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ABSTRACT Children are highly susceptible to clinical malaria, and in regions where
malaria is endemic, their immune systems must face successive encounters with
Plasmodium falciparum parasites before they develop immunity, first against severe
disease and later against uncomplicated malaria. Understanding cellular and molecu-
lar interactions between host and parasites during an infection could provide in-
sights into the processes underlying this gradual acquisition of immunity, as well as
to how parasites adapt to infect hosts that are successively more malaria experi-
enced. Here, we describe methods to analyze the host and parasite gene expression
profiles generated simultaneously from blood samples collected from five consecu-
tive symptomatic P. falciparum infections in three Malian children. We show that the
data generated enable statistical assessment of the proportions of (i) each white
blood cell subset and (ii) the parasite developmental stages, as well as investigations
of host-parasite gene coexpression. We also use the sequences generated to analyze
allelic variations in transcribed regions and determine the complexity of each infec-
tion. While limited by the modest sample size, our analyses suggest that host gene
expression profiles primarily clustered by individual, while the parasite gene expres-
sion profiles seemed to differentiate early from late infections. Overall, this study
provides a solid framework to examine the mechanisms underlying acquisition of
immunity to malaria infections using whole-blood transcriptome sequencing (RNA-
seq).

IMPORTANCE We show that dual RNA-seq from patient blood samples allows char-
acterization of host/parasite interactions during malaria infections and can provide a
solid framework to study the acquisition of antimalarial immunity, as well as the ad-
aptations of P. falciparum to malaria-experienced hosts.
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Despite tremendous progress in the last decades, malaria still has devastating
consequences throughout Africa, where Plasmodium falciparum causes more than

200 million malaria cases and close to half a million deaths every year, the majority of
them children (1). In Mali, malaria remains a leading cause of death in children under
5 years of age (2). In Bandiagara, a town of approximately 14,000 inhabitants in central
Mali, malaria is highly seasonal with a transmission that peaks in September (3) and
each child typically experiences one or two clinical episodes of malaria every year (4).

With repeated exposures to malaria parasites, children living in high-transmission
settings gradually acquire immunity against the disease, first against severe malaria
manifestations, then against milder symptoms that characterize uncomplicated malaria,
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until they eventually develop asymptomatic infections (5) with increased parasite
clearance (6, 7). A better understanding of the processes accompanying the acquisition
of immunity could shed light on the mechanisms underlying disease resistance and
parasite tolerance and could guide more effective antimalarial treatments. Antidisease
immunity is thought to be partially mediated by recognition of multiple antigens, and
longitudinal studies following children from infancy to adulthood have demonstrated
recognition of an increasing number of antigens and antigen variants over time (8).
Innate immunity may also play a role in protecting against malaria and in modulating
the adaptive immune response afforded by this repertoire (9). However, adaptive
immunity appears to be relatively short-lived, as evidenced by loss of immunity upon
discontinued exposure (10). Aside from “strain-specific” acquired immunity, the con-
cept of a “strain-transcending” immunity that may be mediated by host age has been
proposed (11), although it is important to note that severe malaria does occur in older
children in low-transmission areas (12). Parasite tolerance, possibly acquired via immu-
noregulatory mechanisms (13), remains a poorly characterized yet intriguing avenue of
research. Study of immune cell repertoires have shown that complicated malaria cases
present different CD4� T-cell phenotypes than those seen in uncomplicated or asymp-
tomatically infected individuals (14). Platelets, which act as first responders to infection,
secrete platelet factor 4 (which lyses the parasitic vacuole), and present antigens in the
context of major histocompatibility complex (MHC) class I, have also been shown to
exhibit clear differences in counts between patients with complicated malaria (greater
thrombocytopenia) and those with uncomplicated malaria (7).

Gene expression analyses have the potential to complement immunological studies
and could reveal molecular processes underlying the acquisition of immunity to
malaria. Transcriptome sequencing (RNA-seq) studies have thus reported gene expres-
sion differences between malaria-naive and -experienced individuals (15), as well as
between severe and uncomplicated malaria cases (16). In addition, microarray studies
have shown that recent and heavy exposure to malaria is associated with a loss of
proinflammatory cytokine production (17), and higher levels of the anti-inflammatory
cytokine interleukin 10 (IL-10) (18).

