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Abstract

Several research fields frequently deal with the analysis of diverse classification results of the same entities. This should
imply an objective detection of overlaps and divergences between the formed clusters. The congruence between
classifications can be quantified by clustering agreement measures, including pairwise agreement measures. Several
measures have been proposed and the importance of obtaining confidence intervals for the point estimate in the
comparison of these measures has been highlighted. A broad range of methods can be used for the estimation of
confidence intervals. However, evidence is lacking about what are the appropriate methods for the calculation of
confidence intervals for most clustering agreement measures. Here we evaluate the resampling techniques of bootstrap
and jackknife for the calculation of the confidence intervals for clustering agreement measures. Contrary to what has been
shown for some statistics, simulations showed that the jackknife performs better than the bootstrap at accurately
estimating confidence intervals for pairwise agreement measures, especially when the agreement between partitions is low.
The coverage of the jackknife confidence interval is robust to changes in cluster number and cluster size distribution.
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Introduction

Biological information is commonly used to cluster or classify

entities of interest such as genes, species or samples. Examples are

the clustering of gene expression profiles in microarray analysis

[1], the grouping of bacterial isolates based on typing methods in

the epidemiology of infectious diseases [2,3] and the tissue

distribution pattern of proteins in proteomic analysis [4].

However, different methodologies can be used to cluster the same

set of entities, leading to the need for methods that allow the

comparison of two clusterings or that determine how well a given

clustering agrees with another, especially in the absence of a

universally accepted ‘‘gold standard’’ classification [2].

Moreover, facing two different data sources that characterize

the same set of biological entities and produce two different

clusterings, one may wish to know to what extent, and under

which conditions, agreement or disagreement between two

clusterings can be maximized. This information may be useful to

decide if it is worthwhile to collect and analyze both data sources.

If their results are in complete agreement, then it may be enough

to collect data from a single source. On the other hand, if the two

clusterings disagree, combining their results may offer additional

information and discriminatory power. Additionally, if the two

data sources carry independent information, clusters that have a

good match in both clusterings can be more reliable than clusters

resulting from each of the data sources alone [2].

Clustering agreement measures
The need to compare clusterings has been addressed in such

diverse fields as bioinformatics, computer science, psychology and

ecology. As a result, different measures have been used and there is

no general consensus on the choice of the measure to compare

clusterings [2,5]. A frequent strategy is based upon counting the

pairs of entities on which two clusterings agree or disagree. The

indices in this class are often known as pairwise agreement

measures, and a recent review lists 28 different pairwise agreement

measures [5]. However, after correction for chance agreement,

many of those measures become equivalent [5]. Although many

global measures exist that summarize pairwise comparisons, the

adjusted Rand index (AR) remains the most well known and widely

used. Some methods provide a global measurement of concordance

between clusterings, that also takes into account inter-cluster

distances, such as ranked adjusted Rand [2], providing a finer

global view. Other methods offer an asymmetric view of

concordance, in which the agreement of clustering A with clustering

B may be different from the agreement of B with A. An example of

this type of measure is the Wallace coefficient (W), which has been

applied to the analysis of microbial typing data [3,6–8].

Confidence intervals
The use and interpretation of clustering agreement measures

can be improved by the estimation of suitable confidence intervals
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(CI). Since the measured concordance is dependent on the

particular sample taken from the population, there is variability in

the point estimates obtained from the samples relative to those of

the true population [9]. Since we are interested in estimating a

population parameter using a given sample, CIs are necessary to

indicate the reliability of our estimate.

An analytical expression for W CI calculation was recently

proposed [9]. However, this method was shown to be valid only

under some conditions, in particular for W values greater than 0.5,

limiting the calculation of CIs to particular situations. Moreover,

an analytical expression is not available for the calculation of CIs

for other important and widely used measures, such as AR. In

these cases, CIs can be estimated through resampling techniques,

that involve withdrawing multiple new samples, called resamples,

from the data at hand. To investigate various sampling properties,

the estimators are calculated from each of the resamples. Although

computer intensive, resampling techniques are very easy to

implement and their computational demand is no longer an issue

for most applications.

