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Over the last decades, the adverse effects of human exposure to the so-called “endocrine

disruptors” have been a matter of scientific debate and public attention. Bisphenols are

synthetic chemicals, widely used in the manufacture of hard plastic products. Bisphenol

A (BPA) is one of the best-known environmental toxicants proven to alter the reproductive

function in men and to cause other health problems. Consumer concern resulted in

“BPA free” products and in the development of bisphenol analogs (BPA-A) to replace

BPA in many applications. However, these other bisphenol derivatives seem to have

effects similar to those of BPA. Although a number of reviews have summarized the

effects of BPA on human reproduction, the purpose of this article is to review the

effects of bisphenols on testicular steroidogenesis and to explore their mechanisms

of action. Testicular steroidogenesis is a fine-regulated process, and its main product,

testosterone (T), has a crucial role in fetal development and maturation and in adulthood

for the maintenance of secondary sexual function and spermatogenesis. Contradictory

outcomes of both human and animal studies on the effects of BPA on steroid hormone

levels may be related to various factors that include study design, dosage of BPA used

in in vitro studies, timing and route of exposure, and other confounding factors. We

described the main possible molecular target of bisphenols on this complex pathway. We

report that Leydig cells (LCs), the steroidogenic testicular component, are highly sensitive

to BPA and several mechanisms concur to the functional impairment of these cells.

Keywords: bisphenols, BPA, endocrine disruptors, testicular steroidogenesis, spermatogenesis

INTRODUCTION

Over the last decades, the adverse effects of human exposure to the so-called “endocrine disruptors”
have been a matter of deep debate by the scientific community and the layman. Particular
attention has been paid to their toxicity on the reproductive function. Bisphenol A [2,2-bis(4-
hydroxyphenyl)propane] (BPA) is among the most well-known endocrine disruptors proven
capable of impairing the male reproductive function and to cause other health problems. BPA

is an organic synthetic compound, including the group of dyphenylmenthane derivatives and
bisphenols, widely used in the manufacture of hard plastic products. BPA has been used since
the 1950s, in food packaging, industrial materials, dental sealants, personal hygiene products, and
thermal receipts (1, 2). A significant exposure to BPA for children is given by toys, books, and
feeding bottles (3, 4). BPA penetrates the body through the skin, inhalation, and the digestive
system (5). Once adsorbed, BPA is then metabolized by the liver and excreted with the urine in 24 h
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(2). Despite the rapid metabolism, BPA can accumulate in
different tissues (6). Consumer concern for BPA effects on health
resulted in “BPA free” products and in the development of
bisphenol analogs to replace BPA inmany applications. However,
these compounds seem to have endocrine disrupting capabilities
similar to BPA and their impact on reproduction has been little
investigated (7–9).

BPA seems to influence fetal testis development and
predispose to the testicular dysgenesis syndrome (TDS).
This syndrome may manifest itself not only at birth with
cryptorchidism and hypospadias, but also in adulthood when
it shows up with testicular tumors, hypogonadism, and/or
infertility (10). Current evidence suggests that BPA can
cause testicular histological abnormalities, which encompass
dysregulated proliferation and apoptosis of Leydig cells (LCs)
and alteration of steroidogenesis (11). In mice, pubertal exposure
to high doses of BPA causes LC and germ cells apoptosis,
resulting in underdeveloped testis with histopathological changes
including atrophied seminiferous tubules, decreased number
of late spermatids, and increased karyopyknotic cells (12).
The reduction of testicular weight and the alteration of
spermatogenesis persist till adulthood, long after the period
of BPA exposure (12). The gestational period is a sensitive
window of exposure to BPA. Male rats maternally exposed to
BPA from gestation to the postnatal period have low testicular
weight and testosterone (T) levels in the testicular interstitial
fluid in adulthood (13). These effects may involve different
molecular pathways discussed in section Bisphenol A Molecular
Mechanisms of Action on Testicular Steroidogenesis.