To date, most malaria gene expression studies focused either on the host response
to infection or on parasite gene expression and its association with disease phenotypes,
with the exception of a few studies that characterized general interactions between
infecting malaria parasites and their hosts (16, 19). Simultaneous characterization of
host and parasite gene expression profiles, sometimes referred to as dual RNA-seq,
could provide novel perspectives on the interactions between host and pathogen
during an infection (20) and address an important but understudied aspect of immu-
nity. In particular, study of the dynamic changes occurring over successive infections
could identify molecular pathways involved in host immunity acquisition and mecha-
nisms used by parasites to overcome the immunity of more experienced hosts. Here,
we describe the parasite and host gene expression profiles generated from blood
samples collected in the context of a malaria incidence study (4) from three young
Malian children during five successive clinical malaria episodes. We show that RNA-seq
provides robust characterization of both organisms’ transcriptomes without requiring
sample processing or culture. We present statistical analyses of the temporal changes
in gene expression and show that the gene expression profiles of both organisms
cluster differently over time. We also demonstrate how RNA-seq data can support (i)
gene expression deconvolution analyses to estimate the proportions of the different
parasite stages and white blood cell (WBC) subsets in each sample, (ii) analysis of
host-parasite gene coexpression, and (iii) robust genotyping to examine the complexity
of each infection.

RESULTS
Changes in host and parasite gene expression over successive infections. We

simultaneously analyzed the parasite and host gene expression profiles from three
Malian children (aged 1 to 2 years old) enrolled in a longitudinal study of malaria
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incidence in Bandiagara, Mali, between 2009 and 2014 (4). For each child, we extracted
RNA from five blood samples collected during successive symptomatic P. falciparum
infections for a total of 15 samples (for details, see Table S1 in the supplemental
material). After ribosomal and globin RNA depletion, we prepared a stranded RNA-seq
library and generated 34 to 67 million read pairs from each sample (Table S2).

To test if any of those infections contained more than one species of Plasmodium
parasites (21), we mapped the reads to the genome sequences of different Plasmodium
species infecting humans. In all samples, the reads mapping to P. ovale, P. malariae, and
P. vivax represented less than 0.68% of all Plasmodium reads, suggesting that these
blood samples were infected with only P. falciparum. Overall, 17 to 91% of the reads
mapped to the human genome and 5 to 78% of the reads mapped to the P. falciparum
genome (Table S2). After stringent quality filters, we obtained 5 to 24 and 1 to 12
million reads mapping to the human and P. falciparum genomes, respectively. The
majority of reads mapped to annotated coding regions (�80% for human and �97%
for P. falciparum) and provided sufficient information to analyze the expression levels
of 8,896 host and 2,822 parasite genes (see Materials and Methods).

To assess how host and parasite gene expression profiles change over successive
infections, we compared the transcriptomes of the 15 samples (3 children � 5 succes-
sive infections). Unsupervised clustering revealed that host gene expression profiles
tended to cluster each child’s successive infections together (Fig. 1A), while the P.
falciparum transcriptomes generated from the same successive infections tended to
differentiate early from late infections, regardless of the individual (Fig. 1B). To further
investigate this pattern, for each host and parasite gene, we tested whether the
expression was influenced by the host and/or sequential infections (i.e., whether it was
the first, second, third, fourth, or fifth infection) using a statistical framework that
assessed whether the expression levels changed consistently over time. Consistent with
the hierarchical clustering results, a greater number of host genes were differentially
expressed according to the individual than the number of the infection (e.g., 4,581
versus 1,042 at a false discovery rate [FDR] of 0.2), while a greater number of parasite
genes were differentially expressed according to the number of the infection rather
than the individual (0 versus 68, FDR � 0.2) (Table 1 and Tables S3 and S4).

Several of the host genes whose expression changed the most (and consistently)
over successive infections were involved in G-protein signaling, platelet aggregation,
and immunoregulation (Fig. 2A and Table S3). To systematically examine whether some
pathways were disproportionally represented among the genes differentially expressed
according to the number of the infection (n � 97, FDR � 0.1), we performed enrich-
ment analyses. PANTHER overrepresentation test (22) suggested that blood coagula-