The bootstrap is a resampling method, introduced in 1979, used

for estimating a distribution, from which various measures of

interest can be calculated (e.g. mean, standard error) [10,11]. The

bootstrap approach makes minimal assumptions, other than that

the bootstrap distribution accurately reflects the sampling

properties of the estimator, and it is available no matter how

mathematically complex the estimator may be. Several variations

for calculating bootstrap CIs have been proposed, including the

percentile and the bias-corrected and accelerated methods [11].

Additional variations to the bootstrap procedure, mostly used to

infer sampling representativeness, have also been applied in the

context of ecology [12,13].

The jackknife is another resampling method allowing for CI

estimation. It is frequently seen as a simpler, less computer-

intensive version of the bootstrap. The jackknife procedure has

been previously applied to calculate CIs for species richness [14],

for Simpson’s and Shannon’s diversity indices [15], and for some

pairwise measures, such as Rand [16]. In only a few cases have

jackknife and bootstrap methods been directly compared in these

contexts [12,13]. These previous studies have focused on diversity

measures and the impact of specific sampling strategies and

indicate that sample variability and size determine the most

suitable resampling method to be applied, with no clear superiority

of jackknife or bootstrap.

The sampling problem
The main requirement for CI estimation is to know the

sampling distribution of the estimator in question [15]. Resam-

pling techniques provide methods to infer sampling distribution

properties without assuming a distribution function or knowing

analytical expressions for the parameters of the distribution.

Applying resampling methods to estimate CIs is a standard

procedure [13,17,18]. However, depending on the estimator’s

sampling distribution and on the particular sample available for

resampling, the resulting CI may lack the desired properties,

namely the probability of containing the population parameter

being estimated.

It has been pointed out that many estimators have unsatisfac-

tory sampling properties, especially with small sample sizes [19].

Moreover, it is often not trivial to take a random sample of

individuals from a biological population. It was previously

emphasized that the theoretical standard errors for diversity

indices, in particular, are inappropriate in nearly all cases, because

they are derived from the assumption that repeated samples of

fixed size are drawn from a homogeneous population, when, in

fact, populations are frequently heterogeneous in time and space

[14]. These statements are also valid for clustering agreement

measures. In fact, these measures can be expected to be extremely

sensitive to sampling because of the nature of the measurement

itself. Since clustering agreement measures are calculated from the

sample and are not an intrinsic property of each sampled entity,

small sampling deviations from the population might be amplified

by the measurement, as discussed below. These problems may

compromise the validity of resampling approaches to estimate CIs

for these measures.

Here we evaluate the performance of the most commonly used

resampling methods for CI estimation applied to pairwise

agreement measures. The evaluation of jackknife in this study

was prompted by recent results [20], which indicated that the

jackknife might be useful for CI estimation for the adjusted Rand

index. To this end, we developed a generally applicable method

that compares the CIs of sample estimates with the true parameter

of an infinite population. The coverage and average amplitude of

the CIs estimated by the bootstrap and the jackknife were

evaluated for several pairwise agreement measures: Wallace, Rand

and adjusted Rand, Fowlkes & Mallows, Mirkin and Jaccard

indices.

Methods

Clustering and contingency tables
Let X be a set of N data points {x1, x2, x3, …, xN}. Given two

clusterings of X, namely A = {A1, A2, A3, …, AR} with R clusters

and B = {B1, B2, B3, …, BC} with C clusters, the information on

cluster overlap between A and B can be summarized in the form of

a R6C contingency table (CT) as illustrated in figure 1. Every

element of X contributes to the cell of the corresponding clusters in

both A and B. Focusing on the pairwise agreement, the

information in the CT can be further condensed in a mismatch

matrix (figure 2). Explicit formulae for calculating a, b, c and d in

the mismatch matrix can be constructed using entries in the CT

[21].

