthesis I (via
Mevalonate)

12 3 25.0 0.0169

HumanCyc Eumelanin Biosynthesis 4 2 50.0 0.0279

Reactome Amino Acid & Oligopeptide SLC Transporters 52 5 9.6 0.0282

Wikipathways Type 2 Papillary Renal Cell Carcinoma 34 4 11.8 0.0363

Reactome LRR FLII-Interacting Protein 1 Activates Type I IFN Production 5 2 40.0 0.0371

Down Pathways

Reactome MyD88 Cascade Initiated on Plasma Membrane 87 12 13.8 0.001695

Reactome Toll Like Receptor 10 (TLR10) Cascade 87 12 13.8 0.001695

Reactome TLR5 Cascade 87 12 13.8 0.001695

Reactome TRAF6 Mediated NFκB & MAP Kinases via TLR7/8 or 9 88 12 13.6 0.001829

Reactome TLR9 Cascade 94 12 12.8 0.002692

Reactome MyD88:Mal Cascade 97 12 12.4 0.003160

Reactome TLR1:TLR2 Cascade 97 12 12.4 0.003160

Reactome TLR6:TLR2 Cascade 97 12 12.4 0.003160

Reactome TLR2 Cascade 97 12 12.4 0.003160

Reactome TLR4 Cascade 127 14 11.0 0.003303

https://doi.org/10.1371/journal.pone.0242384.t004
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had relatively few matches to the corresponding proteomic-based proteins. Hence, relative to

their source protein or transcript lists, the up-regulated matched lists overlapped by only: 6.2

or 3.3%, 22.2 or 3.0%, 24.3 or 5.4%, 10.1 or 2.9%, 19.4 or 11.3%, and 25.6 or 8.1% for brian-

435, liver-435, lung-435, spine-435, lung-231, and lymph node-231 respectively. Similarly, rel-

ative to their source protein or transcript lists, down-regulated matched lists overlapped by

only: 6.9 or 15.4%, 10.0 or 6.3%, 17.8 or 5.3%, 12.7 or 6.8%, 38.9 or 16.9%, and 34.5 or 17.4%

for brain-435, liver-435, lung-435, spine-435, lung-231, and lymph node-231 respectively.

These resulting lists were submitted to ConsensusPathDB to find those pathways that were

common to both “omics” analyses. Representatives of these common pathways are given as

the top 10 up- and down-regulated pathways (q� 0.05) in S19–S24 Tables with the complete

common pathway lists given in SPT1 Spreadsheet. In the case of the lung-435 cell line we

found only 5 up-regulated pathways that trended (S21 Table—gray shading: q = 0.055) as com-

mon. In addition, during all pathway discovery analyses, we used the default settings of Con-

sensusPathDB, which used� 2 proteins to define a ‘pathway’. Consequently, several of the

listed common pathways in S19–S24 Tables were composed of only a few (2–4) proteins/genes

and yet remained statistically significant, i.e., q� 0.05, and therefore, have been included but

their relevant biological significance will require further investigations.

Common as well as unique proteomic-transcriptomic pathways. The top 10 up- and

down-regulated pathways (q� 0.05) that were common as well as unique proteome-transcrip-

tome pathways of each isogenic metastatic cell line are presented in Tables 7–12. Examples of

possible tissue specific associated pathways were those of liver-435: the up-regulated general

‘immune system’ and especially the ‘innate immune system’, ‘neutrophil degranulation’,

‘MHC class II antigen presentation’, and general ‘hemostasis’, as well as with ‘metabolism of

Table 5. Proteomic-based unique pathways for the metastatic lung-231 cell line.

Source Up Pathways # of Proteins in

Set

# of Obs. Proteins Obs. Proteins (%) q-value

Reactome Translation 310 71 23.1 4.28E-15

KEGG Ribosome 153 45 29.4 2.92E-13

Reactome Mitochondrial translation 95 32 34.0 2.91E-11

Reactome Nonsense Mediated Decay (NMD) Enhanced by the Exon Junction Complex

(EJC)

118 33 28.2 2.33E-09

Reactome Nonsense-Mediated Decay 118 33 28.2 2.33E-09

Reactome Eukaryotic Translation Elongation 106 31 29.5 2.46E-09

Wikipathways Cytoplasmic Ribosomal Proteins 88 27 30.7 1.34E-08

Reactome Eukaryotic Translation Termination 104 29 28.2 2.63E-08

Reactome Selenoamino Acid Metabolism 130 33 25.6 2.63E-08

Reactome NMD Independent of the EJC 106 29 27.6 4.13E-08

Down Pathways

Reactome Degradation of the Extracellular Matrix 105 17 16.2 0.005843

PID p75(NTR)-Mediated Signaling 71 13 18.6 0.007076

BioCarta Inhibition of Matrix Metalloprotein-ases 8 4 50.0 0.012534

Signalink EGF-Core 105 16 15. 0.012969

KEGG Apoptosis 136 19 14.0 0.013516

Wikipathways Nanomaterial Induced Apoptosis 20 6 30.0 0.015117

NetPath IL-7 27 7 25.9 0.015360

BioCarta Stress Induction of HSP Regulation 14 5 35.7 0.015729

Reactome Retinoid Metabolism & Transport 45 9 20.0 0.020881

SMPDB Pyruvate Dehydrogenase Complex Deficiency 22 6 27.3 0.021846

https://doi.org/10.1371/journal.pone.0242384.t005
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Table 6. Proteomic-based unique pathways for the metastatic lymph node-231 cell line.

Source Up Pathways # of Proteins in Set # of Obs. Proteins Obs. Proteins (%) q-value

Reactome Transcriptional

Regulation by RUNX3

52 15 29.4 4.86E-07

PID Signaling Events

Mediated by HDAC Class

I

56 15 26.8 1.82E-06

BioCarta Information Processing

Pathway at the IFN-β
Enhancer

29 10 34.5 8.25E-06

Reactome Generic Transcription

Pathway

1107 107 9.7 1.14E-05

Reactome RHO GTPases Activate

CIT

19 8 42.1 1.23E-05

NetPath TGF-β Receptor 174 27 15.6 1.88E-05

Reactome EPHA-mediated Growth

Cone Collapse

15 7 46.7 1.95E-05

PID Glucocorticoid Receptor

Regulatory Network

80 16 20.0 4.68E-05

Wikipathways Hematopoietic Stem Cell

Gene Regulation by

GABP-α/β Complex

19 7 36.8 0.000121

Reactome RHO GTPases Activate

ROCKs

19 7 36.8 0.000121

Down Pathways

SMPDB MIT β-Oxidation of

Short Chain Saturated

Fatty Acids

8 6 75.0 0.000302

SMPDB Short-chain

3-hydroxyacyl-CoA

Dehydrogenase

Deficiency

8 6 75.0 0.000302

Reactome COPI-mediated

Anterograde Transport

83 19 22.9 0.001986

EHMN Urea Cycle & Metabolism

of Arg, Pro, Glu, Asp &

Asn

106 22 21.0 0.002350

Wikipathways One Carbon Metabolism

& Related Pathways

52 14 26.9 0.002435

EHMN 3-Oxo-10R-

octadecatrienoate β-

oxidation

11 6 54.5 0.002649

SMPDB 3-Methylglutaconic

Aciduria Type I

30 10 33.3 0.002710

SMPDB 2-Methyl-

3-Hydroxybutryl CoA

Dehydrogenase

Deficiency

30 10 33.3 0.002710

SMPDB Isovaleric Aciduria 30 10 33.3 0.002710

SMPDB 3-Methylcrotonyl CoA

Carboxylase Deficiency

Type I

30 10 33.3 0.002710

https://doi.org/10.1371/journal.pone.0242384.t006
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Fig 4. The up- and down-regulated proteomic-based interconnected network maps of pathways unique to the brain-435 cell line. The size

range of the nodes correlates to the size of the protein sets while the range of hues of the nodes correlates with the q-values, which is correlated

to the size of the number of observed proteins. The edges represent the overlap of shared proteins between the connected nodes with the width

of the edges representative of the size of the overlap and their color denoting the number of the observed proteins that are shared.

https://doi.org/10.1371/journal.pone.0242384.g004
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Fig 5. The up- and down-regulated proteomic-based interconnected pathway network maps of unique to the lung-231 cell line. The size

range of the nodes correlates to the size of the protein sets while the range of hues of the nodes correlates with the q-values, which is correlated

to the size of the number of observed proteins. The edges represent the overlap of shared proteins between the connected nodes with the width

of the edges representative of the size of the overlap and their color denoting the number of the observed proteins that are shared.

