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Abstract: Nitric oxide (NO) is a diffusible signaling molecule produced by three isoforms of nitric
oxide synthase, which release NO during the metabolism of the amino acid arginine. NO participates
in pathophysiological responses of many different tissues, inducing concentration-dependent effect.
Indeed, while low NO levels generally have protective effects, higher NO concentrations induce cyto-
toxic/cytostatic actions. In recent years, evidences have been accumulated unveiling S-nitrosylation
as a major NO-dependent post-translational mechanism ruling gene expression. S-nitrosylation is
a reversible, highly regulated phenomenon in which NO reacts with one or few specific cysteine
residues of target proteins generating S-nitrosothiols. By inducing this chemical modification, NO
might exert epigenetic regulation through direct effects on both DNA and histones as well as through
indirect actions affecting the functions of transcription factors and transcriptional co-regulators. In
this light, S-nitrosylation may also impact on cancer cell gene expression programs. Indeed, it affects
different cell pathways and functions ranging from the impairment of DNA damage repair to the
modulation of the activity of signal transduction molecules, oncogenes, tumor suppressors, and
chromatin remodelers. Nitrosylation is therefore a versatile tool by which NO might control gene
expression programs in health and disease.

Keywords: nitric oxide; S-nitrosylation; epigenetics; gene expression regulation; cancer;
post-translational modifications

1. Introduction

The free radical nitric oxide (NO), identified some decades ago as the endothelium-
derived relaxing factor [1], is a short-lived (having a half-life of a few seconds), gaseous
signaling molecule highly diffusible across cell membranes. Nowadays, it has been widely
demonstrated that NO plays important roles in many biological processes, and therefore, its
deregulation might participate in pathological disorders, including cancer. The focus of this
review is to specifically highlight the role of S-nitrosylation in mediating NO-dependent
epigenetic effects in physiological and oncological contexts. Furthermore, despite the great
amount of information now available, lacunae in the field still exist and are also discussed.

1.1. NO Chemistry

NO is produced by a family of nitric oxide synthases (NOS) that release NO during
the conversion of arginine to citrulline [2]. NO can exert its biological effects through many
different chemical reactions, thus generating a wide range of signaling pathways. Typically,
NO acts through its receptor, soluble guanylate cyclase (sGC), leading to the synthesis
of the second messenger cGMP. The subsequent activation of cGMP-dependent kinases
induces a cascade of protein phosphorylations, which allow the signal transduction to
start [3]. In addition, through the reaction with O2 and O2

−, NO can be metabolized to
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form reactive nitrogen species (RNS), including the powerful nitrosating agent dinitrogen
trioxide (N2O3) and peroxynitrite (ONOO−), a potent cytotoxic oxidant able to induce
DNA damage [4,5]. Nitrosative stress may induce protein post-translational modifications
mainly through protein tyrosine (Tyr) nitration, which signals cellular damage. However,
Tyr-nitration might act also as a free radical process relying on the addition of a nitro group
(-NO2) to the position 3 of the Tyr phenolic ring with the occurrence of the formation
of 3-NT [6]. NO can also act through covalent binding to sulfur atoms on proteins and
inorganic compounds to form S-nitrosothiols (SNOs). This modification, affecting protein
function, stability, and localization [7], is the focus of the present review, and therefore, its
relevance will be extensively discussed below.

Through the reaction with diverse molecules, NO participates in pathophysiological
responses of many different tissues with frequently contradictory biological effects [8,9].
Indeed, NO-induced effects depend on different conditions, such as NO concentration,
its rate of diffusion, the presence of potential reactants and targets, as well as their dis-
tance [8]. Among all these variables, the different cellular responses mostly depend on
NO concentration, which determines NO chemistry. Indeed, under normal physiological
conditions, low NO concentrations, such as those generated by neural and endothelial
NOS (NOS2 and NOS3) isoforms, are generally produced through fast chemical reactions
in which NO directly reacts with the target molecule, resulting in cytoprotective effects
mediated by antioxidant mechanisms [8,10]. Differently, at much higher NO concentra-
tions (such as those produced via the inducible NOS1 isoform), indirect effects occur
through generation of RNS, which subsequently react with biological targets, serving
cytotoxic/cytostatic functions [8,10].

1.2. NO in Cancer

NO has wide actions in tumor biology, including modulation of apoptosis, cell cycle,
DNA integrity, mitogenic pathways, invasion, and angiogenesis. However, NO may
induce both protective tumor-promoting actions and anti-proliferative effects through the
inhibition of oncogenic pathways or the activation of tumor-suppressor genes [11]. As in
healthy cells, the dual role of NO in cancer is dose-dependent; in fact, NO contributes to
cancer progression at low concentrations, whereas it is detrimental for tumor survival at
high concentrations [12,13]. Indeed, NO overproduction acts as a pro-apoptotic player
activating the caspase family of proteases through mitochondrial cytochrome c release and
up-regulation of p53. On the contrary, low NO concentrations are anti-apoptotic [14–16].

