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Switzerland
* Corresponding authors. M Stoffel or R Aebersold, Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Wolfgang-Pauli-Strasse 16, 8093
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The metabolic syndrome is a collection of risk factors including obesity, insulin resistance and
hepatic steatosis, which occur together and increase the risk of diseases such as diabetes,
cardiovascular disease and cancer. In spite of intense research, the complex etiology of insulin
resistance and its association with the accumulation of triacylglycerides in the liver and with
hepatic steatosis remains not completely understood. Here, we performed quantitative measure-
ments of 144 proteins involved in the insulin-signaling pathway and central metabolism in liver
homogenates of two genetically well-defined mouse strains C57BL/6J and 129Sv that were subjected
to a sustained high-fat diet. We used targeted mass spectrometry by selected reaction monitoring
(SRM) to generate accurate and reproducible quantitation of the targeted proteins across 36 different
samples (12 conditions and 3 biological replicates), generating one of the largest quantitative
targeted proteomics data sets in mammalian tissues. Our results revealed rapid response to high-fat
diet that diverged early in the feeding regimen, and evidenced a response to high-fat diet dominated
by the activation of peroxisomal b-oxidation in C57BL/6J and by lipogenesis in 129Sv mice.
Molecular Systems Biology 9: 681; published online 16 July 2013; doi:10.1038/msb.2013.36
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Introduction

The metabolic syndrome is a combination of medical
disorders—including central obesity, insulin resistance,
dyslipidemia, hypertension and hepatic steatosis—and
predisposes to a range of diseases such as diabetes,
cardiovascular disease and cancer (Eckel et al, 2010). Genetic
and environmental components contribute to the initiation
and establishment of this disorder, but it remains unclear
how these factors interact to produce the metabolic
syndrome and its related pathologies (Biddinger et al, 2005).
A deregulation of the hepatic lipid metabolism has been
proposed as one of the major features in the pathogenesis of
the metabolic syndrome (Luyckx et al, 2000; Marchesini et al,
2001; Pagano et al, 2002). This disorder, which is also known
as non-alcoholic fatty liver disease (NAFLD), leads to an
increased storage of triacylglycerides in the liver and has
been strongly associated with selective hepatic insulin
resistance, i.e., the failure of insulin to suppress gluconeo-
genesis while sustaining the activation of lipolysis (Dixon et al,
2001, 2004).

In spite of intense research, the complex etiology of insulin
resistance and its association with the accumulation of
triacylglycerides in liver is not yet completely understood.
Several studies have recently used mice of different genetic
backgrounds as a model to study the link between insulin-
regulated networks and hepatic steatosis, and thus to identify
potential genetic elements controlling the progression of the
metabolic syndrome and its associated pathologies. In this
regard, the effect of genetic heterogeneity on the development
of diabetes was recently evaluated using genetically engi-
neered variants of the mouse strains C57BL/6J (B6) and 129Sv
(S9). Double heterozygous knockout mutations of the insulin
receptor (IR) and insulin receptor substrate-1 (IRS-1) genes
were generated on both backgrounds and the mice were tested
for insulin resistance after a high-fat diet regimen (Kulkarni
et al, 2003). The data showed that the phenotypes of
these strains differed dramatically. The C57BL/6J double
heterozygous mice showed marked hyperinsulinemia and
islet hyperplasia and they developed early hyperglycemia and
diabetes. In contrast, the 129Sv double heterozygous mice
showed mild hyperinsulinemia, minimal islet hyperplasia and
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they hardly developed diabetes. Biddinger et al (2005) also
reported acute phenotypic differences after several weeks of
high-fat diet in wild-type C57BL/6J and 129Sv mice. Wild-type
C57BL/6J and 129Sv mice were fed, in that case, with either a
low-fat or high-fat diet to dissect the interaction of diet and
genetic background under normal conditions. After several
weeks of high-fat diet, the 129Sv mice developed typical
features of the metabolic syndrome, such as obesity, hyper-
insulinemia and glucose intolerance. In contrast, the C57BL/6J
mice developed these features on both diets. In both strains,
high-fat feeding led to increased hepatic steatosis and it
decreased serum triglyceride levels and hypercholesterolemia,
although the C57BL/6J mice developed a more serious
steatosis and a larger increase in low-density lipoprotein
(LDL) cholesterol than the 129Sv mice (Biddinger et al, 2005).
Therefore, under constant conditions, these genetically differ-
ent mouse strains show markedly different metabolic
phenotypes.