https://doi.org/10.1371/journal.pone.0242384.g005
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Fig 6. The up- and down-regulated transcriptomic-based interconnected pathway network maps of unique to the brain-435 cell

line. The size range of the nodes correlates to the size of the transcript (gene) sets while the range of hues of the nodes correlates with

the q-values, which is correlated to the size of the number of observed transcripts. The edges represent the overlap of shared

transcripts of the connected nodes with the width of the edges representative of the size of the overlap and their color denoting the

number of the observed transcripts that are shared.

https://doi.org/10.1371/journal.pone.0242384.g006
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fat-soluble vitamins’. The immune system and its sub-pathways that are involved with exoge-

nous pathogen threats are prevalent components of the liver, which receives the largest portion

of its blood supply from the portal vein and hence the gut where pathogen levels are relatively

high [28]. In addition, the liver processes and stores fat-soluble vitamins [29]. For spine-435

Fig 7. The up- and down-regulated transcriptomic-based interconnected pathway network maps of unique to the lung-231 cell line. The size

range of the nodes correlates to the size of the transcript (gene) sets while the range of hues of the nodes correlates with the q-values, which is

correlated to the size of the number of observed transcripts. The edges represent the overlap of shared transcripts of the connected nodes with the

width of the edges representative of the size of the overlap and their color denoting the number of the observed transcripts that are shared.

https://doi.org/10.1371/journal.pone.0242384.g007
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cells such a pathway was the up-regulated ‘cholesterol biosynthesis, regulation, and transport’

pathway, which is important for bone growth hemostasis as well as neuronal function [30, 31].

Surprisingly, reported tumor/metastatic suppressor pathways: ‘transcriptional regulation by

RUNX3’, ‘death receptor signaling’, and ‘regulation of PTEN stability and activity’ were up-

regulated in lymph node-231 cells and as such deserve further investigation as to the function

of these pathways in normal lymph nodes/lymphocytes/hematopoiesis, and reticular cells.

Metabolomic-based pathway discovery. As a further means of confirming the pathways

revealed by ConsensusPathDB when using the protein or transcript lists from the proteomic

and RNAseq studies we submitted lists of aqueous phase metabolites that were acquired from

an earlier metabolomics study of the 435 cell lines, which included hierarchical clustering and

principle component analyses but no pathway analyses [12], to ConsensusPathDB. The result-

ing complete metabolomic pathway discovery and comparison pathways along with the

metabolite CAS numbers are given in S21–S28 Spreadsheets. The top 10 up- and down-regu-

lated pathways (q� 0.05) for each of the isogenic metastatic cell lines are presented in S25–

S28 Tables. For the brain-435 and liver-435 cell lines the up-regulated pathway lists were gen-

erally based on a small number of metabolites (2–4 metabolites) as defining the pathways,

which, were statistical significant, but as noted above (Common proteomic and transcrip-

tomic pathways) their biological relevance needs further investigation. Also, these analyses

revealed a possible limitation to the CensusPathDB platform as it was found; e.g., in the up-

regulated pathway list of lung-435 cells that the SMPDB Source gave 5 apparent independent

pathways, but these were based on the same 6 metabolites (S25 Spreadsheet). Thus, as noted

above during the proteomic-based pathway discovery analyses, online pathway designations

Table 7. Unique pathways found to be common in both proteomic and transcriptomic analyses for the metastatic brain-435 cell line.

Source Up Pathways # of Gs-Psǂ in Set # of Obs. Gs-Ps Obs. Gs-Ps (%) q-value

Wikipathways MAPK Signaling Pathway 246 4 1.6 0.020124

KEGG MAPK Signaling Pathway 295 4 1.4 0.020124

Reactome Integrin Cell Surface Interactions 67 3 4.5 0.020124

KEGG C-Type Lectin Receptor Signaling Pathway 104 3 2.9 0.020124

KEGG Apelin Signaling Pathway 137 3 2.2 0.020124

KEGG Phospholipase D Signaling Pathway 146 3 2.1 0.020124

Wikipathways Inhibition of Exosome Biogenesis & Secretion by Manumycin A in CRPC Cells 18 2 11.1 0.020124

PID Plexin-D1 Signaling 24 2 8.3 0.020124

Reactome Ca-Dependent Events 28 2 7.1 0.020124

Wikipathways p38 MAPK Signaling Pathway 34 2 5.9 0.020124

Down Pathways

PID E2F Transcription Factor Network 75 6 8.0 1.46E-05

Reactome M Phase 340 9 2.7 0.000163

Reactome Removal of the Flap Intermediate 14 3 21.4 0.000182

Reactome Polymerase Switching on the C-Strand of the Telomere 14 3 21.4 0.000182

Reactome Polymerase Switching 14 3 21.4 0.000182

Reactome Leading Strand Synthesis 14 3 21.4 0.000182

Reactome Processive Synthesis on the Lagging Strand 15 3 20.0 0.000220

Reactome Mitotic Anaphase 140 6 4.3 0.000239

Reactome Mitotic Metaphase & Anaphase 141 6 4.3 0.000242

PID PLK1 Signaling Events 44 4 9.1 0.000242

ǂGs-Ps denotes Genes-Proteins, i.e., the input dataset was a common (combined) genes-proteins dataset.

https://doi.org/10.1371/journal.pone.0242384.t007
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can result in lists of similar related or identical pathways that have been given different labels,

which appears to have been the case with this example of SMPDB designations. The latter was

again apparent for all 4 lists of down-regulated pathways shown in S25–S28 Tables.

Metabolomic-based unique pathways. In these cases (S29–S32 Tables), the majority of

pathways were either considered as being weakly defined (2–4 metabolites/pathway) or the dif-

ferent pathway designations were based on identical metabolite lists; e.g., Source SMPDB in

the down-regulated list for the liver-435 cell line (S30 Table and S24 Spreadsheet) and in the

up- and down-regulated lists of lung-435 (S31 Table and S25 Spreadsheet).

Common metabolomic and proteomic pathways. An analysis of these common path-

ways revealed only two (e.g., in brain-435, lung-435, and spine-435) or no (liver-435) up-regu-

lated pathways but those that were found were unique to each cell line (S33–S36 Tables). In

addition, the two up-regulated transport pathways (S36 Table) of spine-435 may indicate some

specific influence of the neuronal component of spine during growth in the spine. On the

other hand, most of the top 15 common down-regulated pathways (S33–S36 Tables) were

shared between cell lines. For example, the ‘cell cycle, mitotic’ (Source: Reactome) pathway

was down in brain-, liver-, and spine-435 cell lines while the ‘pyrimidine metabolism” (Source:

KEGG) pathway was down in brain-, liver-, and lung-435 cell lines. Those pathways that were

down-regulated in brain-435 and liver-435 cell lines included: ‘cell cycle’, ‘translation’, as well

as ‘S phase’ (Source: Reactome) along with the ‘pyrimidine metabolism’ (Source: Wikipath-

ways) pathway, and ‘purine metabolism’ (Source: KEGG) pathway. The ‘post-translational

protein modification’ (Source: Reactome) pathway was shared by brian-435 and lung-435

Table 8. Unique pathways found to be common in both proteomic and transcriptomic analyses for the metastatic liver-435 cell line.

Source Up Pathways # of Gs-Psǂ in

Set

# of Obs.

Gs-Ps

Obs. Gs-Ps

(%)

q-value

KEGG Lysosome 123 9 7.3 2.51E-08

Reactome Neutrophil Degranulation 490 11 2.3 2.11E-05

Reactome Innate Immune System 1077 13 1.2 0.001011

Reactome MHC Class II Antigen Presentation 59 4 6.8 0.001519

KEGG Antigen Processing & Presentation 77 4 5.2 0.003464

Reactome Hemostasis 668 9 1.3 0.006099

Reactome Immune System 1840 15 0.8 0.008389

Reactome Metabolism of Fat-soluble Vitamins 49 3 6.1 0.010501

Reactome Trafficking & Processing of Endosomal TLR 13 2 15.4 0.011678

Reactome TP53 Regulates Transcription of Several Additional Cell Death Genes Whose Specific Roles in

p53-dependent Apoptosis Remain Uncertain

14 2 14.3 0.012152

Down Pathways

Reactome Resolution of Abasic Sites (AP Sites) 37 3 8.1 0.001607

Reactome Base Excision Repair 37 3 8.1 0.001607

Reactome Dual Incision in GG-NER 41 3 7.3 0.001991

KEGG Nucleotide Excision Repair (NER) 47 3 6.4 0.002742

Reactome Apoptotic Execution Phase 52 3 5.8 0.003478

INOH DroToll-like 65 3 4.6 0.005417

Reactome Gap-filling DNA Repair Synthesis & Ligation in TC-NER 68 3 4.4 0.005837

Reactome Dual incision in TC-NER 69 3 4.3 0.005970

INOH Hedgehog 72 3 4.2 0.006618

Reactome Transcription-Coupled Nu-NER 81 3 3.7 0.008149

ǂGs-Ps denotes Genes-Proteins, i.e., the input dataset was a common (combined) genes-proteins dataset.