Construction of the population tables
In order to simulate the sampling process, population frequency

tables (PFT) with R rows and C columns were randomly generated

(figure 3). The total sum of a PFT equals one, representing the CT

of an infinite population. The PFTs were generated according to

Figure 1. Contingency table (CT). nij denotes the number of objects
that are common to clusters Ai and Bj.
doi:10.1371/journal.pone.0019539.g001
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the parameters R (number of rows), C (number of columns), alpha

(parameter determining the distribution of cluster sizes in the rows)

and beta (parameter determining the distribution of the elements in

each row across columns). Briefly, the R cluster sizes obtained with

clustering method A were generated according to a Zipfian

distribution with exponent alpha. This means that ranking clusters

by decreasing size, the number of elements in the cluster with rank

z is proportional to z2alpha. Then, for each row, a column cluster

was randomly selected and the row elements were allocated such

that the probability of being assigned to the chosen column cluster

is beta, and the probability of being assigned to any other cluster is

(12beta)/(C21). Alpha took the values 0, 0.5, 1, 2 and 3 and beta

was varied from 0 to 1, with fixed increments of 0.04. Since there

is an independent random choice of the column cluster to which

elements are assigned with probability beta for each row, the

overall agreement of a set of PFTs created with the same alpha and

beta parameters can vary substantially. In this way the values of

alpha and beta are not deterministically dictating the overall

agreement.

The true population values of Wallace (W), Rand index (RI),

adjusted Rand (AR), Jaccard (Jac), Mirkin and Fowlkes & Mallows

(FM) indices for each PFT were calculated according to the

formulas presented in table 1. All similarity indices listed are

function of a, b, c, d defined in the mismatch table (figure 2). In the

case of an infinite population, the entries of the mismatch table (ap,

bp, cp and bp) are calculated from the PFT entries (pij):

(i) ap~
PR

i

PC
j

p2
ij

(ii) bp~
PR

i

PC
j

pij(pi.{pij)

(iii) cp~
PR

i

PC
j

pij(p.j{pij)

(iv) dp~
PR

i

PC
j

pij(1{pi.{p.jzpij)

These expressions define the probabilities of the four possible

events when randomly and independently sampling two individ-

uals from an infinite population described by a PFT. Each

expression is the sum over all pij elements of the product of pij itself,

corresponding to the first sampled individual, by the sum of PFT

entries from which the second individual could be sampled such

that it would produce either a cluster match in A and B (i), in A

alone (ii), in B alone (iii) or a mismatch in both A and B (iv).

Simulating sampling from the population
Different sampling processes can be considered depending on

the settings where pairwise agreement measures are to be used. If

one is interested in comparing two clustering methods on a

particular set of individuals to quantify cluster recovery from one

method relative to the other, cluster sizes of both clustering

methods can be fixed. In this scenario, the CTs may be sampled

from a generalized hypergeometric distribution. Another possible

scenario is the comparison of the agreement of two methods in

classifying individuals from a given population. In this case the set

of individuals that is classified can change in each sample.

Consequently, the number of partitions and the number of

individuals in each partition can vary across samples. If the

population is sufficiently large, selection of one individual from the

population does not change the probability of sampling a new

individual with the same classifications. In other words, this

process is equivalent to sampling with replacement and the

sampled CTs can be drawn from a multinomial distribution. In a

prior publication the latter approach was successfully applied [9].

Additionally, Wallace has argued that even for the first scenario,

fixing cluster sizes is not a clearly necessary requirement and may

not be even desirable [22]. Both scenarios converge if the number

of sampled individuals is large, and, for similar expected

frequencies, multivariate hypergeometric distribution presents

smaller variances. This difference indicates that CIs that are valid

when calculated using the multinomial distribution should also be

valid in conditions where the hypergeometric distribution of

sampling would be indicated.

Following a multinomial distribution for the absolute frequen-

cies of the PFT, 1000 CTs were randomly generated. Each one of

those CTs represents a random sample, of N elements, from the

infinite population. The CT with R9 rows and C9 columns consists

in the classifications from two hypothetical clustering methods A

and B for sets of N individuals, meaning that method A produces

R9 clusters and method B produces C9 clusters. In practice, and in

spite of the unbiased way used to generate samples, it is possible

(even likely) to miss some cross-classifications that are present in

the population in the sampling effort. Therefore, the number of

clusters in the population must be regarded as an upper bound of

the number of clusters in the sample (C9#C and R9#R).

For each CT, the 95% CI was estimated by bootstrap and

jackknife for each of the pairwise agreement measures being

studied. The analytical CI for W was also calculated according to

the expression previously derived [9].