Several proteomics studies have analyzed different mouse
strains in the past to relate observed phenotypes to protein
changes in the context of the metabolic syndrome (Park et al,
2004; Schmid et al, 2004; Kirpich et al, 2011). However, most of
these studies covered only a few experimental conditions and
did not address the dynamics of the biological system at
different time points, different treatments and in different
mouse strains. The number of experimental conditions to be
meaningfully compared in proteomics studies has traditionally
been limited by the sampling effect of the frequently used
discovery proteomic technique (Domon and Aebersold, 2010),
which increases the number of missing values and thus, the
sparseness of the data matrix (Bensimon et al, 2012) with
increasing number of samples analyzed. Targeted proteomics
by selected reaction monitoring (SRM) overcomes these
technical limitations and constitutes the method of choice
for the consistent quantification of a limited number of
predefined proteins in multiple samples and conditions
(Picotti et al, 2009; Costenoble et al, 2011; Sabido et al, 2012).

In the present study, we used targeted mass spectrometry
by SRM to generate accurate quantitative measurements in
mouse liver homogenates, of proteins involved in the insulin-
signaling pathway and central metabolism across 12 different
conditions, with 3 biological replicates each. A total of
144 proteins—including metabolic enzymes, kinases, phos-
phatases, transcription factors and structural proteins—were
reproducibly quantified in all samples representing different
treatments, time points and mouse strains, thus generating a
rich and near complete quantitative proteomics data set to
evaluate the differential changes induced in the proteome after
subjecting C57BL/6J and 129Sv mice to a sustained long-term
high-fat diet. The data set revealed a rapid proteomic response
to high-fat diet that diverged early in the feeding regimen in the
obesity prone C57BL/6J mouse strain and the partially obesity
and diabetes-resistant 129Sv strain.

Results

SRM assay development for targeted proteomics

SRM assays were initially designed to quantify 257 proteins
covering the insulin-signaling pathway and the lipid and

carbohydrate metabolism pathways (Figure 1; Supplementary
Table S1). SRM assays corresponding to 2–4 unique peptides
per protein were developed, using synthetic peptides and
following the general high-throughput strategy previously
reported (Picotti et al, 2010). The peptides were selected based
on the number of observations in previous MS experiments
(Martens et al, 2005; Desiere et al, 2006) or, when no previous
evidence was available, on the MS-suitability score predicted
by PeptideSieve (Mallick et al, 2007). Out of the data generated
from these peptides a spectral library containing SRM assays
for 1418 peptides representing the 257 proteins was generated.
These assays were used throughout this study to quantify the
targeted proteins under different conditions and treatments to
study the effect of high-fat diet on insulin-regulated signaling
networks and hepatic steatosis, and they are all available
in Supplementary information (Supplementary Table S1).

Mouse strains C57BL/6J and 129Sv were selected for this
study as they show distinctive phenotypic differences in
response to a sustained high-fat diet. Indeed, after several
weeks of high-fat diet the C57BL/6J mice showed higher lipid
accumulation in the liver, higher weight increase, a pro-
nounced hyperglycemia and higher hyperinsulinemia when
compared with the 129Sv strain (Supplementary Table S2).

Liver samples from mice fed with a high-fat rodent diet for 0,
6 and 12 weeks were homogenized, and the lysate of a SILAC
(stable incorporation of labeled amino acids in cell culture)
labeled mouse hepatocyte cell line was spiked in as an internal
heavy-labeled reference. Whole cell homogenates were
digested and subsequently fractionated by off-gel electro-
phoresis, and equal amounts of total protein were analyzed
with targeted nLC-SRM. All experiments were done in
triplicate. A total of 251 peptides representing 144 of the pre-
selected proteins involved in the insulin-signaling pathway
and central metabolism (Figure 1; Supplementary Table S3A)
were consistently detected and quantified across different
treatments (fasted overnight and fed ad libitum), strains and
time points using targeted mass spectrometry. Proteins that
could not be detected even after sample fractionation mostly
corresponded to transcription factors and signaling proteins,
which are normally present in the cell only at low abundance
levels. Acquired data are summarized in Figure 2 and
Supplementary Table S3.

Unsupervised hierarchical clustering of all protein
abundance changes showed two clearly distinct groups
corresponding to the studied mouse strains, thus confirming
the importance of the genetic background as the main
determinant modulating the response to high caloric intake.
The subset of identified proteins that more strongly contrib-
uted to the separation of the mouse strains were mainly
metabolic enzymes belonging to the tricarboxylic acid cycle,
glycolysis, b-oxidation, fatty acid biosynthesis and glycogen
metabolism (Figure 2A; Supplementary Table S4A). Similar
results were obtained when the data were subjected to a
principal component (PC) analysis, although, in that case, also
proteins distinguishing different time points and treatments
could be identified (Figure 2B; Supplementary Table S4B).
Three PCs were required to distinguish among strains, time
points and treatments showing that there is enough variation
in the abundance of the measured peptides and proteins to
reflect the different conditions of the study (PC-1: 64.0%; PC-2:
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10.4%; PC-3: 5.7% of the total variation). Each PC was
orthogonal to the previous ones, and uncovered complemen-
tary variation. Together, the three components explained over
80% of the total variation (Figure 2B, dashed ellipses). These
analyses showed that although the observed variation is
mostly due to differences among mouse strains, time points
and treatments still have a significant contribution to sample
variability. These observations confirmed the rich information
content of the acquired data and provided us with a first
overview of the system under study. Further, detailed
evaluation of the observed differences in the targeted
proteome among mouse strains, time points and treatments
is described in the next sections.