https://doi.org/10.1371/journal.pone.0242384.t008
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while the ‘metabolism of nucleotides’ (Source: Reactome) pathway was shared by brain-435

and spine-435. The vaguely defined ‘metabolism’ (Source: Reactome), ‘pyrimidine nucleotides

nucleosides metabolism (Source: INOH) along with ‘DNA replication’ and ‘selenoamino acid

metabolism’ (Source: Reactome) pathways were unique to brain-435. This type of pattern of

shared pathways can be seen when S33–S36 Tables were compared. Unique pathways for

liver-435 (S34 Table) were: the ‘superpathway of purine nucleotides salvage’ (Source: Human-

Cyc) pathway along with ‘DNA replication’, ‘teleomere C-strand (lagging strand) synthesis’,

and ‘TCA cycle and respiratory electron transport’ (Source: Reactome) pathways. For the

lung-435 cell line (S35 Table) the unique pathways were the: ‘pentose phosphate pathway’, ‘gly-

cogenosis, type IA, von Gierke Disease’, and ‘pyrimidine metabolism’ (Source: SMPDB) path-

ways, and ‘interconversion of nucleotide di- and triphosphate’ and ‘asn N-linked

glycosylation’ (Source: Reactome) pathways as well as the ‘glucagon signaling pathway’

(Source: KEGG). The unique down-regulated pathways for spine-435 were: ‘gluconeogenesis’,

Fanconi-Bickel syndrome’, and ‘oncogenic action of succinate’ (Source: SMPDB) pathways,

along with ‘citrate cycle’ and ‘aminosugars metabolism’ (Source: INOH) pathways, and the

‘pyruvate metabolism and TCA cycle’ (Source: Reactome) pathway.

Common metabolomic and transcriptomic pathways. These pathways are presented in

S37–S40 Tables. Similar to S33–S36 Tables, no, or only one or two common up-regulated

pathways were found. Of these the single up-regulated pathway: ‘arg and pro metabolism’

(Source: INOH) found for the brain-435 cell line was shared with the spine-435 cell line while

the ‘metabolism of amino acids and derivatives’ (Source: Reactome) and the ‘his, lys, phe, tyr,

pro, and trp catabolism’ (Source: Reactome) pathways were uniquely up-regulated in lung-435

and spine-435 cell lines respectively. Again, similar to what was found in S33–S36 Tables, sev-

eral of the top 12–15 down-regulated pathways were shared between cell lines but more of

the pathways were unique to each cell line. Thus, for the brain-435 cell line the unique down-

regulated pathways were: ‘pyrimidine metabolism’ (Source: Wikipathways) along with

Table 9. Unique pathways found to be common in both proteomic and transcriptomic analyses for the metastatic lung-435 cell line.

Source Up Pathways # of Gs-Psǂ in Set # of Obs. Gs-Ps Obs. Gs-Ps (%) q-value1

Wikipathways miR-targeted Genes in Muscle Cell—TarBase 400 12 3.0 0.055336

KEGG Herpes Simplex Infection 185 8 4.3 0.055336

Reactome rRNA Modification in the Nucleus & Cytosol 59 5 8.6 0.055336

Reactome rRNA Processing in the Nucleus & Cytosol 59 5 8.6 0.055336

Reactome rRNA Processing 65 5 7.8 0.055336

Down Pathways

Reactome Post-translational Protein Phosphorylation 110 8 7.3 0.000940

Reactome Collagen Chain Trimerization 44 5 11.4 0.002614

KEGG ECM-receptor Interaction 82 6 7.3 0.004541

Reactome N-Glycan Antennae Elongation 15 3 20.0 0.009370

Wikipathways Senescence & Autophagy in Cancer 106 6 5.7 0.010738

Reactome Chylomicron Clearance 5 2 40.0 0.013331

Reactome Sulfide Oxidation to Sulfate 5 2 40.0 0.013331

KEGG Protein Digestion & Absorption 90 5 5.6 0.020575

Reactome N-Glycan Antennae Elongation in the Medial/Trans-Golgi 26 3 11.5 0.020575

Reactome Sulfur Amino Acid Metabolism 27 3 11.5 0.020575

ǂGs-Ps denotes Genes-Proteins, i.e., the input dataset was a common (combined) genes-proteins dataset.
1Gray shading of values indicates that the pathways are trending to significance.

https://doi.org/10.1371/journal.pone.0242384.t009
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‘chromosome maintenance’, ‘telomere maintenance’, ‘extension of telomeres’, and ‘synthesis

of DNA’ (Source: Reactome) pathways; for liver-435 cells the unique pathways were; ‘pyrimi-

dine metabolism’, ‘pentose phosphate pathway’, urea cycle and metabolism of arg, pro, glu,

asp, and asn’, and ‘purine metabolism’ (Source: EHMN) along with ‘interconversion of nucleo-

tide di- and triphosphates’, ‘DNA replication initiation’, and ‘transcriptional regulation by

TP53’ (Source: Reactome) and ‘pyrimidine metabolism’ (Source: KEGG); for the lung-435 cell

line the unique pathways were: ‘metabolism of carbohydrates’ (Source: Reactome) and ‘glycol-

ysis gluconeogenesis’ (Source: INOH); finally, the unique spine-435 cell line pathways were:

‘gluconeogenesis’, ‘gluconeogenesis, type IA, von Gierke disease’, ‘glycolysis’, and ‘Fanconi-

Bickel syndrome’ (Source: SMPDB) along with ‘superpathway of conversion of glucose to ace-

tyl CoA and entry into the TCA cycle’ and ‘gluconeogenesis’ (Source: HumanCyc), ‘metabolite

reprogramming in colon cancer’ and ‘Cori cycle’ (Source: Wikipathways), ‘glucose metabo-

lism’, gluconeogenesis’, and ‘glycolysis’ (Source: Reactome).

Importantly, a comparison of S33–S36 Tables with corresponding S37–S40 Tables indicated

many of the pathways in these sets of tables; e.g., S33 Table vs S37 Table, etc., were the same.

Consequently, we found identical pathways, albeit with all but one being down-regulated path-

ways, that had been discovered by the use of three separate data sets, i.e., proteomic, transcrip-

tomic, and metabolomic. Thus, a comparison of these tables showed a convergence of the

three data sets onto common pathways. For the brain-435 cell line these were down-regulated:

‘cell cycle’, ‘cell cycle, mitotic’, ‘pyrimidine metabolism’ (Source: Wikipathways), ‘S phase’,

‘DNA replication’, and ‘extension of telomeres’; for the liver-435 cell line these were down-reg-

ulated: ‘pyrimidine metabolism’ (Source: EHMN), ‘nucleotide di- and triphosphates’, ‘S

Table 10. Unique pathways found to be common in both proteomic and transcriptomic analyses for the metastatic spine-435 cell line.

Source Up Pathways # of Gs-Psǂ in Set # of Obs. Gs-Ps Obs. Gs-Ps (%) q-value

Wikipathways Cholesterol Biosynthesis, Regulation & Transport 9 3 33.3 2.64E-05

SMPDB Simvastatin Action Pathway 22 3 13.6 2.64E-05

SMPDB Hyper-IgD Syndrome 22 3 13.6 2.64E-05

SMPDB Cholesteryl Ester Storage Disease 22 3 13.6 2.64E-05

SMPDB Lysosomal Acid Lipase Deficiency (Wolman Disease) 22 3 13.6 2.64E-05

SMPDB Mevalonic Aciduria 22 3 13.6 2.64E-05

SMPDB Wolman Disease 22 3 13.6 2.64E-05

SMPDB Smith-Lemli-Opitz Syndrome 22 3 13.6 2.64E-05

SMPDB Chondrodysplasia Punctata II, X Linked Dominant (CDPX2) 22 3 13.6 2.64E-05

SMPDB CHILD Syndrome 22 3 13.6 2.64E-05

Down Pathways

INOH Citrate cycle 32 4 12.5 0.000135

Reactome Dissolution of Fibrin Clot 13 3 23.1 0.000221

PID β3-Integrin Cell Surface Interactions 44 4 9.1 0.000447

Wikipathways Hereditary Leiomyomatosis & Renal Cell Carcinoma Pathway 20 3 15.0 0.000751

Wikipathways Interleukin-4 & Interleukin-13 Signaling 97 5 5.2 0.000751

Reactome Basigin Interactions 27 3 11.5 0.001521

Wikipathways Macrophage Markers 9 2 22.2 0.004074

Wikipathways miR-targeted Genes in Leukocytes—TarBase 154 5 3.2 0.005464

Reactome eNOS Activation 11 2 18.2 0.005929

Wikipathways Prostaglandin Synthesis & Regulation 44 3 6.8 0.006368

ǂGs-Ps denotes Genes-Proteins, i.e., the input dataset was a common (combined) genes-proteins dataset.