Many studies have investigated the effects of BPA on
human reproduction and extensive reviews have addressed
the strength of the evidence on BPA toxicity (9, 10, 14,
15). Contradictory outcomes may depend on several factors
including study design, BPA dose, timing, and route of exposure
and other confounding factors (15). Several mechanisms of
action have been described. First of all, BPA exhibits weak
estrogenic and antiandrogenic proprieties. It binds to both
estrogen receptors (ERs), ERα and ERβ (1, 10), and at high
concentrations, BPA binds to the androgen receptor (AR) on
which it acts as an antagonist (16). In addition to binding to
the ARs, it disturbs the hypothalamic–pituitary–testicular axis
and modulates gene expression and the enzymatic activity of
testicular steroidogenesis (16). Furthermore, exposure to BPA is
also associated with a decrease in the activity of the antioxidant
system, resulting in increased oxidative stress, the most common
cause of sperm damage (17, 18). Although several studies have
supported the harmful effects of BPA on testicular function, its
mechanism remains not fully understood.

The purpose of this article is to review the evidence on the
relationship between bisphenols and testicular steroidogenesis,
focusing on their mechanism(s) of action on LCs function.

TESTICULAR STEROIDOGENESIS

The testis is a complex endocrine organ regulated by intra-
and extra-testicular pathways that interact synergistically (19).
LCs have a crucial role in the regulation of steroidogenesis and
spermatogenesis. LCs produce testosterone (T), which has a

main role in fetal development and maturation. During the
masculinization programming window, the fetal testes begin
to produce T, which allows male gonadal differentiation and
development (20). Hence, T is necessary for the maintenance
of secondary sexual function and spermatogenesis (21).
Intratesticular T levels are approximately 100 times higher than
the levels found in systemic circulation (22). The high local
production rate of T implies the need for its intratesticular
transport from LCs to Sertoli cells which nourish and support
the development of the germinal cells during the various stages
of spermatogenesis (23). LCs derive from mesenchymal cells
located in the interstitial compartment of the testis. Their
development occurs through three different stages during which
they are called progenitor, immature, and adult LCs. Apoptosis
seems to have a main role in maintaining a constant population
of LCs, although other mechanisms may be involved (9).

LCs produce T in response to the luteinizing hormone (LH).
LH binding to the LH receptors (LHR) on LCs activates Gs
protein and adenylyl cyclase, increasing cAMP levels. cAMP acts
as a key second messenger and upregulates the expression of
genes related to the steroidogenesis (24). The steroidogenesis
consists in a complex multi-enzyme process by which precursor
cholesterol is converted to biologically active steroid hormones
in a tissue-specific manner (Figure 1). Cholesterol can be
synthesized in the endoplasmic reticulum but the first source
of this precursor for steroidogenesis is via uptake of cholesteryl
esters from high-density lipoprotein by the scavenger receptor
SR-B1 (25). Therefore, SR-B1 has a key role for the maintenance
of cholesterol balance. The first step in steroidogenesis takes
place within mitochondria. The steroidogenic acute regulatory
protein (StAR) mediates the transport of cholesterol from
the outer to the inner mitochondrial membrane (26). The
StAR-mediated transport of cholesterol is a crucial step for
steroidogenesis (27, 28) and appropriate concentrations of
cAMP are necessary for the regulation of StAR expression
(29). However, cAMP/PKA is not the only pathway that
regulates StAR expression. Other factors such as steroidogenic
factor, activator protein, and cAMP-response element-binding
protein are also associated with StAR regulation (30). Then,
cholesterol is metabolized to pregnenolone into the smooth
endoplasmic reticulum through a cascade of reactions that
are catalyzed by the cytochrome P-450 proteins. Pregnenolone
is then converted to T by 3β-hydroxysteroid dehydrogenase
(3β-HSD), 17α-hydroxylase/17,20 lyase (CYP17A1), and 17β-
hydroxysteroid dehydrogenase (17β-HSD). This complex process
of steroidogenesis itself can be responsible for the increase of
reactive oxygen species (ROS) (31). Thus, the normal products of
steroidogenesis can act as pseudosubstrates and interact with P-
450 enzymes, resulting in a pseudosubstrate–P-450–O2 complex,
which is a source of dangerous free radicals (32).