Comparison of mouse strains to elucidate the
differential effect of the high-fat diet

The quantitative data set acquired for the targeted proteins
was initially used to evaluate the changes in protein
abundance within each mouse strain after 6 and 12 weeks of
high-fat diet under ad libitum condition. In both strains,
several proteins exhibited significant changes in abundance
after 6 (T1) and 12 weeks (T2) of high-fat diet. Most of the
observed changes were found in proteins involved in the
b-oxidation (DHB4 in C57BL/6J) and fatty acid biosynthetic
pathways, as well as in proteins involved in glucose
metabolism (Figure 3A and B; Supplementary Table S5).
Moreover, some proteins involved in the insulin-signaling
pathway, such as transcription factors SRBP1 and EIF3L and
kinase MK01, showed significant abundance changes by mass
spectrometry either in one (EIF3L in C57BL/6J) or both mouse
strains (MK01 and SRBP1) (Figure 3B; Supplementary
Figure S2). Overall, the fed C57BL/6J mice showed a more
significantly altered targeted proteome after several weeks of
high-fat diet than the fed 129Sv mice.

The detected time-dependent changes in expression levels
may, however, reflect diet-induced alterations as well as age-
dependent changes. Therefore, to elucidate the differential
effect of a sustained high-fat diet in the proteome of C57BL/6J
and 129Sv mice, we directly compared protein abundances in
the two mouse strains at the same points of the regimen. This
analysis revealed numerous proteins that showed different
quantitative trajectories after several weeks of high-fat diet in
the two strains. The data in Figure 4A, Supplementary Figure
S3 and Supplementary Table S6 show that this differential
response affected proteins in the main metabolic pathways,
especially fatty acid synthesis and b-oxidation, and in the
insulin-signaling pathway. The proteins involved in the
insulin-signaling pathway that show strain-dependent
responses to high-fat diet include several kinases such as
KAPCA, KAPCB, GSK3B, PK3C3, PDK1, MP2K4, MK01, the
oxidative stress enzymes CATA, SODM, and the transcription
factor SRBP1 (Figure 4D).

Among proteins with different fold changes in the two
mouse strains after either 6 or 12 weeks treatment, we
observed numerous proteins that showed opposite quantita-
tive trends in response to high-fat diet (Figure 4A and C). This
was the case of several enzymes related to the TCA cycle
(ODP2, ODPA, ODPB, CISY) and of some key proteins involved
in the lipid biosynthetic pathway such as FAS and Q8R5C9
(ACACB), which showed increasing abundance levels in
C57BL/6J whereas protein abundance was decreased in
129Sv mice. Other proteins that also exhibited opposite
quantitative trends were some b-oxidation-related proteins
(ACOX1 and ECHB), and pyruvate kinase (KPYR), a key
enzyme in glycolysis (Figure 4A and D). Most of these proteins
coincide with the proteins identified in the initial unsupervised
hierarchical clustering as the subset of proteins most strongly
differentiating the mouse strains.

Among the proteins showing opposite quantitative patterns
over time in the two mouse strains were not only proteins
related to central metabolism but also other regulatory
proteins such as the insulin-related cAMP-dependent protein
kinase (KAPCA) (Figure 4D). The abundance of the former
protein is significantly increased at the 12-week time point in
C57BL/6J mice. This pattern is consistent with the inhibition
of fatty acid synthesis and the promotion of the transcription of
genes encoding lipid catabolic enzymes. Temporal behavior in
protein abundance also differed between strains for SRBP1, a
transcription factor that exhibits highly increased levels in
129Sv mice and that activates the transcription of genes
related to hepatic lipogenesis (Figure 4A, golden squares;
Supplementary Table S6). The observed differences in the
abundance of these regulatory proteins between strains
suggest that peroxisomal b-oxidation is actively promoted in
fatty C57BL/6J mice after several weeks of high-fat diet,
whereas lipogenesis activation dominates the response of
129Sv mice under the same conditions.

Other proteins with significant differences in protein
abundance between strains showed the same direction but
different magnitude in response to high-fat diet. This is the
case for proteins related to glycolysis and gluconeogenesis, for
enzymes involved in ketogenesis and glycogen synthesis, and
for several kinases and signaling proteins (Figure 4A, gray
squares; Supplementary Table S6).