FIG 1 Unsupervised clustering of the 15 samples according to the host (A) and parasite (B) gene expression profiles. The colors and numbers (1 to 3) indicate
which patient the sample is derived from. The letters distinguish the five symptomatic infections from each patient, with A representing the earliest infection
and E the latest. Tree height refers to dissimilarities in terms of squared Euclidean distance between cluster means.
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tion was also influenced by the number of the infection (P value � 1.63 � 10�5). Gene
set enrichment analysis (GSEA) for Reactome pathways (Fig. 3A) confirmed the roles of
G-protein signaling and blood coagulation, as well as revealed enrichment in other
pathways such as cytokine signaling. Table S5 shows the full results and information on
the leading edge genes that drive the enrichment. Only a handful of parasite genes
reached statistical significance (Fig. 2B and Table S4), including phospholipase A2, Alba
2, and glyceraldehyde-3-phosphate dehydrogenase, and no specific pathway was
statistically enriched.

The host genes differentially expressed among the three children (Table S3) in-
cluded CD36, also known as glycoprotein IV, a membrane protein present on the
surface of many cell types that facilitates the binding and activation of platelets and
monocytes (23) and is hypothesized to influence the host response to P. falciparum
infection (7). Despite the large number of differentially expressed genes (2,876 genes at
a FDR � 0.1), PANTHER analysis did not reveal any significant enrichment after multiple
testing correction. GSEA results produced statistically significant results (P � 0.05) only
for the child 1 versus child 2 comparison (Fig. 3B and Table S5), and leading edge
analysis did not place CD36 in any significantly enriched pathways. Child 1, the oldest

TABLE 1 Number of host and parasite genes differentially expressed according to the
patient and the number of the infectiona

Transcriptome
No. of genes
tested

DE according
to patient or
infection no.

No. of DE genes at:

FDR � 0.2 FDR � 0.1

Host 8,896 Patient 4,581 2,876
Infection no. 1,042 97

Parasite 2,822 Patient 0 0
Infection no. 68 11

aOnly genes expressed at more than 10 counts per million in more than six samples were tested (see
Materials and Methods).

FIG 2 Volcano plot showing the results of the differential gene expression according to the number of successive infections for the host (A) and parasite (B)
genes. Each dot represents one gene and is displayed according to the log fold change in expression (x axis) and the statistical significance of the association
(y axis, in –log10 of the P value). Red dots indicate genes deemed to be differentially expressed (FDR � 0.2). Genes that increased in expression over the course
of the five successive infections are shown by positive log fold change values, and those that decreased in expression are shown by negative log fold change
values. Selected genes discussed in the text are labeled and, for the host, are color coded based on their functional annotation (immunoregulatory functions
shown in black, platelet aggregation in turquoise, and G-protein signaling in purple).
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of the three children, showed enrichment of platelet-related and cytokine-signaling
related pathways compared to both of the other children (although child 1 versus child
3 did not reach significance), reflecting the findings of enrichment by infection number.

Coexpression of host and parasite genes. Joint characterization of host and
parasite gene expression profiles from the same blood sample provides an opportunity
to look for interactions, either directly between host and pathogen proteins, or indi-

FIG 3 GSEA analysis of the human transcriptome by infection number (A) and patient 1 versus patient 2 (B). (A) The top 15 plots show the top 15 pathways
upregulated over successive infection numbers, and the bottom 15 plots show the top 15 pathways downregulated over successive infection numbers. (B) The
top 15 plots show the top 15 pathways upregulated in patient 2, and the bottom 15 plots show the top 15 pathways downregulated in patient 2.
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rectly as one molecular pathway in one organism may regulate a separate process in
the other organism. We searched for putative interactions by measuring the correlation
between the expression levels of each pair of host gene-parasite gene across all 15
infections. We identified 2,690 pairs with a Spearman’s coefficient of correlation R2 �

0.9 (see, e.g., Fig. S1 in the supplemental material). This high extent of correlation
observed between host and parasite gene expression was much greater than one
would expect solely by chance (P � 0.024, based on 500 permutations), and indeed,
only 709 gene pairs should display such high correlations by chance (corresponding to
a FDR of 0.26, see Materials and Methods). Thus, despite the small sample size of the
current study, our analyses demonstrate that dual RNA-seq can identify statistically
significant host/pathogen correlations at the transcript level and could provide a
framework to rigorously assess interactions occurring during an infection (though
larger sample sizes would be needed to lower the false discovery rate and pinpoint
biologically relevant interactions).