Figure 2. Mismatch Matrix. a, b, c and d represent counts of unique entity pairs.
doi:10.1371/journal.pone.0019539.g002
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Bootstrap confidence intervals
For each CT, generated by each sample from the population,

1000 independent bootstrap resamples X*
1, X*

2, …, X*
1000 of size

N were generated. Each bootstrap resample X* = (x1
*, x2

*, x3
*, …,

xN
*) was obtained by randomly sampling N times, with

replacement, from the original data set X = x1, x2, x3, …, xN. To

obtain the bootstrap distribution, the pairwise agreement measures

were calculated for each of the 1000 bootstrap resamples. The

bootstrap indices were then sorted in ascending order.

Bootstrap percentile method
The bootstrap CI calculated by the percentile method, for an

intended coverage of 122a, is obtained directly from the

percentiles a and 12a of the bootstrap distribution. Therefore,

to obtain the 95% bootstrap percentile CI lower and upper limits,

the 25th and 975th values in the ordered bootstrap indices were

chosen, since we had 1000 resamples.

Bootstrap bias-corrected and accelerated method
Efron and Tibshirani [11] proposed a bias-corrected and

accelerated method (BCa) for calculating CIs. This method adjusts

for possible bias in the bootstrap distribution and accounts for the

possible change in the standard deviation of an estimator [10].

The CI limits for the BCa method, are also given by percentiles in

the bootstrap distribution, but those are not necessarily the same

ones as in the percentile method.

The percentiles chosen depend on two parameters that can be

calculated: the acceleration and the bias-correction. If both

numbers equal 0, the BCa interval will be the same as the percentile

interval. Non-zero values of acceleration and bias-correction will

change the percentiles used as the BCa endpoints. Therefore, when

an estimator is unbiased and its standard deviation does not depend

on the true value it is estimating, the BCa method will, on average,

give the same CI as the percentile method.

Jackknife confidence intervals
The delete-one jackknife relies on resamples that leave out one

entity of the sample at a time, where entities are those individuals

that are randomly sampled from the population. Following Smyth

et al. [20], a pseudo-values approach was used to calculate the

Figure 3. Method used to calculate the coverage and average amplitude of the confidence intervals. The parameters R, C, alpha and
beta are used to generate a PFT, determining the number of rows, columns and the distribution of cluster size along rows and columns. The
population parameter is calculated from the PFT. The sampling process is simulated generating 1000 CTs with N elements. The confidence interval is
calculated for each one of the CTs. Finally, the coverage is calculated as the fraction of confidence intervals including the population estimate. An
average amplitude of the 1000 CIs is also calculated.
doi:10.1371/journal.pone.0019539.g003

Table 1. Pairwise agreement measures.

Measure Formula Introduced by

Jaccard Jac~
a

azbzc
Jaccard
(1908) [23]

Rand Index
RI~

azd

azbzczd

Rand
(1971) [24]

Adjusted
Rand

AR~
RI{RII

1{RII

RII ~
(azb)(bzc)z(czd)(bzd)

N(N{1)
2

� �2

Hubert and
Arabie
(1985) [21]

Fowlkes and
Mallows

FM~
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(azb)(azc)
p Fowlkes and

Mallows
(1983) [25]

Wallace
coefficient

WA?B~
a

azb
Wallace
(1983) [22]

Mirkin metric Mirkin~2(bzc) Mirkin
(1996) [26]

doi:10.1371/journal.pone.0019539.t001
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jackknife CIs. For an estimator S, the ith pseudo-value of S was

calculated as

psi~NS{ N{1ð ÞSi

where Si is the estimator value for the sample with the ith data

point deleted. The jackknife CI was then calculated as

CIJ (95%)~ps+2

ffiffiffiffiffiffiffi
var

N

r
, where var~

P (psi{ps)2

N{1
and ps~

1

N

X
psi.

CI Coverage and Amplitude
The coverage of a putative CI is the probability that it actually

contains the true value. For a 95% CI, the coverage probability

should be as close to 0.95 as possible. If the coverage is much

higher or lower than 0.95, then the CIs can be misleading.

To calculate the coverage of a CI we consider the contingency

table of the population, i.e., the PFT, and not that of individual

samples, that may already be biased relative to the population.

The CI coverage was calculated as the fraction of the CIs

computed from each sample CT that included the value of the

pairwise agreement measure computed from the PFT, that

constitutes the true population value (see figure 3).