BISPHENOLS AND TESTICULAR
STEROIDOGENESIS

Effects of BPA on Steroid Hormone Levels
Experimental studies in male animals have shown that exposure
to BPA is associated with altered hormone levels suggesting
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FIGURE 1 | Leydig cell steroidogenesis. LH binds to its receptors (LHR) on the Leydig cell (LC) membrane. This results in activation of Gs protein and adenylyl cyclase

and increased concentration of intracellular cAMP. cAMP stimulates the mobilization and transport of cholesterol within the mitochondria in part by activating PKA and

MAPK signaling. The first source of cholesterol for steroidogenesis is via uptake of cholesteryl esters from high-density lipoprotein (HDL) by the scavenger receptor

SR-B1. Steroidogenic acute regulatory enzymes (StARs) regulate cholesterol transport from the outer to the inner mitochondrial membrane. At the inner mitochondrial

membrane, cholesterol is converted into pregnenolone by CYP11A1 and pregnenolone is converted into testosterone by enzymes in the smooth endoplasmic

reticulum (3β-HSD, CYP17A1, and 17β-HSD).

direct effects of BPA on LCs. However, these data are discordant.
Low-dose BPA decreased T levels in CD-1 mice exposed during
perinatal and postnatal periods (33), but not in adult C57BL/6
mice exposed in utero (34). In addition, low-dose BPA lowered
T levels in Holtzman rats exposed during gestation or in the
neonatal age (35, 36) and albino (37) and Wistar (38) rats
exposed in adulthood. In contrast, by examining the gestational
and neonatal exposure of low-dose BPA in Long–Evans (39)
or Sprague–Dawley (SD) rats (40, 41), the levels of T did
not change. Treatment with increasing concentrations of BPA
(1 to 1,000 nM) did not significantly lower basal or hCG-
stimulated T secretion by primary culture of LCs of young
adult male rats (42). However, although Sánchez et al. reported
that low-dose BPA did not decrease T levels in Wistar rats,
dihydrotestosterone levels decreased (43). Gamez et al. reported
that exposure to low-dose BPA led to an increase in serum
LH and FSH levels in young Wistar rats (44). Nevertheless,
another study in adult Wistar rats showed that exposure to
BPA decreased serum T, LH, and FSH levels, but increased
the levels of 17β-estradiol (E2) (45). In two studies in SD rats,
postnatal exposure to low-dose BPA decreased serum T and E2
levels (46). BPA exposure lowered T levels in Swiss albino and
C57BL/6 mice, but at variable dosage between 0.5 µg/kg and
100 mg/kg (47, 48). Sadowski et al. described a decrease in FSH
concentrations in Long–Evans rats at weaning, after exposure
to BPA at both 4 and 400 µg/kg/day (49). An in vitro study
conducted on fetal testes explanted from mice, rats, and humans
demonstrated that exposure to 10 nM of BPA was enough to
decrease basal T secretion in human fetal testes, but higher

concentrations were required in rats and mice (10 and 1µM,
respectively) (50).

The epidemiological studies evaluating the effects of BPA
exposure on serum hormone levels in men have also shown
conflicting results. In the INChianti adult population study,
Galloway et al. found a correlation between higher urinary
BPA concentrations and higher serum T, but not E2 levels
in 307 Italian men living in Chianti, Italy (51). Another
study, conducted on 308 young men from Denmark’s general
population, reported that higher urinary BPA concentration
was associated with a significant increase of LH, T, and E2
levels (52). In contrast, in a cross-sectional study of 290 men,
Zhou et al. found that increased serum BPA concentrations
were statistically significantly associated with the reduction of
androstenedione, free T and free androgen index (FAI) levels,
and with the increase of sex hormone-binding globulin (SHBG)
levels (53). Two cross-sectional studies, respectively, of 167 and
302 men, did not report any associations between BPA and T
concentrations (54, 55). According to Meeker and colleagues,
men with elevated urinary BPA concentrations had higher
FSH and lower inhibin B levels with a higher FSH/inhibin
B ratio and a lower E2/T ratio (54). Mendiola et al. found
that higher urinary BPA levels were associated with lower FAI
and FAI/LH and free T/LH ratios in fertile men (55). Two
cross-sectional studies reported that urinary BPA levels were
associated with higher SHBG in men occupationally exposed
to BPA (56, 57). The NHANES 2011-2012 study showed an
inverse correlation between urinary BPA levels and serum T
concentrations inmale adolescents (58). However, a retrospective
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cohort study did not find any effects on hormone levels in
boys aged 8 to 14 years after prenatal or childhood exposure to
BPA (59).

Although these results are controversial, they suggest that BPA
alters steroid hormones pathways in men.