Most proteins with a differential temporal response to high-
fat diet between the strains targeted in this study already
showed this differential response within the first 6 weeks of
high-fat diet (Figure 4B, red and blue dots), and in many cases
differences persisted in the 6- to 12-week period (Figure 4B, red
dots). Only few proteins showed a delayed response when
comparing strains, i.e., they exhibited a significantly different
abundance only in the 6- to 12-week period of high-fat
diet. Among these are proteins related to oxidative stress
(CATA and SODM)—a process that has recently been linked
to the metabolic syndrome (Roberts and Sindhu, 2009;
Whaley-Connell et al, 2011)—some b-oxidation and fatty acid

Figure 2 (A) Heatmap and unsupervised hierarchical clustering of protein abundance fold-changes of all samples with respect to the reference sample C57BL/6J (B6)
mice fed ad libitum at 0 week (T0). T1 refers to animals after 6 weeks of high-fat diet and T2 corresponds to 12 weeks of high-fat diet. S9 is the abbreviation for 129Sv
mice. (B) Principal component analysis of the relative protein abundance measured in different mouse strains, different time points after a sustained high-fat diet and
different treatments. Three different principal components are required to distinguish between strains, time points and treatments. Orthogonality between the principal
components is highlighted by dashed ellipses (PC-1: 64.0%; PC-2 10.4%; PC-3 5.7% of the total variation).
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metabolism enzymes (ACADM, HCDH and MCCA), as well as
other proteins related to the insulin-signaling and other
pathways (SRF, RICTR, EIF3L, PGM2, OTC, VIME and
DHB12) (Figure 4B, green dots). Overall, most of the strain-
specific changes therefore were apparent early in the regimen
when phenotypic changes were already set, but not yet very
pronounced.

Influence of high-fat diet in the fed–fasting
transition

We were also interested in establishing the effects of a
persistent high-fat diet on the proteome changes observed in
the fed–fasting transition. To address this question, we first
analyzed those changes that take place in the normal proteome
in the fed–fasting transition (i.e., in the initial time point: T0 or
0 weeks) and compared them between strains. Then, we asked
whether the proteins initially showing a similar abundance
profile between strains were perturbed after 12 weeks of high-

fat diet and whether the potential perturbations were
strain specific.

The analysis of the fed–fasted transition at the initial time
point showed that several enzymes involved in b-oxidation
and gluconeogenesis reacted similarly to fasting in both
mouse strains (Figure 5A, both panels; Supplementary
Tables S7 and S8), whereas numerous proteins involved in
glycolysis, gluconeogenesis and fatty acid synthesis
already showed a different pattern at the initial time point
(Figure 5B; Supplementary Table S9). These differences,
which were already present before any diet treatment,
mostly reflect the different genetic backgrounds of both
mouse strains.

Several proteins that showed no abundance differences
between strains in the initial response to the fed–fasting
transition had a differential response to fasting after 12 weeks
of high-fat diet. The identification of these proteins is of special
interest to ascertain the differential effects of high-fat diet on
the fed–fasting transition in each mouse strain and, thus, to
identify potential alterations in response to food intake
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database identifiers without the suffix _MOUSE. (B) Protein abundance of DHB4 and SRBP1 after 6 (T1) and 12 weeks (T2) of high-fat diet in C57BL/6J (B6) and 129Sv
(S9) mice fed ad libitum validated by western blot.
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(Figure 5B, green dots; Supplementary Tables S9 and S10).
Among these proteins was the SRBP1 transcription factor that
is involved in the regulation of lipogenesis, numerous proteins
involved in lipid metabolism (ACADM, ECHB, THIKB, CPT1A,
MCCB, ODB2 and Q8R5C9), and several kinases that regulate
the cellular response to insulin (AKT1, AKT2, KAPCA, KAPCB
and PDK1). Together, these results indicate that a high-fat diet
has a major impact on the proteome regulating lipid
metabolism and, most probably, also on the phosphoproteome
that mediates the signaling cascade in response to fasting or
food intake (Figure 5C). Finally, some of the proteins that had a
different initial (T0) response to fasting when comparing both
strains also showed a different behavior after being subjected
to a high-fat diet. This is the case of FAS, PCKGC, GLGB,
KPYR, PYC and DHB4, among others (Figure 5B, red dots;
Supplementary Figure S4).