In the present work, each coverage value is computed from the

CIs of 1000 samples. As such, each estimate of the coverage, x, has

a standard error of s = (x(12x)/1000)0.5, and associated 95% CI of

x61.96 s. This CI of the coverage estimate will have maximum

amplitude for a coverage value of 50% (46.9–53.1%), and will

decrease for smaller and higher coverage values. For instance,

errors associated with the 95% CI for the following coverage

estimates are: 80% (77.5–82.5%), 90% (88.1–91.8%), 95% (93.6–

96.4%) and 99% (98.4–99.6%).

The amplitude of a CI is defined as the difference between its

upper and lower limits. For each population (PFT) the average of

the amplitudes calculated for each of the corresponding 1000

samples (CTs) was considered (see figure 3).

Results and Discussion

The performance of several methods for CI estimation was

validated by generating PFTs representing the cross-classification

of two hypothetical clusterings in a population and by simulating

the sampling process. The results obtained for W and AR are

representative of all pairwise agreement measures investigated

here and are presented in figures 4, 5, 6, 7. Since there is a known

analytical CI for W, we use it as a reference to evaluate how well

the resampling CIs perform.

Analysis of the first row in figure 4 indicates that the analytical 95%

CI for W approximates the desired coverage of 95% in most of its

range (0 to 0.8) for a sample size bigger than 100. This behavior is

quite robust to changes in the number of clusters in each of the

classifications and to changes in the distribution within clusters.

However, for smaller samples of 50 and 20 data points, the 95% CI

coverage decreases considerably when W.0.25 and W.0.4

respectively (figure 4, first row, right). Although the analytical CI

was calculated as described previously [9], the results shown here differ

from the ones previously presented. The difference results from two

factors. First, we considered a PFT to perform our study, simulating

the sampling process. In the previous study, random contingency

tables (rCT) were generated around the sample CT using a

multinomial distribution [9]. Secondly, the CI coverage was assessed

differently: in the previous study it was calculated as the fraction of W

values calculated from rCT that were between the limits of the CI

computed from the CT [9]. This corresponds to the interpretation of

the CI as a prediction interval and evaluates how well the CI predicts

the behaviour of new samples. In the present study we evaluate the

probability that the true population value is contained within the CI

limits computed for any given sample. The two evaluation strategies

are related, and actually agree in a subset of the conditions tested. We

believe the methodology in the present work corresponds to a more

general interpretation of a CI, and that our results thus complement

the ones previously published [9]. Because we considered the PFT, the

influence of sample size in CI coverage is more evident, especially

when the agreement between clusters is high.

Still considering the analytical CI, we observe that for high

values of W (e.g. W.0.8 and N.100) the CI coverage gradually

decreases, meaning that the 95% CI has in reality a lower

coverage and the confidence level of the interval is overestimated

(figure 4). This extreme case can be explained by considering the

nature of the sampling distribution. When the W of the population

approaches its maximum (W = 1), the PFT is very sparse and there

is a high probability of missing some of the population’s cross-

classifications during the sampling effort, resulting in a W value for

the sample of 1. When W is 1 for the sample, the CI interval will

always be [1,1], which means the amplitude of the interval is zero.

Each point in figure 5 represents the average of the amplitudes

considering the 1000 CIs calculated. In this figure we can observe

that as the W of the population approaches 1, the average

amplitude of the analytical CI decreases, reflecting the higher

number of zero amplitude CIs. Moreover, unless the W of the

population is also 1, the calculated CI will always miss the

population value, resulting in a lower coverage. This behavior is

more pronounced for smaller samples, because there is an even

higher probability of obtaining W = 1.