https://doi.org/10.1371/journal.pone.0242384.t010
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phase’, ‘DNA replication’, ‘pyrimidine metabolism’ (Source: KEGG), ‘telomere C-strand (lag-

ging strand) synthesis’, ‘cell cycle’, and ‘cell cycle, mitotic’; for the lung-435 cell line these were

the up-regulated: ‘metabolism of amino acids and derivatives’, and the down-regulated:

‘metabolism of carbohydrates’ and, for the spine-435 cell these were the down-regulated: ‘glu-

coneogenesis’ (Source: SMPDB), ‘superpathway of conversion of glucose to acetyl CoA and

entry into the TCA cycle’, ‘metabolic reprogramming in colon cancer’, ‘Fanconi-Bickel syn-

drome’, ‘glucose metabolism’ and ‘Cori cycle’.

qRT-PCR verification

It has been noted above that proteomic derived protein lists could only be sparingly matched

to their corresponding transcripts from the RNAseq analyses. Our qRT-PCR results were simi-

lar in that only a small percentage of the protein and transcript levels found during the proteo-

mics and RNAseq analyses could be confirmed with qRT-PCR. Representative genes analyzed

by qRT-PCR are given in Table 7 along with their fold changes in their respective protein and

transcript (gene) lists. Bar graphs of the qRT-PCR results are presented in Fig 8A and 8B for

the isogenic metastatic 231 and 435 cell lines respectively. In all cases, the direction (up- or

down-regulated) matched the up- and down-regulation of their proteins and transcripts

(Table 13).

In vitro drug testing

From our earlier studies [12, 13] and reports from other labs [5, 6, 8, 10, 11, 32], it is becoming

established that metastatic lesions have diverged from their primary tumors at several levels:

Table 11. Unique pathways found to be common in both proteomic and transcriptomic analyses for the metastatic lung-231 cell line.

Source Up Pathways # of Gs-Psǂ in Set # of Obs. Gs-Ps Obs. Gs-Ps (%) q-value

Reactome Vitamin B5 Metabolism 14 4 28.6 0.010842

Reactome RHO GTPase Effectors 301 13 4.3 0.017389

Reactome Metabolism of Nucleotides 105 8 7.6 0.017389

KEGG Pantothenate & CoA Biosynthesis 19 4 21.1 0.017389

SMPDB UMP Synthase Deiciency (Orotic Aciduria) 23 4 17.4 0.017389

SMPDB MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy) 23 4 17.4 0.017389

SMPDB β-Ureidopropionase Deficiency 23 4 17.4 0.017389

SMPDB Dihydropyrimidinase Deficiency 23 4 17.4 0.017389

SMPDB Mercaptopurine Action Pathway 47 5 10.6 0.019771

SMPDB Azathioprine Action Pathway 47 5 10.6 0.019771

Down Pathways

Reactome Golgi Associated Vesicle Biogenesis 56 9 16.1 0.001709

KEGG Mucin Type O-glycan Biosynthesis 31 6 19.4 0.006683

PID α6-β4-Integrin-Ligand Interactions 11 4 36.4 0.006683

KEGG Apoptosis 136 12 8.8 0.010760

HumanCyc Ethanol Degradation IV 6 3 50.0 0.012092

PID p75(NTR)-Mediated Signaling 71 8 11.4 0.015730

HumanCyc Oxidative Ethanol Degradation III 7 3 42.9 0.016350

Wikipathways Pentose Phosphate Metabolism 7 3 42.9 0.016350

Wikipathways VEGFA-VEGFR2 Signaling Pathway 236 16 6.8 0.016480

EHMN Phytanic Acid Peroxisomal Oxidation 16 4 25.0 0.016570

ǂGs-Ps denotes Genes-Proteins, i.e., the input dataset was a common (combined) genes-proteins dataset.

https://doi.org/10.1371/journal.pone.0242384.t011
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genetically, proteomically, and metabolically. Thus, we have shown here that isogenic cell lines

derived from different organs have distinct divergences between their proteomes, transcrip-

tomes, and metabolomes that make each of them fundamentally different biological entities.

Given this, an important question arises about how cancer cells that have adapted to growth in

different organs respond to the same therapeutic regimes. To ascertain whether the same drug

will kill each cell line with the same efficacy, we tested 4 drugs on each of the isogenic cell lines:

one RK-33 (DDX3X inhibitor) [33–35] along with three FDA approved and breast treatment

established (doxorubicin (DOX) [36], gemcitabine (GEM) [37], and paclitaxel (PAC) [38]

drugs, using an in vitro cell culture assay. Table 14 indicates that all of the drugs exhibited a

range of efficacies (IC50 values) across cell lines. From the perspective of therapy, we were

interested in knowing what significant differences (2-sided Student’s t-test p� 0.001 or as

indicated with p� 0.05 considered significant) there were between metastatic cell lines and,

primarily, between the metastatic cell lines and their 1˚ tumor cell lines. Significantly different

IC50 values were for: RK-33 in the case of liver-435 having an IC50 lower-than the IC50 values

of lung-453 (p = 0.028) and trending to significance in comparison to 1˚ tumor-435

(p = 0.053); GEM in the case of lung-231 with an IC50 higher-than those of lymph node-231,

1˚ tumor-231, brain-435, liver-435, lung-435, spine-435, and 1˚ tumor-435; PAC in the case of

lung-435 with an IC50 higher-than that of lung-231 (p = 0.01); GEM in the case of spine-435

with an IC50 value lower-than lymph node-231 (p = 0.033) and brain-435 (p = 0.005); DOX in

the case of spine-435 with an IC50 value higher-than those of lung-231, lymph node-231, 1˚

tumor-231 (p = 0.005), brain-435 (p = 0.008), liver-435 (p = 0.015), lung-435 (p = 0.003), and

1˚ tumor-435 (p = 0.027); DOX in the case of liver-435 with an IC50 value higher-than those of

Table 12. Unique pathways found to be common in both proteomic and transcriptomic analyses for the metastatic lymph node-231 cell line.

Source Up Pathways # of Gs-Psǂ in Set # of Obs. Gs-Ps Obs. Gs-Ps (%) q-value

Reactome EPH-Ephrin Signaling 74 8 10.8 0.007998

PID Regulation of RhoA Activity 48 6 13.0 0.016774

NetPath EGFR1 457 20 4.4 0.017595

Wikipathways VEGFA-VEGFR2 Signaling Pathway 236 13 5.5 0.019780

Reactome Transcriptional Regulation by RUNX3 52 6 11.8 0.019780

Wikipathways TGF-β Signaling Pathway 132 9 6. 0.028468

Reactome mRNA 3-End Processing 58 6 10.3 0.028468

Reactome Death Receptor Signaling 141 9 6.5 0.037155

PID PAR1-mediated Thrombin Signaling Events 44 5 11.6 0.037493

Reactome Regulation of PTEN Stability & Activity 25 4 16.0 0.037493

Down Pathways

EHMN Dimethyl-branched-chain Fatty Acid MIT β-Oxidation 12 5 41.7 0.001962

KEGG Fc-γ R-mediated Phagocytosis 91 12 13.3 0.002325

PID Stabilization & Expansion of the E-cadherin Adherens Junction 42 8 19.0 0.003070

INOH Val, Leu, & Ile Degradation 32 7 21.9 0.003113

SMPDB MIT β-Oxidation of Short Chain Saturated Fatty Acids 8 4 50.0 0.003113

SMPDB Short-chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency 8 4 50.0 0.003113

KEGG Val, Leu, and Ile Degradation 48 8 16.7 0.004706

HumanCyc Rapoport-Luebering Glycolytic Shunt 5 3 75.0 0.004706

Reactome Mitochondrial Protein Import 65 9 13.8 0.006831

EHMN 3-Oxo-10R-Octadecatrienoate β-Oxidation 11 4 36.4 0.008750

ǂGs-Ps denotes Genes-Proteins, i.e., the input dataset was a common (combined) genes-proteins dataset.

https://doi.org/10.1371/journal.pone.0242384.t012
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Fig 8. Bar plot presentations of quantitative real-time PCR (qRT-PCR) results. (A) qRT-PCR results for isogenic

metastatic 231 cell lines (lung: black bars and lymph node: white bars). (B) qRT-PCR results for isogenic metastatic 435

cell lines (brain: black bars, liver: light gray bars, lung: dark gray bars, and spine: white bars). The genes (x-axis) are

plotted against their log2 fold changes (y-axis).

https://doi.org/10.1371/journal.pone.0242384.g008
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lung-231 and lymph node-231 (p = 0.005) and trending to significance in comparison to 1˚

tumor-435 (p = 0.056); DOX in the case of brain-435 with an IC50 value higher-than those of

lung-231 (p = 0.009), lymph node-231, and 1˚ tumor-435; DOX in the case of lung-435 with

an IC50 value greater-than 1˚ tumor-435. In addition, we determined the linear fold change in

any differences in efficacy between the 1˚ tumors and their isogenic cell lines, which are shown

in Table 15 where the values in bold-type and underlined are statistically significant (2-sided

Student’s t-test p< 0.001 or as indicated with p� 0.05 considered significant).