Discussion

The experimental design of quantitative proteomic studies to
date has been limited to a low number of different experi-
mental conditions (e.g., wild-type versus mutant strains).
Three main reasons have precluded the systematic compar-
isons of larger numbers of sample proteomes. The first is the
under sampling effects of the prevalent discovery proteomics

techniques that results in the irreproducible detection and
quantification of proteins, particularly in complex samples.
The effect is compounded by the observation that lower
abundance proteins show a lower degree of reproducibility
than more highly expressed proteins (Domon and Aebersold,
2006; Michalski et al, 2011). The second reason is the limited
number of labeling plexes that are available in the available
isotopic or isobaric labeling protocols (Dephoure and Gygi,
2012) and third, is the limited dynamic range of label-free LC-
MS pattern comparison methods which are inherently scalable
but lack the analytical depth to quantify low abundance
proteins. From a systems biology point of view, where a main
objective is the quantitative measurement of a specific
biological system under differentially perturbed states
(Ideker et al, 2001; Bensimon et al, 2012) the comparative
analysis of a larger number of samples and replicates is highly
desirable. Targeted proteomics by SRM overcomes many of the
aforementioned limitations and permits the consistent quanti-
fication of a pre-defined set of proteins in multiple samples and
conditions.

In the present study, we developed a set of SRM assays
to systematically quantify murine proteins involved in the
insulin-signaling pathway and central metabolism in an
experimental design that intends to assess the changes of this
system during the emergence of metabolic syndrome. The
metabolic syndrome is a combination of medical disorders,
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threshold was set at adjusted P-value of 0.05. (B) Scatter plot of P-values associated with the observed changes when comparing both mouse strains fed in normal
diet—i.e., 0 weeks (T0, x axis); and after 12 weeks of high-fat diet (T2, y axis). The plot is divided into three main parts: (i) proteins with a different fasting-response
pattern at normal diet (blue dots); (ii) proteins with a different fasting response among strains only after 12 weeks of high-fat diet (green dots); and (iii) proteins with a
different fasting response both in normal diet and after 12 weeks of high-fat diet (red dots). (C) Protein abundance changes in the fed–fasting transition of selected
proteins at 0 (T0) and 12 (T2) weeks of high-fat diet for each mouse strain (B6, blue; S9, pink). Error bars correspond to standard errors.

High-fat diet effect on insulin and metabolic pathways
E Sabidó et al
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including central obesity, insulin resistance, dyslipidemia,
hypertension and hepatic steatosis. These disorders predis-
pose the patient to several diseases such as diabetes,
cardiovascular disease and cancer, and in the last years this
syndrome has become an important problem for the national
health-care systems of most western countries. In spite
of significant efforts by the scientific community and the
extensive knowledge that has accumulated about individual
enzymes and regulatory proteins, the complex etiology of
insulin resistance and its association with the accumulation of
lipids in liver is not yet completely understood. To obtain, for
the first time, a comprehensive quantitative overview of the
behavior of some of the main pathways involved in metabolic
syndrome at the protein level, we designed a study in which
the effect of three variables, genetic background, time and fed/
fast state on the system was systematically tested. Over 200
mouse proteins involved in the insulin-signaling pathway and
the central metabolism were initially selected for quantitative
targeted analysis. SRM assays were developed for each of the
selected proteins and used to assess their detectability at
endogenous levels. The developed SRM assays will be publicly
available and provide a resource for others researchers to
easily quantify the selected proteins in other studies. The
targeted proteomic measurements were finally performed for
144 proteins across 36 samples, thus generating a protein
abundance versus condition matrix of 5184 quantitative data
points with a high degree of completion. The 36 conditions
consisted of triplicates of liver samples from two genetically
different mouse strains (C57BL/6J and 129Sv) each measured
at three time points at fed and fasted state, thus becoming
one of the biggest targeted proteomics studies performed in
mammalian tissues.

These two mouse strains were selected due to their different
response to a sustained high-fat diet under normal conditions.
Wild-type C57BL/6J mice showed altered physiological para-
meters such as higher body weight, increased fat accumulation
in the liver, hyperglycemia and hyperinsulinemia, whereas
129Sv mice show an increased resistance to these phenotypic
alterations.

Despite the size of the data set and the consistency among
measurements, our approach also had some limitations as not
all the initially selected proteins could be finally quantified in
the endogenous sample. Undetected targeted peptides mostly
come from proteins present in low concentrations in the
sample, peptides with low response to mass spectrometric
analysis or peptides with high interfering signals. Never-
theless, detected proteins spread over all the different branches
of the insulin-signaling pathway and covered most of the
targeted central metabolism proteins, thus providing us with a
complete overview of the current response of these pathways
to a sustained high-fat diet.

Initially, we evaluated proteins that showed different
abundance profiles after several weeks of high-fat diet when
directly comparing C57BL/6J and 129Sv mouse strains. Most
of the observed changes were already evident within the first
6 weeks of high-fat diet, and they mainly targeted b-oxidation,
fatty acid biosynthetic pathway and the insulin-signaling
pathway. Significant protein abundance changes were
detected in essential kinases such as KAPCA, KAPCB, GSK3B,
PK3C3, PDK1, MP2K4 and MK01, which modulate

intracellular responses to glucose uptake and insulin stimula-
tion and determine downstream phosphorylation patterns.
These results point to potential changes in the liver protein
phosphorylation status induced by long-term high-fat diet; and
therefore, follow-up phosphoproteome studies might be
relevant in this context.