Gene expression deconvolution allows determination of the relative propor-
tions of WBC subsets and parasite developmental stages. Host gene expression
data generated from whole blood can be difficult to interpret as the samples contain
a variable proportion of cell types, each with their own specific regulation, and gene
expression differences between samples could simply reflect differences in cell com-
position. Similarly, parasite gene expression profiles will be influenced by the relative
proportions of different parasite developmental stages. To overcome these limitations
and determine the proportions of WBC subsets and parasite developmental stages in
each sample, we used gene expression deconvolution analysis (24). First, we used
transcriptome profiles from sorted WBCs (25–28), as well as P. falciparum developmen-
tal stage transcriptome profiles obtained from single-cell RNA-seq (29) to generate the
gene expression signature profiles of each cell type and parasite stage. We then used
these signature profiles to deconvolute the complex gene expression profiles gener-
ated from whole blood and statistically separate the transcriptional signal from each
cell and parasite stage (Fig. 4).

Overall, the proportions of the different white blood cell subsets inferred from the
RNA-seq data matched those expected in human whole blood (30), except for sample
3C, which displayed a low proportion of granulocytes and relatively high proportions
of T cells, B cells, and myeloid dendritic cells. Interestingly, the proportion of NK cells
seemed to decrease with the infection number (P � 2.0 � 10�3), though the small
proportion of NK cells in each sample warrants caution. Similarly, the proportion of
transcripts derived from myeloid dendritic cells and NK cells seemed to differ signifi-
cantly among individuals (P values of 0.03 and 1.8 � 10�5, respectively) (Table S6).

In contrast, the proportion from different parasite developmental stages did not
seem to change between individuals (P � 0.06) or as a function of the number of
infections (P � 0.11) (Table S7). Note that the small number of samples in the current
study prevented us from correcting the differential expression analyses described
above for these variations in composition, but larger studies could easily integrate this
information to correct for differences among samples and distinguish whether the
differential expression is caused by differences in cell composition or genuine differ-
ences in specific transcript regulation.

Complexity of infection and genotyping. In addition to the mixture of parasite
stages, Plasmodium infections often simultaneously contain multiple, genetically dis-
tinct clones. Since Plasmodium parasites are haploid in the human host, identification
of multiple alleles throughout the genome is indicative of a polyclonal infection. To
evaluate whether RNA-seq data distinguishes monoclonal from polyclonal infections,
we analyzed allelic variations, within each infection, at nucleotide sites highly se-
quenced (�50�) using the sequences generated by RNA-seq. While most infections
displayed a single allele at each transcribed position, allelic variation patterns in six
infections were suggestive of the presence of two or more clones (Fig. 5). These
observations were consistent with the Fws value (47), an estimate of polyclonality akin
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to Wright’s inbreeding coefficient and calculated by comparing the heterozygosity
within and between infections, determined from each infection: six samples displayed
an Fws of �0.95, indicative of multiple clones present in these infections (Fig. 5). We
could hypothesize that, as the patients acquire immunity over successive P. falciparum
infections, they would be infected with fewer clones but we did not observe any
association between polyclonality and the number of infections (P � 0.19) (nor with the
patient identifier [ID], P � 0.5), although more samples will be required to rigorously
evaluate this hypothesis.

We also used genetic information extracted from the RNA-seq data to examine
relationships among the dominant P. falciparum clone of each infection. All clones
appeared equally distant from each other (Fig. S2), regardless of whether they were
observed in successive infections of the same child or in different children. This analysis
is consistent with successful drug treatment following each infection and indicates that
consecutive infections in the same individual were caused by new infections rather
than by recrudescence of resistant parasites.

DISCUSSION

Here, we applied dual RNA-seq to analyze whole-blood samples collected from three
Malian children over five successive P. falciparum clinical infections. We successfully
obtained more than one million reads from each sample to characterize both host and
parasite transcriptomes, allowing robust analysis of differential gene expression, dis-
covery of extensive host and parasite gene coexpression, determination of the propor-

FIG 4 Gene expression deconvolution results. (A) Relative proportions of the different white blood cell subsets determined
from the host transcriptomes. (B) Relative proportions of the different P. falciparum developmental stages determined from
the parasite transcriptomes (hpi, hours postinfection).
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tions of the WBC subsets and parasite developmental stages, assessment of the
complexity of infection, and parasite genotyping.