BPA Molecular Mechanisms of Action on
Testicular Steroidogenesis
Although both animal and human studies support the harmful
effects of BPA on steroid hormones, the mechanism of
action of BPA in negatively interfering with testicular
steroidogenesis remains unclear. Since LCs are the site of
testicular steroidogenesis, several studies have been conducted
on these cells to investigate the effects of BPA. In Wistar/ST
pubertal rats, continuous exposure to BPA at high doses reduced
the number of LCs and the expression of steroidogenic enzymes
in these cells (60). In contrast, Long–Evans rats exposed to a
low dose of BPA during gestation and at birth had an increase
in the number of LCs in adulthood through the upregulation of
mitogen factors. However, although a low dose of BPA increased
LC proliferation, the expression of steroidogenic enzymes and
T biosynthesis decreased (61). Chen et al. reported that BPA
did not stimulate staminal LC proliferation, but it induced
the differentiation of stem LCs into more mature LCs. They
used an in vivo ethane dimethane sulfonate (EDS)-induced
LC regeneration model to mimic the pubertal development
of LCs. They treated rats with EDS to eliminate LCs and then
they injected BPA within the testis. The intratesticular injection
of BPA avoided possible interference of hypothalamus and
pituitary. The results of this study showed that BPA significantly
increased the number of 11β-HSD1-positive cells, which is a
biomarker for LCs at an advanced stage. Thus, BPA promoted
the differentiation of staminal LCs, increasing T production
and upregulating LC-specific genes (LHCGR, StAR, CYP11A1,
HSD3B1, CYP17A1, HSD17B3, and HSD11B1). These findings
suggest a possible role of BPA in sexual precocious puberty
in males (62). Exposure to high doses of BPA (480 and 960
mg/kg/day at postnatal days 31–44) has been reported to induce
apoptosis in Leydig and germ cells via the upregulation of Fas,
FasL, and caspase-3 (12). The apoptosis of LCs was associated
with a decreased testicular testis weight and histopathological
changes, which persisted into adulthood (12). In another study,
Thuillier et al. reported that SD rats exposed in utero to BPA
had an increase number of LCs but did not present significant
change in serum T levels (63). Moreover, BPA can also induce
Nur77 gene expression, an orphan nuclear receptor that plays an
important role in the regulation of LH-mediated steroidogenesis,
altering LC steroidogenesis (64). BPA induced Nur77 gene
expression via PKA and MAPK signaling pathways in a time-
and dose-dependent manner. BPA-mediated Nur77 expression
resulted in the upregulation of steroidogenesis both in vitro and
in vivo, with a significant increase of T synthesis (two-fold) (64).

The inhibition of testicular steroidogenesis by BPA can also
be associated with a decreased LH secretion. Akingbemi et al.
reported that Long–Evans rats exposed to low doses of BPA (2.4
µg/kg/day) from postnatal days 21–35, decreased both serum

LH and T levels, downregulating pituitary LHβ expression but
increasing ERβ pituitary mRNA levels (13).

The expression of LH and FSH receptors may also be
altered by BPA. Li et al. showed that treatment of adult
male zebrafish (Danio rerio) by 500 ng/L BPA for 7 weeks
downregulated the expressions of FSHr and LHCGr (65). For
the first time, Roelofs et al. demonstrated that BPA, BPF, and
TBBPA showed clear glucocorticoid receptor antagonism, other
than AR antagonism. They also found that bisphenol analogs
upregulated the 5αRed1 gene expression, suggesting a redirection
of steroidogenesis, which may have significant consequences for
fetal testis development and function (7).