Of particular importance is the observation that NO might induce direct modifications
of DNA, inhibit DNA repair enzymes, and promote DNA strand breaks and mutations
through RNS [17–19]. Peroxynitrite usually leads to an increased level of DNA damage
complexity consistent with its higher reactivity [20]. In this context, DNA-damaging agents
determine a temporary cell cycle arrest, but if the damage is too extensive, the cells undergo
apoptosis [13]. NO affects both cell proliferation and p53 expression [21,22], which senses
DNA damage, thus affecting cell cycle progression and apoptosis.

The role of NO in tumor progression includes the activation of mitogenic pathways.
Indeed, among others, NO activates the epidermal growth factor receptor (EGFR), the
extracellular signal-regulated kinase (ERK), mTOR, Ets-1, and Wnt/β-catenin signaling, re-
sulting in increased proliferation, angiogenesis, migration, and invasion [23–26]. However,
NO negatively regulates JNK and Akt pathway as well as the expression of the oncogene
N-Myc and blocks ERK1/2 activity through direct modification of H-Ras [27–30].

The epithelial-to-mesenchymal transition (EMT) is pivotal to cancer cells to migrate
and spread throughout the body. Low NO levels promote cell migration and invasion in
diverse tumor cell models [23,31,32]. Conversely, high NO concentrations reverse EMT
and the invasive phenotype of cancer cell lines [33–35].

Cancer progression and metastasization also depends on angiogenesis, which sup-
ports tumor growth and allows cancer cell to reach tissue districts far from the primary
tumor site. NO participates in regulation of angiogenesis, showing both pro-angiogenic
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properties and anti-angiogenic effects [36]. Indeed, NO promotes angiogenesis by in-
ducing endothelial differentiation, increasing tumor vasculature permeability, promot-
ing tumor blood flow, inducing the production of pro-angiogenic factors, and inhibiting
antiangiogenic factors [37,38].

Cancer stem cells (CSC) are recognized as crucial component of the tumor, being
involved in tumor initiation, progression, metastasis, and therapy resistance [39]. It has
been shown that NO can support stemness-related signaling pathways and CSC phenotype
in a variety of tumors [40,41].

Further, NO plays a dual role in regulating the immune system response to non-
self-antigens expressed on the surface of cancer cells [42]. Indeed, it has been widely
reported that NO has immunosuppressive properties, such as inhibition of immune
cell chemotaxis, adhesion, and infiltration, as well as direct inhibition of T-cell prolif-
eration and function [43–46]. Therefore, NO might reduce the immune response against
tumors promoting tumor growth and spread. However, the induction of macrophage-
dependent NO production within tumor microenvironment contributes to the success
of immunotherapy, suggesting NO as an adjuvant for this highly promising anti-tumor
therapeutic route. [43,47–50].

1.3. S-Nitrosylation

S-nitrosylation (therein referred as nitrosylation) is a reversible and highly regulated
in time and space, post-translational modification which couples a NO moiety to a cystein
(Cys) thiol, generating SNOs. The NO moiety might be provided by NO directly or by
metal-containing NO. A major source of NO is the heme iron-nitrosyl species (FeNO),
whose formation depends on NOS, low-mass SNOs or nitrite [51]. Other sources of NO
are represented by dinitrosyl–iron complexes (DNICs) [52]. Specificity is one of the most
important characteristics of this chemical phenomenon. Indeed, despite all proteins possess
many potential Cys residues target of nitrosylation, only one or few Cys are effectively
nitrosylated upon physiological or pathological stimuli. Besides the interaction with
NOS, which puts in close proximity the source of NO and the target protein [53–55], the
determinants of this specificity are electrostatic interactions, thiol accessibility or reactivity
regulated by allosteric modulators, and hydrophobic compartmentalization.

One of the motifs suggested for nitrosylation is the acid-base motif, where the Cys
flanking sequences are composed by acidic (Asp, Glu) and basic (His, Lys, Arg) amino
acids [56]. The details of acid-base catalysis of nitrosylation/de-nitrosylation are described
in reference [57].

Allosteric nitrosylation might depend on ions (Mg++, Ca++, H+) or O2-related species,
which might cause protein conformational changes favoring protein S-nitrosylation/de-
nitrosylation [58,59]. Prominent examples of allosteric nitrosylation are represented by
hemoglobin and the ryanodine receptor/calcium release channel 1 (RyR1). Both molecules
are sensitive to O2 and dynamically change their conformation according to O2 tension.
Hemoglobin response to O2 binding to heme irons results in NO binding and nitrosylation
of Cysβ93 with the formation of SNO-hemoglobin. Consistently, deoxygenation reverses
this conformational switch and allows NO release. This reversible conformational transition
allows hemoglobin to sense tissues O2 requirement. Indeed, SNO-hemoglobin leads to
vessels contraction and decreases blood perfusion, whilst deoxygenated hemoglobin acts
in the opposite way [58]. RyR1 senses tissue pO2, which is lower than ambient pO2.
Physiological O2 tension controls the redox state of 6–8 out of five thiols in a single
RyR1subunit, regulating nitrosylation of a single-channel thiol. The conformational change
induced by physiological pO2 creates a hydrophobic compartment concentrating NO
and O2, boosting the generation of SNO moieties. This phenomenon does not occur in
ambient pO2 [59].