One striking result from this analysis was the different patterns of clustering of the
host and parasite transcriptomes generated from the same infections: host gene
expression profiles appeared to be quantitatively more affected by the individual than
by the number of previous infections, while the parasite transcriptomes tended to
separate early from late infections. This pattern, which was observed using unsuper-
vised clustering and gene-by-gene analysis, could indicate that transcriptional changes
occur in P. falciparum parasites in order to successfully infect more malaria-experienced
hosts (although the number of genes identified in our analyses remained small, and
additional samples would be required to rigorously validate this hypothesis). Similarly,
and despite the larger quantitative interindividual variations, many host genes were
statistically associated with sequential clinical infections and could hint at the molecular
mechanisms involved in the acquisition of immunity against falciparum malaria. Thus,
we observed differential host expression of several immunoregulatory genes (Fig. 2A),
including PILR� and BTN2A2, that were upregulated in successive infections, and
DNTTIP2 and MAP3K8, that were downregulated. PILR� is one member of an
immunoglobulin-like receptor gene pair and acts as an innate immune system signaling
inhibitor (32). BTN2A2 inhibits T-cell metabolism, IL-2 and gamma interferon (IFN-�)

FIG 5 Complexity of infection analysis. The reference allele frequency distributions show, for each sample, the number of nucleotide positions (y axis) with
a given proportion of reads carrying the reference allele (x axis). Note that while most infections show a clear U-shaped distribution consistent with the presence
of a single (haploid) clone, infections 1A, 1C, 2C, and 3B display clear multimodal distributions consistent with the presence of multiple, genetically different
parasites. The corresponding Fws values are indicated in each plot (with Fws � 0.95 indicative of polyclonal infections).
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secretion, and CD4 and CD8 T-cell proliferation (33). MAP3K8 induces production of
NF-kappa �, a potent inducer of proinflammatory genes (34). These findings are
consistent with a progressive dampening of the host inflammatory response over
successive infections and mirror some of the gene expression changes described in
malaria-experienced hosts compared to malaria-naive hosts (15). Table S5, displaying
GSEA results and leading edge genes driving enrichment, shows that within the
enriched pathways there are immunoregulatory genes that increase in expression with
infection number such as suppressors of cytokine signaling and cytokine-inducible
SH2-containing protein, and suppressors of interferon such as interferon regulatory
factor 2 (IRF2) which competitively inhibits IRF1-mediated activation of interferons
alpha and beta (35). Interleukin 6 receptor and IL-6 signal transducer genes are also
present on significantly enriched pathways. Interleukin 6 has both pro- and anti-
inflammatory roles, and inhibits the proinflammatory IL-1 as well as activates the
anti-inflammatory IL-10, and the latter has previously been suggested to be involved in
antidisease immunity to malaria (18). The identification of genes involved in platelet
regulation as differentially regulated upon successive infections is interesting, as plate-
lets have been shown to be involved in parasite killing and clumping of P. falciparum-
infected erythrocytes, which leads to thrombocytopenia (one complication of malaria)
(7). GSEA has previously been used to analyze transcriptional changes during controlled
human malaria infection (CHMI), and it is interesting to note the similarities in enriched
pathways, including platelet activation and GTPase-mediated signaling found over
successive infections in this study compared to days postinoculation versus baseline in
P. falciparum CHMI (36), and P. vivax CHMI of naive versus semi-immune individuals
(37).

Note here that it is possible that the children had malaria episodes prior to
enrollment in our study and that infection 1 does not correspond to the child’s first
malaria infection (although given the young age of the children studied, it is probably
one of their first). Techniques used herein, such as differential expression, GSEA, gene
signature-based deconvolution, and correlation of host and parasite gene expression,
have been used elsewhere for human and Plasmodium transcriptomic analysis (15, 16,
19, 36, 38). However, as highlighted in a recent review (38), there is extensive variability
in the human subjects compared and techniques used to understand development of
malaria immunity, a lack of guidance on methodology to aid defining and character-
izing naturally acquired immunity, and absence of detailed time course or infection
number transcriptional changes within the same individual. In addition, very little is
known about parasite adaptations across successively more malaria-experienced hosts.
Overall, while the small sample size of the current study prevents drawing definitive
conclusions, our study demonstrates that dual RNA-seq over successive infections can
provide a solid framework to better understand transcriptional changes in the parasite
and the host accompanying the development of acquired immunity in malaria patients.