Overall, the observed differences suggest that peroxisomal
b-oxidation is activated in fatty C57BL/6J mice after several
weeks of high-fat diet whereas lipogenesis dominates
the response of 129Sv mice under the same conditions. For
instance, the different protein abundance profiles of insulin-
related cAMP-dependent protein kinase (KAPCA) and the
sterol regulatory element-binding protein 1 (SRBP1) observed
in 129Sv and C57BL/6J mice suggest an increased activity of
peroxisomal b-oxidation in fatty C57BL/6J and a lipogenesis
activation in 129Sv mice under the same conditions.
This observation might be related to strain differences in
AMP-activated protein kinase (AMPK) activation after a
sustained high-fat diet. AMPK has previously been described
as a molecular switch, associated with metabolic disorders,
that modulates the activity of catabolic and anabolic pathways
based on the energetic needs (Cantó et al, 2009).

Moreover, when evaluating the differential effect of a
sustained high-fat diet in C57BL/6J and 129Sv mice, our
results suggest that these strains exhibit a rapid and differential
response to high-fat diet affecting most of the targeted
proteins. These results indicate therefore that 6 weeks (T1)
of treatment are sufficient to substantially change the land-
scape of the liver proteome related to insulin signaling and
central metabolism. This observation is consistent with the
previously reported physiological differences between these
two mouse strains (Almind and Kahn, 2004). The changes
detected in the proteome are, however, more rapid since they
allow a clear discrimination of phenotypes at a much earlier
stage than in other long-term experiments in which the high-
fat diet expanded over 18 weeks (Biddinger et al, 2005).

Finally, we found that a persistent high-fat diet does not only
differentially affect abundance of proteins participating in the
main metabolic pathways and signaling pathways, but it also
alters the transient changes that normally occur in C57BL/6J
and 129Sv mice when individuals shift from a fed to a fasted
state. In this regard, our results indicate that high-fat diet leads
to major protein abundance changes in the cellular response to
fasting or food intake even if acknowledging that some of the
changes observed between strains can be ascribed to the
different genetic backgrounds of the two mouse strains
(Kulkarni et al, 2003).

In conclusion, the study here reported constitutes one of the
largest quantitative and dynamic targeted proteomics studies
performed in mammalian tissues. The large data set generated
has allowed us to study the effects of diet, genetic background
and fasting in the context of the metabolic syndrome. Our
analyses detected a rapid and different response in the two
mouse strains to a sustained high-fat diet. Indeed, the response
in the C57BL/6J mice is mainly characterized by the activation
of peroxisomal b-oxidation, whereas lipogenesis likely dom-
inates the response of the diabetes-resistant 129Sv mice.
Our systemic proteomics approach to study the metabolic
syndrome in mice can not only contribute to a better
understanding of this syndrome in humans but it has proven
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that proteomics can generate the consistent protein versus
condition data sets required to analyze the dynamics of
biological systems.

Materials and methods

Animals

Three-week-old C57BL/6J and 129Sv mice were obtained from Charles
River Laboratories International, Inc. The mice were maintained in
chow diet for 1 additional week before starting the experiments with
high-fat diet in a pathogen-free facility at the Institute of Molecular
Systems Biology, ETH Zürich, complying with official ETH Zürich
ethical guidelines. Mice from both strains were kept on a 12-h light/
dark cycle and fed with a high-fat rodent diet (60% fat content) once
the experiments were started.

C57BL/6J and 129Sv mice were fed ad libitum with a high-fat rodent
diet for 0, 6 and 12 weeks according to the experimental design. In
addition to the time and strain genotype, a third factor (treatment) was
included in the experiment, whereby two groups were defined. The
first group contained mice fasted overnight before they were killed.
Mice of the second group were fed ad libitum. Fasted condition was
controlled by serum biochemical parameters and the abundance of
transcription factor SRBP1 known to be significantly decreased after a
fasting period (Supplementary Table S2; Supplementary Figure S5).
Therefore, the overall experimental design consisted of 12 different
conditions (3 time points, 2 mouse strains and 2 treatments) with n¼ 3
animals in each group.