Considering the coverage for the CI calculated with the

bootstrap percentile method (figure 4, second row), there is a

decrease in coverage for W.0.8 (N = 100), similarly to that

observed with the analytical method and previously discussed. In

contrast to the analytical CI estimation, the bootstrap percentile

method resulted in decreased coverages for lower W values (e.g.

when W,0.3 and N = 100). Analysis of the bootstrap distributions

revealed that in most of these cases the distributions were positively

skewed and biased relative to the sample estimate (figure S1). The

bootstrap approach is based on the assumption that the bootstrap

distribution is similar to the sample distribution. However, the

bootstrap process consists of resampling with replacement. When

the sample W is low, resampling the same individual several times

artificially increases the agreement between partitions, resulting in

a biased and skewed bootstrap distribution (figure S1). Because the

BCa corrects for bias and skewness, we would expect better results

with this correction. However, because the bootstrap distribution

does not mimic the sample distribution for low W, the BCa

method resulted in even lower coverages in these cases (figure 4,

third row). When BCa tries to compensate for the skewness of the

distribution, it is in fact dealing with an intrinsic artifact of the

resampling method and the types of measures we are using, which

does not reflect directly the sampling process. This points to the

possibility of biased estimators and suggests that future work

should be directed towards identifying better estimators of the

population parameter. Comparing the CI of both bootstrap

methods, we observe that for small values of W the amplitude of

the CI is larger for the percentile method, whereas for high values

of W, the amplitude of the CI is larger for the BCa method

(figure 5, second and third rows). Nevertheless, these differences

are only evident for small sample sizes (N#50).

The coverages obtained for the jackknife CI were superior to

those of either bootstrap CI. More importantly, jackknife CIs

Confidence of Cluster Concordance Measures
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Figure 4. Coverages of 95% confidence intervals for the Wallace coefficient. Rows refer to the methods by which the CIs were calculated.
From top to the bottom: analytical formula, bootstrap percentile method, bootstrap BCa method and jackknife. Each dot represents a simulated
population (PFT), with a particular set of parameters, and 1000 samples from the population (CTs). Symbols and colors represent changes in:
dimensions of the simulated probability tables, corresponding to the number of clusters in each of the two classifications (left); exponent alpha of the
Zipfian distribution determining the distribution of row cluster sizes of the simulated probability tables (middle); sample size or number of elements
in the contingency tables (right).
doi:10.1371/journal.pone.0019539.g004
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Figure 5. Average amplitudes of 95% confidence intervals for the Wallace coefficient. Rows refer to the methods by which the CIs were
calculated. From top to the bottom: analytical formula, bootstrap percentile, bootstrap BCa method method and jackknife. Each dot represents a
simulated population (PFT), with a particular set of parameters, and the average amplitude of the CIs for 1000 samples from the population (CTs).
Symbols and colors represent changes in: dimensions of the simulated probability tables, corresponding to the number of clusters in each of the two
classifications (left); exponent alpha of the Zipfian distribution determining the distribution of row cluster sizes of the simulated probability tables
(middle); sample size or number of elements in the contingency tables (right).
doi:10.1371/journal.pone.0019539.g005
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maintained this behavior throughout the whole range of W values

and were quite robust to the variation of the parameter tested (see

figure 4). In fact, the coverages obtained for the jackknife CI

match the performance of the analytical CI and in some cases are

marginally better than those obtained analytically (e.g., see the

coverages by these two methods for N = 20, figure 4, last column).

This increase of coverage for the jackknife CI is also reflected in a

modest increase in the amplitude of the CI for most parameters

tested and that became more pronounced for small values of N

(N#50) (figure 5, last row). Taken together, these observations

suggest that the jackknife provides a viable method to calculate CI

for measures for which no analytical formula is known.

According to Efron, ‘‘the jackknife uses only limited information

about the statistic and thus one might guess that the jackknife is

less efficient than the bootstrap’’ [10]. However, in our study the

standard bootstrap resampling procedure was not capable of

reproducing the sample distribution for small values of W. When

the correction for skewness and bias is applied, we lose even more

information about the population, resulting in lower CI coverages

(figure 4). So, our results indicate that the jackknife outperforms or

matches the bootstrap in the CI estimation of pairwise agreement

measures. This is in contrast with previous studies that point to

situations where the bootstrap is sometimes superior to the

jackknife [11–13]. The reasons for this behavior are intrinsic to

Figure 6. Coverages of 95% confidence intervals for adjusted Rand. Rows refer to the methods by which the CIs were calculated. From top
to the bottom: bootstrap percentile method, bootstrap BCa method and jackknife. Each dot represents a simulated population (PFT), with a particular
set of parameters, and 1000 samples from the population (CTs). Symbols and colors represent changes in: dimensions of the simulated probability
tables, corresponding to the number of clusters in each of the two classifications (left); exponent alpha of the Zipfian distribution determining the
distribution of row cluster sizes of the simulated probability tables (middle); sample size or number of elements in the contingency tables (right).
doi:10.1371/journal.pone.0019539.g006

Confidence of Cluster Concordance Measures

PLoS ONE | www.plosone.org 8 May 2011 | Volume 6 | Issue 5 | e19539



each procedure and reflect the particular properties of pairwise

agreement measures, as discussed above.