NO oxides (NO2, NO2NO3, NO2NO4), the reaction products of NO with O2 or with
superoxide, might accumulate in cell membranes [60], leading to nitrosylation via redox-
based mechanisms [61], and some nitrosylated proteins possess their target Cys in a
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juxtamembrane zone [62]. Hydrophobic regions within proteins, due to tertiary structure
and protein–protein interactions, might also promote nitrosylation [63]. In general, a
hydrophobic environment may retain radical species and impairs SNOs hydrolysis.

The catalysts of nitrosylation/de-nitrosylation are a variety of enzymes or protein-bound
transition metals. Superoxide dismutase (SOD) catalyzes the nitrosylation of hemoglobin [64]
and the Cu2+-containing ceruloplasmin the S-nitrosylation of S-nitrosoglutathione (GSNO)
from free NO [65] and that of heparin-sulphate proteoglycan glypican 1 [66]. Protein-bound
transition metals and flavins may catalyze transnitrosylation of proteins, the transfer of a NO
moiety from SNOs to other thiols in other targets, in a sort of auto-nitrosylation process [67–69].

SNO-based defense signals must be switched off to protect cells from persisting ni-
trosative stress. Most of SNO proteins are expected to be de-nitrosylated by glutathione
(GSH), the most abundant intracellular source of thiols, by trans-nitrosylation reactions. De-
nitrosylation might occur upon catalytic intervention of thioredoxin (TRX) [70],
S-nitrosogluthatione (GSNO) reductase (GSNOR) [71,72], and protein disulfide isomerase
(PDI) [73]. These are the major enzymes catalyzing protein de-nitrosylation. TRX de-
nitrosylation occurs through a trans-nitrosylation process, which involves Cys32 and
Cys35, with the generation of a disulfide ring structure, which releases nitroxyl (HNO).
Further nitrosylation of Cys62, Cys69, or Cys73 might also occur. TRX-SNO is reduced by
TRX reductase in the presence of NADPH [70]. Alcohol Dehydrogenase III (ADHIII), now
recognized as GSNOR, catalyzes the production of glutathione sulfinamide in the presence
of NADH and oxidized glutathione starting from GSNO [73]. PDI is characterized by two
active subunits, namely subunit a and subunit a’. During de-nitrosylation, one thiol of
PDI active subunit a undergoes trans-nitrosylation in the presence of GSNO. The follow-
ing catalytic reactions, which are characterized by the formation of stable and unstable
intermediates, finally produce an oxidized PDI subunit a and NO [73].

2. Epigenetics of S-Nitrosylation

Since 2008, the epigenetic functions of NO were merely speculative. Thereafter, a
great deal of information has been accumulated underpinning the epigenetic control of
gene expression as one of the downstream effects of NO and NO-related post-translational
modifications, such as tyr-nitration and nitrosylation. The presence of NOS within the
nucleus [74–76] strongly suggests a direct effect of NO in controlling the expression of genes
by chemical modification of both DNA and histones. This intriguing NO-dependent route
to gene transcriptional regulation is still under investigation, whilst indirect mechanisms
are now well established.

2.1. Direct S-Nitrosylation of DNA and Histones

NO direct regulation of chromatin in terms of architecture and accessibility to tran-
scriptional machineries is still under investigation. NO-dependent modification of DNA
and histones is a quite unexplored field. Most of the knowledge regarding NO regulation
of chromatin is related to histone nitration. This is a well-documented phenomenon, estab-
lished both in vitro [77] and in vivo [78]. The functional role of this modification seems to
be related to chromatin compaction and protection of the DNA from oxidative damage. Of
note, nitrated histones are found in many human pathological contexts, from autoimmune
diseases [79] to liver injury [78], suggesting these specifically modified histone species as
novel potential clinical biomarkers.

The “genome-wide oscillation hypothesis” is one of the most fascinating mechanisms
proposed of a direct NO action on chromatin. In the presence of metal ions (e.g., Fe++),
NO might react with thiols. According to this hypothesis, the resulting DNICs release
nitrosonium (NO+), accounting for nitrosylation within chromatin. Both thiols and metal
ions are largely represented within the nucleus and chromatin. Indeed, metal ions are
allowed to react with the DNA phosphate backbone and bases within the minor and
the major grooves of the double helix, whose stability is largely influenced by metal-
mediated redox changes [80,81]. Thiol nuclear source is represented by histones, which
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contain Zn-finger modules [82], transcription factors, and chromatin remodelers. The
nuclear triad composed of NO, thiols, and metal ions might account for the oscillatory
assembly/disassembly of protein complexes, leading to cycles of transcriptional activity,
the so-called “genome-wide oscillation” [83]. As discussed above, whilst histone nitration
is a well-documented phenomenon [47–50], only recently nitrosylation of histone H2B
and H3 has been clearly demonstrated in Trypanosoma cruzi [84]. However, the targeted
cysteines (Cys124 and Cys126) are not conserved in higher eukaryotes in which histone
nitrosylation is still an uncovered entity.