Discussion

Presently, despite advances in therapies, metastatic breast cancer remains incurable [1, 39]. To

address the reasons as to why this is the case, several independent laboratories have provided

Table 13. Genes common to proteomic and transcriptomic data sets and their linear fold change (FC) relative to their 1˚ tumors were verified with qRT-PCR.

Linear FC

Cell line Gene ID Symbol Description Protein Gene

Brain-435 11080 DNAJB4 Heat Shock Protein 40 Homolog4 1.40 1.25

64359 NXN Nucleoredoxin 1.25 1.40

5935 RBM3 RNA Binding Motif Protein 3 -3.90 -1.40

4939 OAS2 2’-5’-Oligoadenylate Synthetase 2 -2.35 -1.25

54739 XAF1 X-Linked Inhibitor of Apoptosis Associated Factor 1 -2.25 -1.35

140885 SIRPA Signal-Regulatory Protein-α -1.45 -1.30

Liver-435 5641 LGMN Legumain 1.30 1.60

2799 GNS Glucosamine N-Acetyl-6-Sulfatase 1.25 1.85

10471 PFDN6 Prefoldin Subunit 6 -1.90 -1.40

8727 CTNNAL1 Catenin-α Like-1 -1.60 -1.25

663 BNIP2 BCL2 Interacting Protein 2 -1.50 -1.35

7298 TYMS Thymidylate Synthetase -1.50 -1.35

Lung-435 4199 ME1 Malic Enzyme 1 4.90 77.50

6275 S100A4 S100 Calcium Binding Protein A4 -11.25 -26.15

4008 LMO7 LIM Domain 7 -3.10 -3.80

10202 DHRS2 Dehydrogenase/Reductase 2 -2.00 -3.80

Spine-435 767 CA8 Carbonic Anhydrase 8 1.25 1.29

664 BNIP3 BCL2 Interacting Protein 3 -1.55 -2.50

Lung-231 29091 STXBP6 Syntaxin Binding Protein 6 4.50 36.60

387914 SHISA2 Shisa Family Member 2 1.30 1.80

7103 TSPAN8 Tetraspanin 8 -40.00 -10.30

64359 NXN Nucleoredoxin -2.50 -2.10

1009 CDH11 Cadherin 11 -2.10 -2.65

65986 ZBTB10 Zinc Finger & BTB Domain Containing 10 -1.35 -1.50

L.N.-231 3872 KRT17 Keratin 17 9.85 1.50

9510 ADAMTS1 ADAM Metallopeptidase w/Thrombospondin Type-1 Motif-1 6.10 11.20

3861 KRT14 Keratin 14 3.00 10.20

10525 HYOU1 Hypoxia Up-Regulated 1 2.30 1.75

10082 GPC6 Glypican 6 1.80 3.10

90737 PAGE5 PAGE Family Member 5 -5.05 -14.20

4199 ME1 Malic Enzyme 1 -4.25 -2.10

1469 CST1 Cystatin SN -2.45 -1.58

5836 PYGL Glycogen Phosphorylase L -2.06 -1.71

https://doi.org/10.1371/journal.pone.0242384.t013
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evidence, over the course of several decades that metastatic tumors have, to varying degrees,

diverged from their primary tumors [3, 4, 6–8, 11, 32]. Consequently, it is now realized that

therapies that are effective against regional breast cancer, which are based on a few molecular

markers that have been used to define breast cancer subtypes, can have minimal efficacy

against metastases that have diverged from the primary tumor [4, 5, 7, 11]. Accordingly, with

the advent of more recent molecular (“omics”) characterizations, it is becoming accepted that

careful clinical evaluations of the molecular (proteome and transcriptome) as well as metabo-

lism of metastatic lesions would be helpful and likely necessary if efficacious treatment of met-

astatic disease is to be developed [9, 11].

As described in previous reports [12, 13] and extended here, our approach to this problem

of gaining a better understanding of the molecular and metabolic changes that occur at meta-

static lesions relative to their primary tumors, has been the development and characterization

of model systems of isogenic cell lines that have been cultured directly from metastatic organ

samples. The advantage of this model system with respect to those that rely on several cell lines

Table 14. Mean IC50 values for the drugs tested against each isogenic cell line.

Cell Line RK-33 (nM) GEM (nM) PAC (nM) DOX (nM)

Mean ± SEM1 Mean ± SEM Mean ± SEM Mean ± SEM

Parental-231 2.5 ± 0.2 69 ± 22 0.74 ± 0.04 69 ± 1

1˚ Tumor-2311 2.6 ± 0.1 32 ± 2 9.8 ± 1.9 111 ± 10

Lung-231 2.7 ± 0.7 247 ± 9 3.6 ± 0.3 65 ± 3

Lymph Node-231 2.3 ± 0.7 16 ± 1 2.9 ± 0.4 44 ± 1

Parental-435 5.6 ± 0.1 13 ± 1 0.6 ± 0.2 60 ± 4

1˚ Tumor-435 3.1 ± 0.1 16 ± 1 1.7 ± 0.1 78 ± 0.5

Brain-435 4.2 ± 0.3 20 ± 0.4 2.0 ± 0.1 220 ± 0.7

Liver-435 1.9 ± 0.0 11 ± 4 2.4 ± 0.3 214 ± 9

Lung-435 3.1 ± 0.1 8.4 ± 2 7.3 ± 1.2 147 ± 1

Spine-435 5.5 ± 0.7 4 ± 1 1.8 ± 0.1 347 ± 8

1Abbreviations: SEM denotes standard error of the mean and 1˚ Tumor denotes primary tumor.

https://doi.org/10.1371/journal.pone.0242384.t014

Table 15. Summary of linear fold change of IC50 values for metastatic isogenic cell lines relative to their 1˚

tumors.

Cell Line RK-33 GEM PAC DOX

Fold Change vs 1˚ Tumor-231

Lung-231 - - - - - - 7.7� -2.7 -1.7

Lymph Node-231 - - - - - - -2.6

(0.037)

-3.3 -2.5

Fold Change vs 1˚ Tumor-435

Brain-435 1.4 1.25 1.2 2.8

Liver-435 -1.6

(0.053)

-1.5 1.4 2.7

(0.056)

Lung-435 - - - - - - -1.9 4.3 1.9

Spine-435 1.8

(0.042)

-4.0

(0.023)

- - - - - - 4.4

(0.027)

�Bold-type that is underlined indicates that these changes are statistically signifi-cant, i.e., 2-sided Student’s t-test:

p< 0.001 or at p-values given in parenthesis. Gray shading indicates a trending towards significance.

https://doi.org/10.1371/journal.pone.0242384.t015
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from different individuals is the isogenic nature of the cell lines. From this perspective, pheno-

typic, molecular, and metabolic divergences from an isogenic primary tumor, as is the case in

clinical settings, can be assessed within the context of the isogenic background of these cell

lines. As described above and discussed below, we have found that these cell lines represent

unique biological entities that have diverged from their primary tumors in growth characteris-

tics in culture, proteomics, transcriptomics, as well as metabolomics. A principle goal has been

to study the sensitivity of these different cell lines to chemotherapeutics as well as in future in
vivo studies.

Here we tested a DDX3X (DEAD box helicase) inhibitor (RK-33) [33–35] and three clini-

cally established breast cancer chemotherapeutics: gemcitabine (GEM) [37], paclitaxel (PAC)

[38], and doxorubicin (DOX) [36]. As shown in Table 14, we found several differences in effi-

cacy across drug treatments of the cell lines. For example, relative to all other cell lines, the

lung-231 cell line was the least sensitive to GEM and exhibited a critical ~8-fold decrease in

sensitivity as compared to its primary tumor cell line. On the other hand, lung-435 and spine-

435 were the most sensitive to GEM and again differed (being more sensitive) relative to their

primary tumor cell lines. In addition, lung-231 and lymph node-231 cell lines were more sensi-

tive than their primary tumor cell line to DOX but the reverse was the case for the four meta-

static 435 cell lines, which were less sensitive to DOX than their primary tumor cell line. Other

distinctions were the lung-435 cell line being less sensitive to PAC than was the case for its pri-

mary tumor cell line. Although significant differences were observed in the sensitivity to RK-

33 the changes were relatively less pronounced, and this latter characteristic of RK-33 may be a

therapeutic advantage. That is, as there is a molecular dependency for DDX3X expression in

cancer cells to maintain cellular and bioenergetic homeostasis [34, 40, 41], it is less likely to

undergo marked changes during growth and establishment of metastatic tumors. This, in part,

could explain why RK-33 doses required to kill the different isogeneic cell lines was the least

variable, particularly evident in the 231 cell lines (Table 14), amongst the different chemother-

apeutic agents used in this study.