As representative of the measures of bi-directional agreement,

the results for AR are very similar to the ones observed for W

(figures 6 and 7). Again, for N.100, the coverage of the

jackknife 95% CI is very close to 0.95, independently of the

number of clusters and the distribution among clusters. The

increase in CI amplitude for small samples noted for W is also

apparent for AR (figure 7). The robustness of the jackknife CI

indicates that this method should be the method of choice for

the estimation of AR CI. Thus, our results confirm and extend

those of Smyth et al. [20]. Similar results were obtained for

Rand, Mirkin, Jaccard and Fowlkes & Mallows measures

(figures S2, S3, S4, S5, S6, S7, S8, S9) indicating that the

jackknife is a suitable method to estimate CI for a variety of

pairwise agreement measures.

Our study clarifies the sampling and sample size related

limitations when resampling techniques are used to estimate CIs

of paiwise agreement measures. Simulations exploring the

parameter space showed that the jackknife 95% CI has the

required coverage for a large range of parameters and pairwise

agreement measures. This result is robust to changes in the

number of clusters and cluster size distribution. Our data also

reinforces the problem of point estimates of concordance

Figure 7. Average amplitudes of 95% confidence intervals for the adjusted Rand. Rows refer to the methods by which the CIs were
calculated. From top to the bottom: bootstrap percentile method, bootstrap BCa method and jackknife. Each dot represents a simulated population
(PFT), with a particular set of parameters, and the average amplitude of the CIs for 1000 samples from the population (CTs). Symbols and colors
represent changes in: dimensions of the simulated probability tables, corresponding to the number of clusters in each of the two classifications (left);
exponent alpha of the Zipfian distribution determining the distribution of row cluster sizes of the simulated probability tables (middle); sample size or
number of elements in the contingency tables (right).
doi:10.1371/journal.pone.0019539.g007
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measurements based on small sample sizes. As a rule of thumb,

and even in ideal sampling conditions, a minimal sample size of

N = 50 is needed to obtain an acceptable estimate of the

population parameter. It is important to note that even with

N = 50, the CI coverage drops below 95% for W.0.8, which is an

unwanted outcome. Overall, the jackknife method is a simple and

suitable way to estimate CIs for some widely used pairwise

agreement measures in the biological sciences.

Supporting Information

Figure S1 Distributions of bootstrap resamples. Each

plot refers to a different population with a Wallace coefficient

calculated from a 10610 PFT (W, red). In each plot, the Wallace

for a sample of 100 individuals is shown is blue (WSample). Only

one sample from each population is represented. The histogram

shows the bootstrap distribution for this sample (1000 resamples).

Confidence intervals calculated by the percentile and BCa

methods are shown in yellow and green.

(TIFF)

Figure S2 Coverages of 95% confidence intervals for the
Rand index. Rows refer to the methods by which the CIs were

calculated. From top to the bottom: bootstrap percentile method,

bootstrap BCa method and jackknife. Each dot represents a

simulated population (PFT), with a particular set of parameters,

and 1000 samples from the population (CTs). Symbols and colors

represent changes in: dimensions of the simulated probability

tables, corresponding to the number of clusters in each of the two

classifications (left); exponent alpha of the Zipfian distribution

determining the distribution of row cluster sizes of the simulated

probability tables (middle); sample size or number of elements in

the contingency tables (right).

(TIFF)

Figure S3 Average amplitudes of 95% confidence inter-
vals for the Rand index. Rows refer to the methods by which

the CIs were calculated. From top to the bottom: bootstrap

percentile method, bootstrap BCa method and jackknife. Each dot

represents a simulated population (PFT), with a particular set of

parameters, and the average amplitude of the CIs for 1000

samples from the population (CTs). Symbols and colors represent

changes in: dimensions of the simulated probability tables,

corresponding to the number of clusters in each of the two

classifications (left); exponent alpha of the Zipfian distribution

determining the distribution of row cluster sizes of the simulated

probability tables (middle); sample size or number of elements in

the contingency tables (right).