2.2. S-Nitrosylation-Dependent Indirect Epigenetic Mechanisms

Several papers deal with nitrosylation of kinases along signalling pathways, tran-
scription factors (TFs), and transcriptional co-regulators. We will focus on nitrosylation-
dependent regulation of molecules directly involved in the regulation of the chromatin
landscape, that is, TFs and chromatin remodeling enzymes, as this represents a well-
documented key route leading to gene expression regulation by NO (Table 1).

2.2.1. S-Nitrosylation of Transcription Factors

NO-dependent modification of TFs is a common conserved mechanism that the or-
ganisms use to regulate their response to extracellular and intracellular NO. The related
mechanisms of action rely on changes in protein–protein interactions and protein–DNA
interactions. The impact of nitrosylation on TFs activity mainly depends on the location of
the target Cys residues. If the Cys is located within the DNA binding domain, usually nitro-
sylation inhibits TF activity [85]. If nitrosylation affects a Cys within an interaction domain
with co-regulators, it might either improve or decrease reciprocal binding and transcription.
Many TFs are nitrosylated in mammalian cells. Nitrosylation of HIF1α on Cys800 enhances
the binding with the histone acetyltransferase p300, potentiating gene transcription [86,87]
(Figure 1, upper panel) although the opposite has been also reported [88]. Furthermore,
NO also protects HIF1α from proteasomal degradation because it impairs HIF1α binding
with the Von Hippel–Lindau (VHL) protein and subsequent recruitment of the E3 ligase
by inhibiting prolyl hydroxylases activity [89,90]. The impairment of ubiquitination and
proteasomal-dependent degradation is a quite common mechanism by which nitrosylation
regulates TFs activity. Nitrosylation of Cys77 of HDM2, the human homologue of mouse
double minute-2, which resides at the interface of the interaction domain with p53, inhibits
proteins binding and p53 proteasomal degradation [91]. This series of events results in p53
stabilization and enhanced activation [92] (Figure 1, upper panel). Direct p53 nitrosylation
of Cys124 in skeletal muscle promotes its binding to the ppargc1a promoter, activating an
antioxidant pathway and ensuring skeletal muscle cell homeostasis [93] (Figure 1, upper
panel). Another well-known nitrosylated TF is NF-kB. In thyroid cells, nitrosylation of
NF-kB subunit p65 on Cys38 leads to a repression of TSH-induced Na+/I− symporter
(NIS) gene expression due to NF-kB detachment from the strongly TSH responsive NIS
upstream enhancer (NUE) between nucleotides 2264 and 2495 upstream the NIS proximal
promoter [94] (Figure 1, upper panel). TSH is a NF-kB activator [95]. As TSH also induces
NO production in thyroid cells by enhancing the transcription of NOS3, p65 nitrosylation
might represent a feedback loop to control NF-kB activity in thyroid cells. Cys38 is also
nitrosylated in respiratory epithelial cells and macrophages upon cytokines stimulation, a
phenomenon that depends on NOS2 activity. Since NF-kB binds and activates the NOS2
promoter in the presence of cytokines, still NOS2-dependent nitrosylation of p65 represents
a negative feedback loop to control the expression of genes downstream NF-kB signal-
ing [96]. Some reports address a role to nitrosylation in ruling NF-kB p50 DNA binding
activity. Indeed, it has been observed that nitrosylation of Cys62 inhibits the DNA binding
capacity of p50 both in vitro and in vivo [97,98] (Figure 1, upper panel).
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Figure 1. Nitrosylation of chromatin regulators in normal and cancer cells. Schematic representation
of nitrosylation-dependent effects on TFs and chromatin remodelers functions in normal (top)
and cancer cells (bottom) described throughout the manuscript. Grey arrows indicate protein
detachment either from chromatin or protein partners; red arrows indicate TFs and remodeling
enzymes recruitment/activation.

Another transcription factor undergoing nitrosylation is Myocyte Enhancer Factor 2
(MEF2), a member of a family of TFs which comprises MEF2A, B, and C. In α-synuclein
mutant dopaminergic neurons, basal and/or toxin-induced nitrosative stress results in
MEF2C nitrosylation of Cys39 and inhibition of the MEF2C/proliferator-activated receptor-
g coactivator-1α (PGC1α) transcriptional axis, leading to mitochondrial dysfunction and
apoptosis [99]. The same phenomenon accounts for the loss of DNA-binding ability of both
MEF2A and MEF2C in cerebrocortical neurons. Nitrosylated MEF2C induces neuronal
apoptosis by decreased binding to the BCL-xL promoter, whereas nitrosylated MEF2A
impairs adult neurogenesis by loss of binding to pivotal neurogenesis-related genes [100]
(Figure 1, upper panel).

Activator Protein -1 (AP-1), an ubiquitously expressed heterodimer constituted by
c-jun and c-fos TFs, also undergoes nitrosylation. Both AP-1 subunits are regulated by
nitrosylation, which inhibits their DNA binding [101–103] (Figure 1, upper panel). Specifi-
cally, c-fos is nitrosylated on Cys154 and c-jun on Cys272. Although most of the evidence
on AP-1 nitrosylation has been obtained in vitro, some reports address a role of this AP-1-
specific post-translational modification in vivo. Indeed, in neonatal mouse cardiomyocytes,
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nitrosylation of c-jun leads to a repression of tissue inhibitor metalloproteinase-3 (TIMP-3)
expression, enhancing cardiomyocytes proliferation [104].