Beyond testing for gene expression differences, we leveraged the RNA-seq data to
determine the relative proportions of WBC subsets and parasite developmental stages
in each sample using gene expression deconvolution (24). Our findings demonstrate
that whole-blood RNA-seq is not critically hampered by the cell heterogeneity of each
sample but, in contrast, can provide important information and facilitate measurement
of changes in WBC subsets over time, and if sample size is sufficient, to correct
differential gene expression analyses for these changes to distinguish changes in cell
proportions from a difference in gene regulation in a specific cell population. However,
we noted that, using gene expression deconvolution, it was difficult to accurately
differentiate and quantify cell populations that have similar transcriptional profiles. In
particular, we were not able to reliably differentiate CD4� and CD8� T-cell subsets in
our analyses and, despite their different biological roles, had to combine these two
populations into a single category, though recent progress in gene expression decon-
volution methods could address this issue (39).

Finally, we show that data generated by RNA-seq enable determination of the
complexity of each infection and comparison of the genotype of the clones in different

Transcriptomics of Successive P. falciparum Infections

July/August 2020 Volume 5 Issue 4 e00116-20 msystems.asm.org 9

https://msystems.asm.org


samples. This information is critical for studies of successive infections to ensure that
the samples analyzed truly represent new infections and not recrudescence, from
previous infections, of parasites that are resistant to antimalarial drugs or have been
incompletely cleared. This approach could also allow assessment of the role of poly-
clonality, and possibly of specific parasite genetic polymorphisms, in the response to
successive infections. Note however that the determination of allelic variants from RNA
might fail to identify polyclonal infections if the different clones in one infection are
present at different developmental stages. If this is the case, analyses of genomic DNA
might be necessary to avoid misclassifying possible asynchronous polyclonal infections
as monoclonal.

Overall, we show that RNA-seq data generated from whole-blood samples collected
from children with malaria can provide a wide variety of information to better under-
stand host and parasite changes accompanying the acquisition of immunity against
malaria. In addition to the analysis of differential gene expression of the host and
parasite associated with successive clinical infections, our study demonstrates that the
RNA-seq data can enable identifying host/pathogen interactions, measuring (and cor-
recting for) the proportion of the white blood cell subsets and parasite developmental
stages, and determining the clone genotypes and the number of clones present in each
infection. The biological complexity of clinical malaria infections involves interactions
between a large number of host, parasite, and environmental factors, which would
require analyses on a much larger sample size than presented here. A greater number
of samples would, for example, enable a rigorous analysis of the interaction between
the sex of the host and gene expression of both the host and parasite across successive
infections. While the current study is limited by its sample size, application of the
approaches implemented here to a larger cohort could provide a novel and compre-
hensive perspective on the dynamic changes in host and parasite regulation and their
interactions during the acquisition of immunity to the disease and could highlight key
molecular processes that could then be leveraged to develop more efficient treatment
and prevention approaches against malaria.

MATERIALS AND METHODS
Sample collection. Whole-blood samples were collected from five successive symptomatic, uncom-

plicated infections in three Malian children aged �1 to 2 years using PAXgene blood RNA tubes
(PreAnalytiX). The presence of P. falciparum in each sample was confirmed via light microscopic
examination of thick blood smears, with no detectable presence of other parasitic species.

Ethics approval and consent. The study protocol and informed consent/assent process were
reviewed and approved by the institutional review boards of the Faculty of Medicine, Pharmacy and
Dentistry of the University of Sciences, Techniques and Technologies of Bamako and the University of
Maryland, Baltimore (IRB numbers HCR-HP-00041382 and HP-00085882). Individual written informed
consent was obtained from parents or guardians.

Generation of RNA-seq data. RNA was extracted from PAXgene tubes using the Blood RNA kit
(Qiagen) and used to prepare stranded libraries after rRNA and globin depletion using the TruSeq
Stranded RNA kit (Illumina) and poly(A) selection using the TruSeq RNA sample preparation v2 kit
(Illumina). cDNA libraries were sequenced on an Illumina HiSeq 4000 to generate paired-end reads of
75 bp. To test whether any infection contains more than one Plasmodium species, we first randomly
subsampled 2,500,000 reads from each fastq file using seqtk v1.3 (https://github.com/lh3/seqtk) and
aligned those reads using hisat2 v2.0.4 (40) to a fasta file containing the P. falciparum 3D7, P. vivax PvP01,
P. cynomolgi M version 2, P. knowlesi H strain, P. malariae UG01, and P. ovale GH01 genomes from
PlasmoDB v36 (31). We then counted the number of reads mapped uniquely to each genome using
samtools view. We aligned all reads using hisat2 (v2.0.4) (40) to (i) the P. falciparum 3D7 genome
(PlasmoDB v36 [31]) (with the default parameters except for --max-intronlen 5000, --score-min L,0,-0.4)
and (ii) to nonredundant autosomal sequences from the human hg38 genome. We then filtered out any
reads mapping to both genomes (always less than 0.17%) and removed potential PCR duplicates with
samtools v1.7 markdup. We calculated read counts per gene using the gene annotations downloaded
from PlasmoDB (plasmodb.org, for Plasmodium genes) and NCBI (for the human genes) and custom
python scripts (available at https://github.com/kbradwell/malaria-dualTranscriptomics).