To attempt an explanation for the observed differences in drug efficacies it needs to be

noted that the cellular mechanisms involved with GEM, PAC, and DOX are complex and mul-

tiple pathways and several proteins must be taken into consideration [36–38]. This problem is

exemplified from an evaluation of changes in some of the single proteins that might be

involved with the decreased efficacy of GEM against lung-231 cells [37]. Thus, there was a

1.7-fold increase in a protein inhibited by GEM (ribonucleotide reductase 1: RRM1) in lung-

231 cells, which might be evaluated as a requirement of more drug against this target, i.e., a

decrease in sensitivity. However, there was a simultaneous 1.8-fold increase in a solute carrier

(SLC29A1) that transports GEM into cells as well as decreases (-1.9-fold in each case) in inacti-

vating enzymes (cytidine deaminase and cytosolic 5’ nucleotidase). Consequently, in this case,

a simple consideration of proteins involved with GEM metabolism in these cells provides an

ambiguous conclusion as to the lack of sensitivity of lung-231 cells to GEM treatment. Con-

tributing to this ambiguity is that in cell lines more sensitive to GEM, such as brain-435 and

liver-435 (Table 14), SLC29A1 was found to be decreased by -1.8 and -1.35 respectively, which

when coupled with decreases in activating enzymes: deoxycytidine kinase (-1.30- and

-1.67-fold in brain-435 and liver-435 respectively), UMP/CMP kinase (-1.25- and -1.35-fold in

brain-435 and liver-435 respectively) and nucleoside-diphosphate kinase (-1.50-fold in both

cell lines) would tend to lead to the conclusion that GEM ought to relatively ineffective in

these cell lines rather than relatively more effective. Similar decreases in activating enzymes

were found in the lung-435 and spine-435 cell lines and yet these were the most sensitive to

GEM. A similar evaluation of DOX’s efficacy in these cell lines also produced similar findings.

Thus, a consideration of 18 proteins [36] involved with the transport, export, ability to detox
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reactive oxidative species (ROS), or repair DNA indicated that in most cases there was mini-

mal or no changes in the levels of these proteins across all cell lines. Exceptions were about a

1.7-fold increase in both a DOX exporting protein (ABCB1) and a DNA repair enzyme

(MSH2) in lymph node-231 cells, which were the most sensitive to DOX treatment, i.e., there

was not a diminished sensitivity to DOX as compared to any of 435 metastatic cell lines.

Importantly, the latter cell lines showed mostly no changes in any of the evaluated proteins

except for an increase (~1.35-fold) in two enzymes (SOD1 and CAT) involved with a response

to ROS in brain-435 cells and thus, again, little evidence at the protein level for the observed

differences in sensitivity to DOX. Finally, exploring changes in tubulins (the major target of

PAC) [38] in all cell lines showed no differences that could provide a clue as to the observed

differences in sensitivity to PAC. Thus, it appears that differences other than those at the single

protein levels, such as at the pathway or pathway network levels, i.e., a combination of proteins

and pathways that differ between cell lines brings about the variances in the observed drug sen-

sitivities across these cell lines.

Along these lines, our drug assay results are in line with a recent report that demonstrated a

link between differences in protein networks across 41 breast cancer cell lines and changes in

the sensitivity of these cell lines to drug treatments [42]. However, such a result may have been

expected as the cell lines used were derived from separate individuals as well as being from

across all subtypes of breast cancer. Thus, it is well known that each subtype is susceptible to

different therapeutics [43] and certainly different individuals often have different responses to

chemotherapies, which is always recorded in clinical trial generated patient survival curves.

Accordingly, as pointed out above, this was also apparent in a comparison of our isogenic cell

lines (triple negative subtype) with a reversal in sensitivity to DOX when the 231 isogenic met-

astatic cell lines are compared to the 435 derived isogenic metastatic cell lines. More impor-

tantly, the report of the efficacy of drugs across 41 cell lines did not take into account, as we

have, how metastatic spread to visceral organs likely alters the efficacy of clinical chemothera-

pies and the authors did not address the treatment of metastatic disease. However, findings of

molecular discordances between primary tumors and their metastasis continues to provide

evidence that selecting therapeutic regimes that have been based on a characterization of the

primary tumor but are aimed at ablating visceral metastatic lesions will likely be ineffective

[11]. It is becoming evident that treatment strategies for metastatic disease will likely be more

effective if these are based on the fundamental genetic and molecular characteristics of the

metastatic lesions. The latter conclusion has been put forth in a recent clinical breast cancer

study (reported while our study was in progress) that described an evaluation of evolution-

based mutational changes at metastatic sites that occurred independently from any primary

tumor clonal evolution and as such it was suggested that organ-specific microenvironments

were driving such changes [11]. Given this evidence the authors suggested that clinical charac-

terization of metastatic lesions ought to be carried out prior to treatment determinations of

metastatic cancer [11]. Thus, our hypothesis has been strongly supported by this clinical study.

However, in the present study, we have collected transcriptomic, proteomic, and metabolomic

data sets and focused our analyses on pathways and their networks, which is a distinct differ-

ence from gene/protein mutational analyses that have defined the cited clinical study.

Although mutational evolutionary analyses are providing important insights into the clonal

(gene-based) divergences associated with tissue dependent metastatic adaptation(s) (evolu-

tion) [9, 11, 44–46], as previously reported and expanded upon here, our isogenic model sys-

tem has revealed isogenic cell line specific pathways that indeed have been influenced by the

microenvironment of the cell line’s organ of origin. Examples have been pointed out in the

Results section (Tables 1–6). Thus, this model provides complementary evidence (relative to

the clonal evolutionary evidence) that fundamental molecular and metabolic divergences of
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metastatic tumors from their primary tumor are an unavoidable consequence of growth within

a tissue specific microenvironment that differs vastly from that of the breast epithelial micro-

environment. Another finding from the pathway analyses approach has indicated that path-

ways don’t necessarily fit a simple binary on/off (up/down) model but instead are likely in a

state of homeostasis or steady state of regulation with pathway defining proteins being both

up- and down-regulated relative to the primary tumor (S41–S46 Tables). The therapeutic

implications of this finding is exemplified by the EGFR1 pathway, which has been considered

as a clinical therapeutic target in breast cancer [47] but was found here to not necessarily be in

a overexpressed “on” mode across 5 of 6 of the isogenic cell lines studied as this pathway also

exhibited down-regulated “off” protein components across all 6 isogenic cell lines (S41–S46

Tables; The down-regulated EGFR1 pathway of lung-231 was not included as these tables

show only those pathways found to be simultaneously up- and down-regulated.). In fact,

EGFR1 protein was not found to be up- or down-regulated in any of these cell lines with the

pathway being defined by several of the other 457 protein members of the pathway, such as

up-regulated ASAP1 in liver-435, spine-435, and lymph node-231 cell lines as well as PRKCZ

in brain-435, lung-435, spine-435, and lymph node-231 cell lines or the down-regulated

APPL2 in lung-435, spine-435, lung-231, and lymph node-231 cell lines as well as ENO1 in all

six cell lines. Moreover, there were roughly twice as many down-regulated proteins relative to

the up-regulated proteins of this EGFR1 pathway (S41–S46 Tables), which indicates that the

identification of a single up-regulated (overexpressed) target of such a complex pathway and

using a therapeutic against it may have minimal impact on the pathway, i.e., on treatment. In

addition, as exemplified in Figs 4–7, several different pathways can be interconnected into

large integrated networks that are likely all regulating each other. Consequently, it is apparent

that targeting a single component (protein) in what might be thought of as a single ‘key’ path-

way may be ineffective due to the self-regulation of the pathway or the overlapping function of

the interacting network(s). These results provide a partial explanation as to why our analysis of

the single proteins involved with the effectiveness of GEM. PAC, or DOX did not show a clear

association to the sensitivity of the cell lines to these drugs, i.e., their efficacies are likely based

on complex pathway dynamics rather than any single protein.

Finally, it was important to analyze the possible clinical associations that our pathway

approach achieved. This was hindered by the fact that available comparative human breast

cancer databases (e.g., [48]) report survival as a function of an overexpression (relative to nor-

mal tissue) of markers/genes associated with the primary tumor while our studies have been

focused on metastases. Nevertheless, we crossed referenced proteins from pathways that were

found to be up-regulated (relative to the primary tumors) across multiple isogenic cell lines.