2.2.2. S-Nitrosylation of Transcriptional Co-Regulators

As well as TFs, chromatin remodeling enzymes, which act as transcriptional co-
regulators, are exposed to nitrosylation when NO cellular concentration raise upon a
variety of stimuli. Main outcomes of transcriptional co-regulators modifications are the
impairment of their enzymatic activity and binding to other nuclear proteins. We shall
focus only on the transcriptional impact of nitrosylation-dependent modifications of co-
regulators although many of them exert also cytoplasmic roles [105,106]. The most well-
known chromatin modifier modulated by nitrosylation is histone deacetylase 2 (HDAC2).
The seminal work of Nott et al. was the first documented demonstration that HDAC2
is nitrosylated on Cys272 and Cys274. In neurons, nitrosylated HDAC2 does not lose its
enzymatic activity; rather, it detaches from a series of promoters ruling the expression
of genes playing pivotal role during neurogenesis, such as Fos, Egr1, Vgf, and NOS1, by
inducing histone hyperacetylation at the corresponding chromatin loci (Figure 1, upper
panel). At the functional level, HDAC2 nitrosylation in cortical neurons is important
to promote dendritic growth, possibly allowing the recruitment of the cAMP response
Element Binding Protein (CREB) at its cognate chromatin binding sites on gene promoters,
ruling dendritic growth, and branching [107]. Furthermore, nitrosylation of HDAC2
positively affects the expression of 20 transcripts in the developing cortex. Among them,
Brahma (Brm), a component of the Brm/Brg complex belonging to the SWitch/Sucrose
Non Fermentable (SWI/SNF) family of ATP-dependent chromatin remodeling complex,
appears in the developing brain at E15.5 together with HDAC2 and NOS2 and is essential
for neuronal radial migration. This latter process strictly relies on the detachment of
nitrosylated HDAC2 from the Brm promoter [108].

In skeletal muscle HDAC2, nitrosylation, occurring upon proper NO production,
seems to be required for myotube formation and homeostasis. In fact, in dystrophic
muscles, nitrosylation of HDAC2 has been indicated as partially responsible for the NO-
dependent recovery of muscle morphology [109]. This phenomenon might depend on the
de-repression of HDAC2 de-regulated genes, such as follistatin [110]. In this case, both
global HDAC2 activity and displacement from chromatin are affected by nitrosylation.
In a sub-population of embryonic stem cells, NOS3-dependent HDAC2 nitrosylation
promotes its dissociation from Zeb1 transcriptional repressor, leading to the expression of
mesendodermal genes and efficient production of cardiovascular precursors [111].

Nitrosylation of HDAC8 has been only demonstrated in vitro [112], and nitrosylation
of other class I, II, and IV HDACs has not been documented so far. Sirtuins (class III
HDACs) are also nitrosylated [113]. In physiological conditions, Sirt1, by deacetylating
p53 and NF-kB [114,115], impairs their transcriptional activity and the activation of in-
flammatory and apoptotic processes. On the contrary, during inflammation, when NOS1
is activated and overproduces NO, nitrosylation inhibits Sirt1 activity by disrupting its
ability to bind Zn2+, essential for the completion of sirtuins function (Figure 1, upper panel).
Consequently, p53 and NF-kB are activated and induce the expression of inflammatory
and apoptotic genes [116,117].

In induced pluripotent stem cells (iPSCs), nitrosylation of Metastasis Associated
Family Member 3 (MTA3), which belongs to the Nucleosome Remodeling Deacetylase
(NuRD) complex, accounts for DNA accessibility of pluripotency genes, such as Oct4,
Nanog, and SOX2. This phenomenon relies on the loss of binding of SNO-MTA3 with
HDAC2, which also participates to the formation of NuRD complex. Disruption of
SNO-MTA3/HDAC2 interaction leads to an enrichment of acetylated and to a decrease
of methylated histones in the promoter regions of Oct4, Nanog, and SOX2 genes [118]
(Figure 1, upper panel).

During transdifferentiation of BJ fibroblasts into endothelial cells, the Ring Finger
Protein 1A (RING1A)—a component of the Polycomb repressor Complex 1 (PRC1)—is
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nitrosylated by NOS2 at Cys398 residue. Cys398 nitrosylation reduces RING1A binding
to chromatin and decreases methylation of lysine (K) 27 on histone H3 de-repressing
endothelial-specific gene promoters [119] (Figure 1, upper panel).

Table 1. Nuclear targets and impact of S-nitrosylation in physiology.