Gene expression analysis. The read counts per gene were normalized into count per million reads
mapped separately for the human and parasite genes. Unsupervised clustering was performed after
calculating Euclidean distances between transcriptomes using the R functions dist() and hclust() (v3.3.1).
Statistical assessment of differential gene expression was performed using EdgeR v3.16.5 (41) using
simultaneously the number of successive infections and patient ID as covariates (without interactions)
and a quasilikelihood negative binomial generalized model. For these analyses, we considered only
genes with �10 counts per million in seven or more samples as expressed and tested a total of 8,896
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human genes (out of 17,137 human genes) and 2,822 parasite genes (out of 5,558 parasite genes).
Inclusion of parasitemia as a covariate did not notably change the results. All results were corrected for
multiple testing by FDR (42).

The PANTHER overrepresentation test (release no. 20190308) was performed using Fisher’s exact test
with differentially expressed genes (FDR � 0.1) as the test gene set and all 8,896 expressed genes as the
reference gene set. GSEA was performed with the R package fgsea v1.0.2 (43), using genes ranked via
multiplication of the log fold change with �log10(P value), 1,000 permutations, and the reactomePath-
ways() function, which uses NCBI stable ID mappings to pathways, to generate normalized enrichment
scores and adjusted P values for pathway enrichment.

Gene coexpression analysis. To determine the extent of coexpression between host and parasite
genes, we measured the Spearman correlation coefficient between each pair of human and P. falciparum
genes across all samples using the R function cor.test() with method�spearman. To assess significance
of the findings, we determined the number of pairwise correlations with a Spearman’s correlation above
different R2 thresholds when randomizing the host and parasite transcriptomes (i.e., by randomly
matching the human gene expression profiles and parasite gene expression profiles) and conducting 500
such random permutations. We then determined the significance of the experimental results by
calculating the proportion of random permutations with a greater number of pairwise correlations than
the number observed at each R2 threshold) and calculating the enrichment by comparing the number
observed experimentally to the average number obtained across all 500 permutations.

Gene expression deconvolution. Reference transcriptome profiles for WBC populations were
obtained from FACS-sorted RNA-seq studies (25–28) (Table S8). Reference transcriptome profiles for the
different P. falciparum developmental stages were obtained from a single-cell RNA-seq study (29).
Sufficient male and female gametocyte data were unavailable, and this stage was thus absent from the
analysis. Deconvolution was then performed using CIBERSORT v1.06 (24) as described in reference 44.
Associations between the proportions of WBC subsets or the parasite developmental stages and
successive infections and the child ID were tested by analysis of variance (ANOVA) using the aov()
function in Rstudio (v1.0.136).

Complexity of infection and genotyping. Reference allele frequency plots were generated for each
sample by measuring the proportion of reads carrying the reference P. falciparum allele at each genomic
position sequenced �50�. A subset of 3,411,387 positions covered by �50� in at least two samples was
used to determine pairwise differences between the dominant clone of each infection (45), and the
resulting distance matrix was used to reconstruct a neighbor-joining tree in MEGA v7170509 (46). Fws
values were determined by the R package moimix, using curated sites (47) with �50� coverage.

Data availability. All scripts used in this study are freely available at https://github.com/kbradwell/
malaria-dualTranscriptomics. All sequence data are available through NCBI Sequence Read Archive under
BioProject accession no. PRJNA591657.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, TIF file, 0.6 MB.
FIG S2, TIF file, 0.4 MB.
TABLE S1, XLSX file, 0.01 MB.
TABLE S2, XLSX file, 0.02 MB.
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