Within the steroid hormone biosynthetic pathway,
steroidogenic enzymes are recognized as important targets
for the actions of endocrine-disrupting chemicals. Several studies
showed that BPA decreases the expression of steroidogenic
enzymes (33, 41, 60, 61, 66, 67). Moreover, some compounds,
including BPA, seem to disturb steroidogenesis by inhibiting
the cAMP pathway. Nikula et al. analyzed the effects of BPA
at micromolar concentration in cultured mouse Leydig tumor
cells (mLTC-1). BPA did not have any effects on hCG binding
to LH receptors, but it inhibited LH-receptor-mediated signal
transduction by decreasing hCG-stimulated cAMP. Specifically,
they found that after preincubation of mLTC-1 cells for 48 h with
different doses of BPA, hCG-stimulated cAMP and progesterone
production was inhibited. Whereas, preincubation with 17β-
estradiol inhibited progesterone production but had no effect
on cAMP. Thus, the effects of BPA did not seem to be estrogen-
related (68). Moreover, the inhibitory effect of BPA could not be
seen when cAMP formation was directly stimulated by forskolin
(Fk) or through Gs protein by cholera toxin (CT), and when
steroidogenesis was directly activated by 8-Br-cAMP, which can
penetrate the plasmamembranes and directly activate the protein
kinase A. These results suggested that the negative effect of BPA
is exerted between the LH receptor and the adenylate cyclase.
Accordingly, Feng et al. found that BPA exposure inhibited
progesterone secretion in hCG-stimulated mouse Leydig tumor
cell line (mLTC-1) by decreasing SR-B1 and P450scc expression
due to the adverse effects on cAMP.Moreover, lower SR-B1 levels
cause a reduction in cholesterol levels within LCs that alters
steroidogenesis (69). The role of StAR is instead controversial.
According to Feng et al. (69), StAR seems not be the molecular
target of BPA. Similarly, male rats exposed to BPA showed
decreased T levels but did not exhibit significant changes in
StAR expression (61). However, other previous studies have
reported that BPA decreased StAR expression in cell culture
in vitro (15, 33, 47), but, in contrast, other studies have shown
that StAR expression is upregulated (41, 65). Takamiya et al.
reported that StAR gene expression increased in the presence
of both hCG (10 µg/L) plus BPA (10−5 M) or by hCG alone,
but was not influenced by BPA alone. They found that BPA
had only a weak modulating effect on gene expression of hCG-
stimulated mLTC-1 cells (70). Li et al. showed that the exposure
of adult male zebrafish to low doses (0.22–2.2 nM) of BPA for
7 weeks resulted in abnormal expression of genes involved in
testicular steroidogenesis, specifically of 3β-HSD1, CYP17A1,
and CYP11C1 (65). Samova et al. found that BPA significantly
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and dose-dependently affected the functions of 3β-HSD and
17β-HSD in the testis of inbred Swiss strain male albino mice
(67). Ye et al. reported that BPA significantly inhibited 3β-HSD,
CYP17A1, and 17β-HSD3 activities in both human and rat
testis. However, the inhibition of 17β-HSD3 activity was much
weaker compared with that on the other two enzymes. They
also found that human enzymes were more sensitive to BPA
(71). Specifically, their results suggested that BPA did not
exert a competitive inhibition of 3β-HSD against its substrate
(pregnenolone), but it competed with the cofactor NAD+ in the
cofactor binding site of the enzyme, whereas BPA inhibition of
CYP17A1 was mixed type for enzyme substrate progesterone,
indicating a combination of two different types of reversible
enzyme inhibition, both competitive and uncompetitive (71).
Additionally, not only BPA, but also bisphenol S (BPS) and
bisphenol F (BPF) exposure decreased T production in fetal
mouse testis by inhibiting mRNA expression of StAR, 3β-HSD,
and cytochrome P45017A1 (CYP17A1), but not of P450scc
(72). Moreover, Dankers et al. suggested that the changes in T
secretion after BPA or TBBPA exposure were only partly due to
alterations of steroidogenic enzyme expression. These authors
hypothesized that the inhibition of ATP-binding cassette (ABC)
transporters, expressed in the blood–testis barrier (BTB), may
play a role in this process. The BTB divides the seminiferous
epithelium into a basal and an apical compartment and provides
structural and protective support for the differentiation of
spermatogonia into spermatocytes. It consists of tight junctions,
testis-specific atypical adherent junctions, desmosomes, and
gap junctions. In the active part of BTB, ABC transporters

are present to allow the passage of endogenous molecules
involved in cellular signaling and to block the passage of
dangerous compounds within the testes and to protect germ
cells. The cellular membranes of LCs, Sertoli cells, and capillary
endothelial cells are provided of these transporters. For this
reason, the association between endocrine disruptors and ABC
transporters has a strong toxicological impact (23). The breast
cancer resistance protein (BCRP/ABCG2), the P-glycoprotein
(P-gp/ABCB1), and the multidrug resistance proteins 1 and 4
(MRP1, 4/ABCC1,4) are the major efflux transporters in the
BTB with a differential expression in the various parts of the
BTB (23). LCs express P-gp, MRP1, and MRP4, but not BCRP
in adult human testis (73, 74). Dankers et al. investigated the
effects of BPA and of TBBPA (tetrabromobisphenol A) on BCRP,
MRP1, MRP4, and P-gp. They found that TBBPA inhibited
all these transporters; thus, it is considered a non-competitive
transporter inhibitor, whereas BPA inhibited only BCRP activity.
They also showed that BPA, but not TBBPA, is transported by
BCRP (23). Interestingly, they found that, although exposure to
BPA and TBBPA significantly increased T level in MA-10 cells,
the effects on steroidogenic genes were not so significant. Thus,
these authors hypothesized that the changes in T levels upon
BPA or TBBPA exposure were associated with the inhibition of
efflux of T precursors. Increased availability of these precursors,
such as androstenedione or DHEA, could be responsible for the
increased T levels found.