Nuclear Protein Target Function Physiological Outcome

p53 Increase of chromatin binding Skeletal muscle homeostasis [93]

MEF2 Loss of chromatin binding Impairment of adult neurogenesis
Apoptosis of cerebrocortical neurons [99,100]

AP-1 Loss of chromatin binding Cardiomyocytes proliferation [104]

HIF-1α Enhanced interaction with acetyltransferases
Protein stabilization Angiogenesis [86,87,89,90]

NF-kB Loss of chromatin binding Modulation of thyroid hormone synthesis and
inflammation [94–98]

HDAC2
Loss of chromatin binding

Impairment of protein-protein interaction
Inhibition of deacetylase activity

Neurogenesis
Skeletal muscle homeostasis

Mesendodermal differentiation [107–109,111,120]

HDAC8 Inhibition of deacetylase activity Activation of transcription (demonstrated only
in vitro) [112]

Sirt1 Inhibition of target proteins deacetylase activity Inhibition of inflammation [116,117]

MTA3 Loss of protein-protein interactions Pluripotency [118]

RING1A Loss of chromatin binding Transdifferentiation [119]

3. Role of S-Nitrosylation during Carcinogenesis

The impact NO-and especially RNS-may have on DNA and chromatin architecture is
particularly important in cancer cells, where NO metabolism might be deregulated. Indeed,
some cell types lacking GSNOR and experiencing high levels of SNOs are prone to acquire
a tumorigenic phenotype through an impairment of DNA damage-repair protein function
by nitrosylation [121,122].

It is important to note that basal levels of nitrosylation are required for the mainte-
nance of cellular homeostasis [123–126]. In cancer cells, the nitrosylation/de-nitrosylation
process is unbalanced in favor of the generation of high quantities of SNO-proteins. This
largely depends on the hypoxic environment promoted and sensed by the increasing tu-
mor mass and inducing the generation of RNS [127]. An example of nitrosylation-guided
carcinogenesis is the activation of membrane receptors and intracellular kinases upon
the addition of SNO moieties, such as Epidermal Growth Factor Receptor (EGFR) [128],
ras [129], src [130], and Akt [131]. All these events have a profound impact on transcrip-
tional cancer cell reprogramming, leading to tumor progression and invasion. In colorectal
cancer, nitrosylation of latent TGF-β binding protein 1 (LTBP1), favored by the formation
of a macromolecular complex formed by phosphorylated 6-pyruvoyltetrahydropterin syn-
thase (PTPS) and NOS1 in hypoxic conditions, leads to LTBP1 instability by increased
ubiquitination and proteasome degradation. This, in turn, impairs TGF-β secretion and
inhibition of cancer cell proliferation [132].

However, some nitrosylation events lead to apoptosis of cancer cells. In colorectal
and breast tumor cells, nitrosylation of cIAP1, a member of the Inhibitor of Apoptosis
(IAP) family of proteins [133], has been found to impair its TNF-α-dependent E3 ubiquitin
ligase activity and degradation of receptor-interacting serine/threonine protein kinase 1
(RIP1). RIP1 degradation usually mediates TNF-α activation of NF-kB. Upon cIAP1 nitro-
sylation on Cys571 and Cys574, inhibition of RIP degradation switches a TNF-α survival
program to an apoptotic one [134]. In lung cancer, nitrosylation of Cys51 and Cys172 of
peroxiredoxin-2 (Prdx2)—an antioxidant enzyme that protects tumor cells from toxic level
of H2O2—impairs the formation of Prdx2/Prdx2 homodimers, repressing its antioxidant
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activity. The increased levels of H2O2 boosts AMP-activated protein kinase (AMPK), which
phosphorylates Sirt1 on Threo344, inhibiting its ability to bind and deacetylate either p53
or forkhead box protein O1 (FOXO1). p53-Enhanced acetylation leads to the occurrence of
a p21-dependent apoptotic pathway. FOXO1 acetylation, together with NO-dependent Akt
inhibition, induces nuclear retention of FOXO1 and activation of its pro-apoptotic targets
bim and puma [135].

Genes encoding for mitogenic factors, TFs and chromatin regulators are well rep-
resented among NO-regulated transcripts in cancer cells [136,137]. Nitrosylation might
modulate the activity of oncogenes, tumor suppressors, and chromatin remodelers indi-
rectly by modifying upstream signal transduction molecules and directly, thus affecting
carcinogenesis either negatively or positively. Indeed, we found a relatively high basal
level of nitrosylated HDAC2 in glioblastoma stem cells cultured in the absence of NO
donors, which are instead required for the generation of HDAC2-SNO in other cell systems
(Salvatori L. and Illi B., unpublished). Table 2 summarizes nitrosylated protein targets
discussed below.

3.1. S-Nitrosylation of TFs in Cancer

In general, nitrosylation of TFs results in reduced chromatin binding capacity and
has a negative effect on tumor progression. A proteomic analysis in pancreatic ductal
adenocarcinoma (PDAC) has identified 434 nitrosylated proteins. Among them, v-raf-1
murine leukemia viral oncogene homolog 1 (Raf-1), signal transducer and activator of
transcription 1 and 3 (STAT1, 3), and retinoblastoma (RB) protein were found to be heavily
nitrosylated [138]. Nitrosylation appears to be detrimental for STAT3-dependent oncogenic
function in PDAC and also in multiple myeloma (MM) [139], where SNO-STAT3 shows
decreased activity. In MM, nitrosylation inhibits the activity of STAT3 and NF-kB, leading
to apoptotic cell death (Figure 1, lower panel). This occurs through a diminished expression
of STAT3 and NF-kB anti-apoptotic target genes, such as Pim2, Bcl-2, Bcl-XL, and Mcl-1 [139].
Nitrosylation inhibits NF-kB DNA binding in colon cancer cells [140] and decreases STAT3
phosphorylation and activation in head and neck squamous cell carcinoma (HNSCC) [141].