(TIFF)

Figure S4 Coverages of 95% confidence intervals for the
Fowlkes & Mallows. Rows refer to the methods by which the

CIs were calculated. From top to the bottom: bootstrap percentile

method, bootstrap BCa method and jackknife. Each dot represents

a simulated population (PFT), with a particular set of parameters,

and 1000 samples from the population (CTs). Symbols and colors

represent changes in: dimensions of the simulated probability

tables, corresponding to the number of clusters in each of the two

classifications (left); exponent alpha of the Zipfian distribution

determining the distribution of row cluster sizes of the simulated

probability tables (middle); sample size or number of elements in

the contingency tables (right).

(TIFF)

Figure S5 Average amplitudes of 95% confidence inter-
vals for the Fowlkes & Mallows. Rows refer to the methods

by which the CIs were calculated. From top to the bottom:

bootstrap percentile method, bootstrap BCa method and jackknife.

Each dot represents a simulated population (PFT), with a

particular set of parameters, and the average amplitude of the

CIs for 1000 samples from the population (CTs). Symbols and

colors represent changes in: dimensions of the simulated

probability tables, corresponding to the number of clusters in

each of the two classifications (left); exponent alpha of the Zipfian

distribution determining the distribution of row cluster sizes of the

simulated probability tables (middle); sample size or number of

elements in the contingency tables (right).

(TIFF)

Figure S6 Coverages of 95% confidence intervals for the
Jaccard metric. Rows refer to the methods by which the CIs

were calculated. From top to the bottom: bootstrap percentile

method, bootstrap BCa method and jackknife. Each dot represents

a simulated population (PFT), with a particular set of parameters,

and 1000 samples from the population (CTs). Symbols and colors

represent changes in: dimensions of the simulated probability

tables, corresponding to the number of clusters in each of the two

classifications (left); exponent alpha of the Zipfian distribution

determining the distribution of row cluster sizes of the simulated

probability tables (middle); sample size or number of elements in

the contingency tables (right).

(TIFF)

Figure S7 Average amplitudes of 95% confidence inter-
vals for the Jaccard metric. Rows refer to the methods by

which the CIs were calculated. From top to the bottom: bootstrap

percentile method, bootstrap BCa method and jackknife. Each dot

represents a simulated population (PFT), with a particular set of

parameters, and the average amplitude of the CIs for 1000

samples from the population (CTs). Symbols and colors represent

changes in: dimensions of the simulated probability tables,

corresponding to the number of clusters in each of the two

classifications (left); exponent alpha of the Zipfian distribution

determining the distribution of row cluster sizes of the simulated

probability tables (middle); sample size or number of elements in

the contingency tables (right).

(TIFF)

Figure S8 Coverages of 95% confidence intervals for the
Mirkin metric. Rows refer to the methods by which the CIs

were calculated. From top to the bottom: bootstrap percentile

method, bootstrap BCa method and jackknife. Each dot represents

a simulated population (PFT), with a particular set of parameters,

and 1000 samples from the population (CTs). Symbols and colors

represent changes in: dimensions of the simulated probability

tables, corresponding to the number of clusters in each of the two

classifications (left); exponent alpha of the Zipfian distribution

determining the distribution of row cluster sizes of the simulated

probability tables (middle); sample size or number of elements in

the contingency tables (right).

(TIFF)

Figure S9 Average amplitudes of 95% confidence inter-
vals for the Mirkin metric. Rows refer to the methods by

which the CIs were calculated. From top to the bottom: bootstrap

percentile method, bootstrap BCa method and jackknife. Each dot

represents a simulated population (PFT), with a particular set of

parameters, and the average amplitude of the CIs for 1000

samples from the population (CTs). Symbols and colors represent

changes in: dimensions of the simulated probability tables,

corresponding to the number of clusters in each of the two

classifications (left); exponent alpha of the Zipfian distribution

determining the distribution of row cluster sizes of the simulated
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probability tables (middle); sample size or number of elements in

the contingency tables (right).

(TIFF)
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