Sample preparation

PBS-perfused mouse livers were homogenized using RIPA-modified
buffer (1% NP-40, 0.1% sodium deoxycholate, 150 mM NaCl, 1 mM
EDTA, 50 mM Tris pH 7.5, protease inhibitors EDTA-free, 10 mM NaF,
10 mM sodium pyrophosphate, 5 mM 2-glycerophosphate) and a glass-
glass tight douncer homogenizer (Wheaton Science Products, USA).
Homogenates were centrifuged (20 000 g, 41C, 15 min) and the
supernatant was collected and kept at 41C. Pellets were resuspended
with Urea-Tris buffer (50 mM Tris pH 8.1, 75 mM NaCl, 8 M urea,
EDTA-free protease inhibitors, 10 mM NaF, 10 mM sodium pyropho-
sphate, 5 mM 2-glycerophosphate), and after sonication, they were
centrifuged again (20 000 g, 41C, 15 min). The new supernatant was
collected and mixed with the previous one. The resulting pellets were
discarded. The total protein content was quantified with the BCA
Protein Assay (Thermo Fisher Scientific, USA) using bovine serum
albumin as a standard. Aliquots of the homogenates were immediately
prepared and stored at � 801C. Sample quality and concentration were
also assessed with SDS–PAGE and silver staining (Supplementary
Figure S1).

In all, 1 mg of total protein was mixed with 1 mg of the heavy
isotope-labeled reference proteome (see below for details) and the
combined sample was precipitated overnight with six volumes of ice-
cold acetone (16 h, � 201C) for mass spectrometric analysis. The
supernatant was discarded and the pellets were dried and resuspended
in freshly prepared digestion buffer (8 M urea, 0.1 M NH4HCO3).
Samples were reduced with 12 mM dithiothreitol (30 min, 371C) and
alkylated with 40 mM iodoacetamide (45 min, 251C) in the dark.
Samples were diluted with 0.1 M NH4HCO3 to a final concentration of
1.5 M urea and digested overnight at 371C with sequence grade trypsin
(10mg, Promega AG, Switzerland). After digestion, peptide mixtures
were acidified to pH 2.8 with TFA and desalted with 500 mg Sep-Pak
tC18 silica cartridges (Waters Inc., USA). Samples were dried under
vacuum before off-gel fractionation (24 wells, 3–10 pI strips) in a 3100
OFFGEL Fractionator (Agilent Technologies). Peptide mixtures col-
lected in each well were pooled in six different fractions (A: wells 1 and
2, B: wells 3 and 4, C: wells 5–8, D: wells 9–11, E: wells 12–18 and F:
wells 19–24), acidified to pH 2.8 with trifluoroacetic acid and desalted
with MacroSpin C18 silica columns (The Nest Group Inc., USA).
Samples were dried under vacuum and re-solubilized to 1 mg ml� 1 in
0.1% formic acid and 2% acetonitrile before mass spectrometric
analysis.

Preparation of the heavy-labeled reference
proteome

A Hepa1-6 mouse cell line was obtained from the American Tissue
Type Culture Collection (cat. CRL-1830), labeled with SILAC medium
and used as a heavy-labeled reference proteome in all samples. Cells
were grown at 371C and 5% CO2 in L-lysine- and L-arginine-depleted
DMEM high glucose medium (Caisson Laboratories Inc.) supplemen-
ted with 10% dialyzed FCS (BioConcept), 1% penicillin/streptomycin
(Invitrogen) and L-13C6

15N4-arginine and L-13C6
15N2-lysine (Sigma-

Aldrich GmbH). Cells were cultured in 150-cm2 plates and passaged
at 80% confluence. The incorporation of the heavy amino acids was
regularly checked by mass spectrometry on cell aliquots and the
culture was maintained until an incorporation of heavy amino acids
495% was achieved. Cells were then washed with ice-cold PBS,
scraped from the plates and homogenized as described above.

Target protein selection

In all, 257 proteins involved in the insulin-signaling pathway and in
the lipid and carbohydrate metabolism pathways were selected for
quantification using targeted mass spectrometric analysis. This set of
proteins includes almost all the enzymes involved in b-oxidation, fatty
acid synthesis, ketogenesis, glycogen synthesis and degradation,
pentose phosphate pathway, glycolysis, gluconeogenesis and
TCA cycle. Moreover, proteins of the different branches of the
insulin-signaling pathway, as well as downstream effectors, and a
few other proteins potentially linked to the metabolic syndrome, were
also included in the final set of targeted proteins. Together, the selected
set of proteins covered several protein classes (e.g., metabolic
enzymes, kinases, phosphatases and transcription factors), and
spanned a large dynamic range of cellular abundance, ranging from
the few thousands of copies per cell (c.p.c.) of the nuclear factor
NF-kappa-b (4000 c.p.c.) to the more than hundred thousand copies
per cell in the case of fatty acid synthase (4140 000) (Schwanhäusser
et al, 2011). The proteins selected for targeting are listed in
Supplementary Table ST1A.