Moreover, nitrosylation of NF-kB, YY1, and Snail impairs EMT by blocking the tran-
scriptional activity of this circuitry in prostate cancer cells (Figure 1, lower panel). Indeed,
p50-SNO fails to translocate NF-kB to the nucleus and to activate YY1 and Snail. YY1-SNO
has reduced transcriptional activity and fails to induce transcription of genes required for
EMT, such as vimentin and fibronectin [142]. In parallel, NF-kB nitrosylation, promoted by
NO high levels, might also impair tumor cell adhesion and extravasation into the vascular
tree by inhibiting its binding to promoter regions of genes encoding adhesion molecules,
such as V-CAM1 and ICAM1 [48,143].

S-nitrosylation-dependent inactivation of β–catenin/TCF4 transcriptional activity
leads to growth inhibition of T-acute cell leukemia (T-ALL) Jurkat cells. In this case,
nitrosylation of β–catenin results in its subsequent degradation and to the transcriptional
repression of its target cyclin D1 [144]. In colon cancer cells, nitrosylation of β–catenin
results in the dissociation of the β–catenin/TCF4 complex, inhibiting TCF-4 transcriptional
activity [145] (Figure 1, lower panel).

One exception to the rule is represented by HIF1α. Indeed, it has been found that in
murine tumors, Cys533 S-nitrosylation protects radiation-induced HIF1α, whose levels
are increased by the release of stored HIF1α mRNAs from stress granules independently
from hypoxia, from degradation in normoxic conditions [146]. Stabilized HIF1α-SNO
still induces the expression of VEGF and other molecules to protect the tumor vessels
from radiation-dependent cytotoxic damage. This has obvious clinical implications for the
design of optimal strategies to counteract tumor resistance to radiation therapies. Consis-
tently, inhibition of HIF1α nitrosylation by caveolin-1, a well-known NOS inhibitor [147],
decreases HIF1α activity in a variety of cancer cells [148] (Figure 1, lower panel).
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p53 is another TF whose nitrosylation may enhance protein stability. Indeed, ni-
trosative stress induced by metal nanomaterials provides p53 nitrosylation, increases p53
stability, and induces a pro-apoptotic pathway in lung cancer cells [149].

3.2. S-Nitrosylation of Transcriptional Co-Regulators in Cancer

Although very few reports document nitrosylation of chromatin remodeling enzymes
in tumors, this could represent a highly frequent phenomenon ruling the cancer cell
epigenome. Indeed, global changes in histone acetylation/methylation levels have been
observed in several cancer cells [150] exposed to NO donors, which might reflect changes
in the activity of chromatin remodelers. Globally, NO represses histone acetylation while
enhancing methylation [151]. However, this effect might be histone-specific, as occurs
in MDA-MB-231 triple-negative breast cancer cells, where the decrease in acetylation
of K9 of H3 is accompanied by an increase, although minimal, of H3K27acetylation,
whereas acetylation levels of other histone K residues (e.g., H3122ac) do not change. The
distribution of acetylated/methylated H3 specifically changes upon NO exposure, with K9
acetylated H3 being enriched at those chromatin promoters corresponding to enhanced
mRNA expression of related transcripts, such as the Ets-1 oncogene, Fos, Jun, and VEGFA.
In parallel, H3K9 methylation is lost from chromatin domains ruling the expression of
genes important for tumor progression and spread (e.g., MMP-1 and 10) [150].

Another indirect evidence that chromatin remodelers might be regulated by nitro-
sylation in cancer is the design of compounds constituted by histone deacetylase in-
hibitors conjugated with NO donors [152,153], which may exert potent apoptotic and
anti-tumor activities [152].

A direct effect of nitrosylation on chromatin remodeling enzymes in tumors has been
observed for class I HDACs, specifically for HDAC2. In melanoma cells, NOS1-dependent
impairment of interferon-α response relies on Cys272 and Cys274 HDAC2 nitrosylation.
This modification promotes HDAC2 dissociation from STAT1, enhancing acetylation of
K16 on H4 and deregulating interferon-α-stimulated genes (ISGs). Indeed, contrary to
other acetylated histones, H4K16ac is a mark of gene silencing, and its deacetylation is
important for RNA polymerase II (RNAP II) recruitment at gene promoters. Lack of H4K16
deacetylation by HDAC2 nitrosylation leads to the loss of ISGs expression in melanoma
cells. This phenomenon is important for lung metastasization of melanoma, as mice injected
with melanoma cells carrying non-nitrosylable form of HDAC2 (C272A/C274A) do not
develop lung metastases [154] (Figure 1, lower panel).