Moreover, many compounds increase the levels of ROS in
the testis, altering steroidogenesis. Oxidative stress has also been
found to induce apoptosis in LCs and germ cells (64). Recent

FIGURE 2 | Mechanisms of action of bisphenol A on testicular steroidogenesis. Testicular steroidogenesis is a complex and fine-regulated process that bisphenol A

(BPA) can perturb by acting with several mechanisms represented in this figure (circled in red).
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studies have reported an inverse relationship between NOS
activity and StAR expression (47). Chouhan et al. exposed Swiss
albino mice to BPA at concentrations of 0.5, 50, and 100 µg/kg
body weight/day intraperitoneally for 60 days. They showed that
BPA upregulated the expression of iNOS, downregulating the
expression of StAR in mouse testis (47). It was also supposed
that BPA impaired steroidogenesis by decreasing testicular
glucose levels (38). Glucose homeostasis is crucial for testicular
spermatogenesis and steroidogenesis. D’Cruz et al. reported that
low-dose BPA exposure impaired insulin signaling interacting
with GLUT-2 and GLUT-8 and inhibiting the uptake in the
testis (38).

Recently, a number of studies suggest epigenetic effects
of BPA, including DNA methylation, histone modifications,
and non-coding RNAs. Epigenetic mechanisms can have long-
term effects and may be transmitted across several generations
(75). Specifically, Gao et al. (76) have recently investigated
the epigenetic effects of BPA on the expression of non-
coding RNAs (e.g., microRNAs) in the regulation of testicular
steroidogenesis. They used both cell culture and in vivo mouse
models and showed that miR-146a-5p was expressed only in
LCs, and this expression was significantly induced by BPA.
Consequently, the high miR-146a-5p expression intensifies
the negative effects of BPA on testicular steroidogenesis by

directly targeting the 3
′

UTR of Mta3 gene (76). Mta3 is a
subunit of the Mi-2/nucleosome remodeling and deacetylase
(NuRD) protein complex that is exclusively expressed in
LCs (77). Specifically, Mta3 role in the control of testicular
steroidogenic function is proven by its negative regulation
by the high levels of circulated insulin (77). He et al.
showed that a deficiency of Mta3 in LCs of diabetic mice
was associated with low serum T level, indicating that Mta3
expression in LCs may be associated with androgen deficiency
(77). Thus, the downregulation of mir-146a-5p/Mta3 cascade
seems to be involved in steroidogenic alterations caused by
BPA (76).

DNA methylation is one of the best characterized epigenetic
mechanisms. Liu et al. investigated the effects of BPA on
DNA methylation in rare minnow Gobiocypris rarus. DNA
hypermethylation consists of an addition of a methyl group

to the cytosine bases of DNA to form 5-methylcytosine and
it may be associated with changes in gene expression. In their
study, Liu et al. found that the global DNA methylation level
was significantly increased in testis of male G. rarus exposed to
BPA for 7 days. Then, they specifically analyzed the change in

DNA methylation in the 5
′

flanking region of the cytochrome
P450 aromatase (CYP19A1A) gene. After 35-day exposure, the
DNA methylation levels of CYP19A1A did not have significant
change in the testis, whereas they significantly increased in the
ovary (78).

CONCLUSIONS

This review summarizes the current evidences on the association
between BPA and testicular steroidogenesis. Altogether, these
results show that LCs are very sensitive to BPA and that
several mechanisms concur to the functional impairment of
these cells. Testicular steroidogenesis is a complex and fine-
regulated process and each component of this pathway may be
the molecular target of BPA. The main possible sites of BPA
action are summarized in Figure 2. The conflicting results of
both human and animal studies may be related to various factors
that include study design, dose of BPA, timing and route of
exposure, and other confounding factors. This review confirms
that the widespread use of bisphenols is certainly dangerous for
testicular development and function and that a reduction of its
use is necessary to preserve male sexual and reproductive health.
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