SRM assay development

SRM assays were developed following the general high-throughput
strategy previously reported (Picotti et al, 2010). Initially, 4–6 unique
peptides ranging from 6 to 20 amino acids in length, containing tryptic
ends and no miscleavages, were chosen for each of the selected
proteins. Unique peptides previously observed in discovery MS
experiments (Martens et al, 2005; Desiere et al, 2006) were prioritized
during the peptide selection process. For those proteins for which no
peptides had been reported previously (i.e., for previously unidentified
proteins), peptide selection was based on the MS-suitability score
computed by PeptideSieve (Mallick et al, 2007). All peptides contain-
ing amino acids prone to undergo unspecific reactions (e.g., Met, Trp,
Asn and Gln) were generally avoided and only selected when no other
options were available (Lange et al, 2008). The selected peptides were
chemically synthesized via SPOTsynthesis (JPT Peptide Technologies)
and used in unpurified form for the SRM assay development. Fragment
ion spectra were collected for each peptide using SRM-triggered MS2

mode and two predicted high mass y-ions per peptide in a QTRAP 4000
instrument (AB/Sciex). The spectra were used to confirm identities,
extract the optimal fragment ions for SRM analysis and to obtain
peptide retention times. MS2 data were analyzed with the Mascot
search engine (v. 2.1, MatrixScience) against a customized mouse
Uniprot database (v. dated 07/2009) containing all the selected
proteins and the corresponding decoy entries generated by inverting
the amino-acid sequences of the tryptic peptides. Search parameters
were set to 2.0 Da for the precursor mass tolerance, 0.8 Da for the
fragment mass tolerance, fully tryptic peptides, no miscleavages and a
false discovery rate (FDR) of 1% based on decoy assignments (Elias
and Gygi, 2007). Cysteine carbamidomethylation was set to be a fixed
modification, and methionine oxidation was used as a variable
modification. A spectral library was generated from the validated
fragment ion spectra using in-house written Perl scripts and for each
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E Sabidó et al

10 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited



spectrum, the four most intense y-ions were selected as optimal SRM
transitions to be monitored. Mass spectrometry parameters, such as
collision energy and declustering potential, and further details in the
generation of the peptide library, development of SRM assays and
spectral library creation can be found in previous reports (Picotti et al,
2009, 2010).

Measurements and data analysis

SRM measurements were performed on a hybrid triple quadrupole/ion
trap mass spectrometer (4000 Q-Trap, AB/Sciex) equipped with a
nano-LC electrospray ionization source. Fused-silica microcapillary
columns (75 mm) were pulled and packed with Magic C18 AQ 5mm
reverse-phase material (Michrom BioResources). Samples (2mg) were
loaded to a 2.5-cm pre-column (100mm, New Objective) packed with
C18 reverse-phase material and eluted with a linear gradient from 5%
to 30% of buffer B in 30 min at a flow rate of 300 nl min� 1 using a
Tempo nanoLC system (Applied Biosystems, USA). Buffer A: 98% H2O,
2% ACN and 0.1% formic acid; Buffer B: 2% H2O, 98% ACN and 0.1%
formic acid. Blank runs were performed between the SRM measure-
ments of biological samples to avoid sample carryover. Measurements
were done in scheduled SRM mode, using a retention time window of
5 min, ca. 400 transitions per method and a cycle time of 2.5 s, which
ensured a dwell time over 10 ms per transition. Targeted peptides were
only acquired in their corresponding OFFGEL fraction and three
replicates for each time point were used in these measurements.

Transition groups corresponding to the targeted peptides were
evaluated with MultiQuant v. 1.1 Beta (Applied Biosystems) based on
different parameters (in order of importance): (i) co-elution of the
transition traces associated with a targeted peptide, both in its
light and heavy form; (ii) presence of at least four co-eluting transition
traces for a given peptide exceeding a signal-to-noise ratio of 3;
(iii) rank correlation between the light SRM relative intensities
and the heavy counterparts; (iv) rank correlation between the
SRM relative intensities and the intensities obtained in the MS2

spectra during the SRM assay development; and (v) consistence
among replicates.

Initially, all peak intensities were transformed by the logarithm
based 2 and transitions with completely missing intensities in more
than two thirds of the samples were removed. A constant normal-
ization was applied to all measurements to equalize the median peak
intensities of reference transitions between runs (Zien et al, 2001). The
remaining normalized SRM peak intensities were retained for
quantitative analysis. In summary, a set of 144 targeted proteins were
observed and represented by 1–4 peptides each, and each peptide was
represented by 2–4 pairs of light–heavy transitions.

Protein-level quantification and testing for differential abundance
were performed using a linear mixed-effects model (McCulloch
and Searle, 2001) as implemented in software package SRMstats
(Chang et al, 2012). A list of P-values was calculated for each
comparison, and was adjusted to control the FDR at a cutoff of 0.01
(Benjamini and Hochberg, 1995).

Raw data were deposited in the PASSEL repository with the data set
identifier PASS00244.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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