Table 2. Nuclear targets and impact of S-nitrosylation in tumor cells.

Nuclear Protein
Target Function Tumor

STAT3 Decrease of STAT3 activity, increase of apoptosis
Decrease of STAT3 phosphorylation and activation

Multiple myeloma
Head and neck carcinoma [139,141]

p53 Increase of stability Lung cancer [149]

NF-kB

Decrease of NF-kB activity, increase of apoptosis
Inhibition of NF-kB DNA binding

Impairment of NF-kB nuclear translocation,
prevention of EMT

Impairment of tumor cell adhesion
and extravasation

Multiple myeloma
Colon cancer

Prostate cancer
Breast cancer and Melanoma [139,140,142,143]

YY1 Prevention of YY1 activation, impairment of EMT Prostate cancer [142]

Snail Prevention of Snail activation, impairment of EMT Prostate cancer [142]

β-catenin Inactivation of β–catenin/TCF4 transcriptional
activity, repression of cyclin D1, growth inhibition

Leukemia
Colon cancer [144,145]

HIF-1 α Protein stabilization, induction of VEGF expression Breast cancer [146–148]

HDAC2 Enhancement of H4 acetylation, inhibition of
interferon-α-stimulated genes expression Melanoma [154]
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4. Conclusions: Gaps and Future Directions

S-nitrosylation is emerging as a major NO-dependent post-translational mechanism
ruling gene expression. Its reversible nature makes nitrosylation a versatile tool by which
NO might control gene expression programs in health and disease. Nevertheless, despite
the great amount of information acquired regarding nitrosylation-dependent regulation of
signalling molecules [128–131,155,156] and transcription factors (see Section 3.1.) pivotal
to cancer progression, there is lack of knowledge about the control of transcriptional co-
regulators activity by the addition of SNO moieties in tumors. Indeed, to our knowledge,
besides HDAC2, the only enzyme controlling acetylation/deacetylation of proteins regu-
lated by nitrosylation in tumor cells is the class IIb HDAC6 [105]. HDAC6 is, however, a cy-
toplasmic molecule affecting the acetylation levels of α-tubulin and assembly/disassembly
of microtubules together with Hsp90 activity and aggresomal formation [157–159]. This
is surprising since several lines of evidence suggest a role of nitrosylation in modulating
the activity of chromatin remodelers within the nucleus of cancer cells. Indeed, global
changes in the histone modification profile characterize breast and lung cancers exposed to
NO [136,150]. Nevertheless, the volume of scientific information related to nitrosylation-
dependent epigenetic control of biological processes in non-tumor cells strongly exceeds
what is actually known for cancer (Figure 1).

Furthermore, it has not been determined yet whether nitrosylation might affect
other important chromatin modulators, such as histone methyltransferases and/or de-
methylases, DNA methyltransferases (DNMTs), and the SWI/SNF family of ATP-dependent
remodelers, regardless the cell type. To the best of our knowledge, the only histone
methyltransferase indirectly regulated by nitrosylation is suppressor of variegation 3–9
homolog 1 (SUV39H1). In fact, in neurons, NO-dependent nitrosylation of GAPDH/seven
in absentia (Siah) homolog complex promotes SUV39H1proteasomal degradation and
neurotrophin- and CREB-dependent neurites outgrowth [160]. A role for nitrosylation in
regulating the activity of histone de-methylase, such as LSD1 and the JumonjiC (JMJC)
family of de-methylases, is far from being determined, whilst the action of NO in in-
hibiting the activity of JMJC and in regulating the expression of other de-methylases has
been demonstrated [161].

Several observations point to a role of NO in regulating DNMTs and inducing DNA
CpG islands methylation, but how NO accomplishes this activity must still be eluci-
dated [162,163]. The regulation of the SWI/SNF complex by nitrosylation is, to our knowl-
edge, still a dark matter, whereas molecular circuitries involving SWI/SNF molecules
responsible for NO production in a variety of cell systems have been discovered [164,165].

The balance between nitrosylation/de-nitrosylation is a delicate process required to
ensure a proper cellular homeostasis. Deregulated de-nitrosylation of SNO-proteins might
be as important as RNS-dependent hyper-nitrosylation in the onset of different human
diseases, including cancer. Nevertheless, many aspects have still to be elucidated, and
the possible targeting of nitrosylation/de-nitrosylation processes to control the pathogen-
esis and the progression of human diseases is still in its infancy. Indeed, we are aware
that although S-nitrosylation is clearly responsible of many NO-regulated biological out-
comes both in physiological and pathological contexts, it is not the unique mechanism of
action of NO.

The decrease of GSNOR in solid tumors [166,167] is consistent with the increase of
SNO-protein species whose activity might be either boosted or inhibited by nitrosylation.
According to the tumor type, protein nitrosylation might specifically affect tumor biology,
and proteomics of tumor SNO-proteins may provide a patient-specific footprint suitable
for diagnostic and prognostic purposes. Therefore, in the era of personalized medicine, the
fine tuning of nitrosylation might represent an unexplored field that could provide a novel
therapeutic opportunity for the treatment of specific cancers.
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