Thus, Table 16 shows a randomly selected list of up-regulated pathways and hence proteins

found to be common across 2–5 cell lines. It is noteworthy from the clinical data, i.e., elevated

expression of these genes at the primary tumor, was associated with both a poor survival (e.g.,

Fig 9: FLNB [49] and H1F0 [50] genes) as well as an enhanced or better survival (e.g., CDC42

& HLA-A, lower portion of Table 16). Thus, this analysis indicates that an overexpression of

proteins at metastatic sites, relative to primary tumor levels as well as, from the clinical data,

relative to normal breast tissue levels rather than normal tissue of origin levels can complicate/

contradict the interpretation of disease free survival. That is, the latter implies no metastatic

progression and as such the basis of the disease free survival data does not reflect the status of

the markers at metastatic sites. Consequently, this lends support to the conclusion that further

studies are required to better understand how analyses of pathways at metastatic sites can con-

tribute to a better understanding of the pathology of the metastases as well as of therapeutic

options that may enhance survival.
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Conclusions

The insights provided by these analyses indicate that the rationale of targeted treatment of meta-

static disease may benefit from a consideration that the biology of metastases has diverged from

the primary tumor biology and using primary tumor traits as the basis for treatment may not be

ideal to design treatment strategies. Thus, exploring an interconnected integrated pathway anal-

ysis approach as an alternative to the single gene/protein marker evaluations now in use may

provide a better understanding of which pathways are participating in metastatic cancer survival

at a specific site. In addition, compiling normal expression levels of markers/pathways specific

to different tissues would greatly aid with the discovery of changes in these levels in the meta-

static lesions and pave the way for explorations as to how these changes affect treatment out-

comes as well as direct future studies aimed at controlling and ablating metastatic disease.

Table 16. Proteomic-based up-regulated pathway proteins correlated to human patient survival.

Cell Lines1 that Share the Pathway Pathway Gene/Protein ID Hazard Ratio Log Rank p-value2

Inferior

RFS1
Lung-435 & Lung-231 Viral Carcinogenesis HNRNPK 1.63 (0.96–

2.77)

0.068

Br-435, Li-435, Lu-435, Sp-435, & LN-

231

EGFR1 FLNB 2.31 (1.51–

3.54)

0.00008

Br-435, Lu-231, & LN-231 Cellular Response to Stress H1F0 2.06 (1.35–

3.14)

0.0007

Processing of Capped Intron-containing Pre-

mRNA

ALYREF 2.40 (1.32–

4.38)

0.003

HNRNPD 1.58 (1.03–

2.43)

0.036

CWC27 1.90 (1.01–

3.55)

0.042

SNRPF 1.55 (0.99–

2.44)

0.054

SNRNP27 1.58 (0.98–

2.53)

0.057

Brain-435 & Lung-435 TCA Cycle NDUFA11 1.90 (1.09–

3.31)

0.021

MIT Protein Transport PCCB 1.61 (1.05–

2.48)

0.027

TOMM22 1.73 (0.97–

3.09)

0.062

Superior

RFS

Lung-435 & Lung-231 Viral Carcinogenesis CDC42 0.56 (0.36–

0.87)

0.009

HLA-A 0.35 (0.23–

0.54)

6.0E-07

NFB2 0.62 (0.41–

0.95)

0.027

Metabolism of Amino Acids & Derivatives ALDH7A1 0.61 (0.39–

0.95)

0.026

Brain-435 & Lung-435 MIT Protein Transport PCCA 0.58 (0.36–

0.93)

0.022

Val, Leu, & Ile Metabolism ALDH7A1 0.61 (0.39–

0.95)

0.026

1Abbreviatons: RFS denotes relapse-free survival. Br-, Li-, Lu-, Sp-435, and Lu-231 & LN-231 denote Brain-435, Liver-435, Lung-435, Spine-435 and Lung-231 & Lymph

Node-231 respectively.
2p-values in bold-type indicate that the data have been considered as trending to significance.

https://doi.org/10.1371/journal.pone.0242384.t016
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Materials and methods

Generation of isogenic metastatic cell lines from specific organs

The human breast cancer cell lines: MDA-MB-435 and MDA-MB-231, were obtained from

ATCC. The MDA-MB-435 cell line was established in 1976 from a pleural effusion from an

untreated 31-year-old female diagnosed with adenocarcinoma of the breast [51, 52]. The

MDA-MB-231 cell line was established in 1973 from a pleural effusion from an oophorecto-

mized/chemotherapy treated 51-year-old female diagnosed with a poorly differentiated intra-

ductal carcinoma of the breast [19]. Both cell lines were authenticated at the Johns Hopkins

Genetic Resource Core Facility with the short tandem repeat marker results cross-checked

Fig 9. Representative survival plots of triple negative breast cancer patient data (n = 255). Genes were derived from

proteomic-based up regulated pathways (Table 16) that correlated with TNBC patient relapse-free survival (RFS)

datasets (Reference: PMID: 20020197). Hazard ratios indicated that high expression (red) of both FLNB and H1F0

significantly correlated with poor RFS.

https://doi.org/10.1371/journal.pone.0242384.g009
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against cell lines at the ATCC bank. Generation and characterization of the parental

MDA-MB-435-tdTomato (hence referred to as 435) cell line has been previously described

[53]. MDA-MB-231 (hence referred to as 231) cells were not genetically modified and thus

were the parental cell line for this line’s isogeneic primary tumor and metastatic (lung &

lymph node) cell lines. Primary tumors and subsequent tissue specific isogeneic cell lines were

generated/cultured as previously described [12]. For the 231 cell lines, generation of growth

curves and growth rate analysis was as previously described for the 435 cell lines [12]. All cul-

turing was done in standard humidified incubators at 37˚ C and 5% CO2. Media were:

DMEM-10% FBS for parental cell lines and DMEM:F12 (50:50)-5% FBS for all primary tumor

and metastatic cell lines.

Optical microscopy

Phase contrast microscopy was done on a Nikon ECLIPSE TS 100 microscope (Nikon Instru-

ments, Inc.) equipped with a Photometrics CoolSnap ES digital camera (Roper Scientific).

Images were collected with NIS-Elements F3.2 software and processed with ImageJ.

Protein preparation

Total protein solutions were prepared by directly lysing cells cultured on 100 mm dishes,

which, in all cases, were at about 70–80% confluency. Lysis buffer (200 μl) was: 100 mM Tris

pH 6.8, 12% glycerol, and 2% SDS, 1 mM EDTA, and 1:200 dilution of a protease cocktail

(Sigma, I1386) (added immediately prior to use). Lysates were placed in 0.5 ml microcentri-

fuge tubes and sonicated (12–15 bursts) on ice and frozen at -80˚ C until use.

Protein concentration estimates

Aliquots (100 μl) from the frozen stocks (thawed on ice) of total protein preparations were

placed into 0.5 ml microcentrifuge tubes. Protein concentration estimates were carried out

using room-temperature samples diluted (1:10–1:15) in a phosphate-free saline solution

(NaHCO3 (45 mM), NaCl (95 mM), KCl (4.5 mM), CaCl2 (0.24 mM), MgCl2 (0.08 mM) pH

7.35). The diluted protein solutions were assayed using a BioRad RC DC kit according the

manufacturer’s protocol and BSA for the standard curve. This kit was chosen as the protein

precipitate formed during step-1 of the protocol is free of compounds that interfere with the

step-2 color reagent, such as EDTA, amino acids, lipids, and nucleic acids.

Proteomics

Protein pellets (100 μg each) were submitted to the Mass Spectroscopy and Proteomics Facility

at Johns Hopkins University Medical School for routine differential proteomics analyses. The

Director: Dr. Robert Cole, oversaw all analyses. State-of-the-art TMTs (tandem mass tags)

were applied to digested samples for direct comparison of all 10 samples in a single tandem

MS experiment. The mass spectroscopy spectra output was analyzed with Proteome-Discover

for peptide identification and, as such, mapped to specific protein identifiers and quantified.

Data was further processed to identify fold changes in protein expression levels from isogenic

metastatic cell lines relative to their primary tumor cell lines. Briefly, for each sample, the mul-

tiple spectra values for each peptide were summed to single values per unique peptide and

then the many different peptide values normalized across all the samples to minimize possible

technical variation. These quantile normalized log2 values were compared to determine differ-

ential peptide expression levels. In addition, all peptides were mapped to their cognate genes,

which facilitated annotation and possible downstream functional analyses.
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RNAseq

RNA was prepared from frozen cell pellets (-80˚ C stored). The frozen stocks were from lots of

cell lines that were at the same passage as the stocks that were used for protein preparations or

one to two passages later. RNA concentrations and quality control spectrophotometric deter-

minations were done on a NanoDrop microvolume spectrophotometer (ThermoFisher Scien-

tific) and only samples with 260/280 & 260/230 ratios of 2.0–2.1 and 1.8–2.2 respectively were

used.

RNASeq was performed by a commercial entity (BGI Americas, San Jose, CA). Briefly, total

RNA was checked for quality (RIN> 9) and libraries were constructed. Libraries were 50bp

single-end sequenced on a BGISEQ-500 instrument to a standard depth of 20 million reads

per sample. Sequencing data was filtered and supplied as differential gene expression data sets.

Metabolomics

Metabolomes were generated as previously described [12]: Briefly, metabolite data from all

samples were acquired using Agilent 6540 Quadrupole–Time-of-Flight (Q-TOF) mass spec-

trometer with Agilent 1290 HPLC at the Metabolomics Facility at Johns Hopkins Medical

Institution. Data was analyzed using Agilent Mass Hunter and Agilent Mass Profiler Profes-

sional (MPP) version 13.1.1 and Agilent Qualitative and Quantitative Analysis Software pack-

ages (version 6.00) to determine the metabolic profile of each sample. Aqueous phase

metabolites were used in pathway analyses.

Quantitative real-time polymerase chain reaction (qRT-PCR)

RNA was isolated from cell lines and transcribed into cDNA using manufacturer’s protocols

(Qiagen, Germantown, MD and Bio-Rad, Hercules, CA). Diluted cDNA was used as template

for qRT-PCR to amplify target genes in replicates of two on a thermal cycler with primer

sequences given in S29 Spreadsheet. Relative change in target gene expression was calculated

using the 36B4 gene as housekeeper [54].

Pathway analyses

Pathways were identified by submitting protein, transcript, or metabolite data sets into an

online interactive pathway search tool: ConsensusPathDB (cpdb.molgen.mpg.de) [26, 27].

Data sets were made up of members that were 1.25-fold changed from their corresponding

control (primary-tumor: 1˚ tumor) members. ConcensusPathDB has integrated 32 human, 15

mouse, and 14 yeast databases into one platform, which provides a robust combined analysis

of: protein interactions, signaling interactions, metabolic interactions, gene regulatory interac-

tions, genetic interactions, drug-target interactions, and biochemical interactions [26]. Path-

way analyses were initiated in ConsensusPathDB with expression enrichment data set

determinations of protein, gene, or metabolite data sets that were then analyzed using the

default setting of 11 integrated pathway databases, i.e.: the Kyoto Encyclopedia of Genes and

Genomes (KEGG; www.genome.jp/kegg/) [55], Reactome (reactome.org) [56], the Small Mol-

ecule Pathway Data Base (SMPDB), Wikipathways (www.wikipathways.org/index.php/

wikipathways), the Edinburgh Human Metabolic Network (EHMN) [57], the Pathway Inter-

action Database (PID) [58], the Integrating Network Objects with Hierarchies (INOH) data-

base [59], the BioCarta database (NCI based; www.biocara.com/genes/), the Encyclopedia of

Human Genes and Metabolism (HumanCyc) database (www.humancyc.org), and the

PharmGKB database (www.pharmgkb.org) [60].
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Principal component analyses and hierarchical clustering

To reduce the complexity of the large amount of data that was generated from the proteomics

(S1–S6 Spreadsheets) and RNA sequencing (S7–S12 Spreadsheets), and to infer relationships

between the data sets, we performed principal component analysis (PCA) and hierarchical

clustering at both the protein and transcript (gene) level. Hierarchical clustering was per-

formed using Morpheus (https://software.broadinstitute.org/morpheus).

In vitro drug assays

The established FDA approved chemotherapuetic drugs used were: paclitaxel (TSZ CHEM,

Cat# RS036, Lot# 061916), doxorubicin (Cayman Chemical, Item# 15007, Lot# NA), and

Gemcitabine (Sigma, Cat# G6423-10mg, Lot# 026M4704V). In all cases, cells were plated at

2000 cells per well onto 96 well plates and 24 hrs later treated with each drug over a serial dilu-

tion range of drugs: paclitaxel (PAC, 0.01–50 nM), doxorubicin (DOX, 0.01–5 μM), gemcita-

bine (GEM, 0.001–10 μM), and an in-house DDX3X inhibitor drug RK-33 (1–25 μM). Each

concentration of drug was added to cells (wells) in quadruplicate along with no drug added

control wells. Two to three biologic replicates were done. Standard colorimetric MTS assays

(addition of 10% MTS reagent in medium with a 2 hr incubation) were done 72 hrs after drug

treatment. Plots of the spectrophotometric outputs (absorbance vs log[drug]) were used to

determine the IC50 values of each drug.

Statistical methods

As described above, all Proteomics and Metabolomics source datasets were generated at core

facilities at the Johns Hopkins University while an outside company generated the RNAseq

datasets. As such, we received datasets with completed statistical analyses and all p- and or q-

values presented in all Tables and Spreadsheets were obtained from the source datasets. In the

case of Pathway analyses, we utilized the online database, ConsensusPathDB, which has pub-

lished the statistical methods used [26, 27], as described above. For the In vitro drug assay-

IC50 values dataset, we applied F tests to determine unequal or equal variances and then the

appropriate two-sided Student’s t-tests (p� 0.05) were utilized to evaluate significant

differences.
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graphed using a X10 objective coupled with a X10 phase-contrast ring. The black scale
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S4 Fig. The up- and down-regulated proteomic-based interconnected network maps of

pathways unique to the liver-435 cell line. The size range of the nodes correlates to the size of

the protein sets while the range of hues of the nodes correlates with the q-values, which is cor-

related to the size of the number of observed proteins. The edges represent the overlap of

shared proteins between the connected nodes with the width of the edges representative of the

size of the overlap and their color denoting the number of the observed proteins that are

shared.

(TIFF)

S5 Fig. The up- and down-regulated proteomic-based interconnected pathway network

maps of unique to the lung-435 cell line. The size range of the nodes correlates to the size of

the protein sets while the range of hues of the nodes correlates with the q-values, which is cor-

related to the size of the number of observed proteins. The edges represent the overlap of

shared proteins between the connected nodes with the width of the edges representative of the

size of the overlap and their color denoting the number of the observed proteins that are

shared.

(TIFF)

S6 Fig. The up- and down-regulated proteomic-based interconnected pathway network

maps of unique to the spine-435 cell line. The size range of the nodes correlates to the size of

the protein sets while the range of hues of the nodes correlates with the q-values, which is cor-

related to the size of the number of observed proteins. The edges represent the overlap of

shared proteins of the connected nodes with the width of the edges representative of the size of

the overlap and their color denoting the number of the observed proteins that are shared.

(TIFF)

S7 Fig. The up- and down-regulated proteomic-based interconnected pathway network

maps of unique to the lymph node-231 cell line. The size range of the nodes correlates to the

size of the protein sets while the range of hues of the nodes correlates with the q-values, which

is correlated to the size of the number of observed proteins. The edges represent the overlap of

shared proteins of the connected nodes with the width of the edges representative of the size of

the overlap and their color denoting the number of the observed proteins that are shared.

(TIFF)

S8 Fig. The up- and down-regulated transcriptomic-based interconnected pathway net-

work maps of unique to the liver-435 cell line. The size range of the nodes correlates to the

size of the transcript (gene) sets while the range of hues of the nodes correlates with the q-val-

ues, which is correlated to the size of the number of observed transcripts. The edges represent

the overlap of shared transcripts of the connected nodes with the width of the edges represen-

tative of the size of the overlap and their color denoting the number of the observed transcripts

that are shared.

(TIFF)

S9 Fig. The up- and down-regulated transcriptomic-based interconnected pathway net-

work maps of unique to the lung-435 cell line. The size range of the nodes correlates to the

size of the transcript (gene) sets while the range of hues of the nodes correlates with the q-val-

ues, which is correlated to the size of the number of observed transcripts. The edges represent

the overlap of shared transcripts of the connected nodes with the width of the edges represen-

tative of the size of the overlap and their color denoting the number of the observed transcripts

that are shared.

(TIFF)
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S10 Fig. The up- and down-regulated transcriptomic-based interconnected pathway net-

work maps of unique to the spine-435 cell line. The size range of the nodes correlates to the

size of the transcript (gene) sets while the range of hues of the nodes correlates with the q-val-

ues, which is correlated to the size of the number of observed transcripts. The edges represent

the overlap of shared transcripts of the connected nodes with the width of the edges represen-

tative of the size of the overlap and their color denoting the number of the observed transcripts

that are shared.

(TIFF)

S11 Fig. The up- and down-regulated transcriptomic-based interconnected pathway net-

work maps of unique to the lymph node-231 cell line. The size range of the nodes correlates

to the size of the transcript (gene) sets while the range of hues of the nodes correlates with the

q-values, which is correlated to the size of the number of observed transcripts. The edges repre-

sent the overlap of shared transcripts of the connected nodes with the width of the edges repre-

sentative of the size of the overlap and their color denoting the number of the observed

transcripts that are shared.
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