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ABSTRACT.	 Avian malaria is a mosquito-borne disease of birds caused by avian Plasmodium spp. in 
worldwide scale. Some naïve birds show serious symptoms which can result in death. Surveillance 
of vectors and parasites are important to understand and control this disease. Although avian 
malaria has been found in Japan, detailed prevalence and dynamics remained understudied. We 
aimed to observe annual changes in the abundance of mosquitoes and the prevalence of avian 
Plasmodium parasites in Japan. Mosquitoes were collected using dry ice traps over a 10-year period, 
at a fixed research area located in Kanagawa prefecture. Collected mosquitoes were investigated for 
the species composition, population size and prevalence of avian Plasmodium by PCR. Mosquitoes 
belonging to 13 species in 7 genera were collected (n=8,965). The dominant species were Aedes 
(Ae.) albopictus and Culex (Cx.) pipiens group (gr.). Seven avian Plasmodium lineages, all of which 
were previously known, were detected from Cx. pipiens gr., Ae. albopictus, and Tripteroides bambusa. 
Three genetic lineages were dominant and were probably transmitted by Cx. pipiens gr. whose 
could be the primary vector of these parasites. Annual variations in the seasonal prevalence of 
mosquitoes and avian Plasmodium were revealed for the first time during recent 10 years in Japan. 
Namely, avian Plasmodium occurrence in the vector population peaked often in June to July and 
September to October when the density of the vector population was presumably high enough for 
the transmission of avian Plasmodium upon appearance of infected birds.
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Mosquitoes (Diptera: Culicidae) are important arthropod vectors for the transmission of many vector-borne diseases such as human 
malaria, Japanese encephalitis, Dengue fever, West Nile fever, and avian malaria [1, 3, 7, 26, 39, 42]. Female mosquitoes can transmit 
those pathogens to vertebrate hosts during their blood-feeding activities and can also obtain pathogens from infected vertebrate 
hosts. To control vector-borne diseases, it is important to understand the general occurrence of mosquitoes in each area as well as the 
prevalence of pathogens which mosquitoes harbor. Moreover, it is also noteworthy to realize that recent climate changes have also 
affected the biology of mosquitoes in many ways such as the extension of distribution and active period, and increase of population 
density caused by the shortening of developmental period [3, 11, 13]. These effects strongly suggest that long-term and comparative 
mosquito surveillance are necessary to estimate the probable risks of vector-borne diseases.

Avian malaria is a disease of birds caused by avian Plasmodium parasites and is transmitted by mosquitoes mainly belonging to 
the genera Culex, which are distributed throughout the world [38]. This vector-borne protozoal disease can cause serious symptoms 
or even death in host birds. [2, 4, 6, 12, 15, 19, 31]. Several studies showed a relatively high prevalence of avian malaria in wild and 
captive birds in Japan [17, 18, 31, 32]. Entomological studies on mosquito vectors of avian malaria also showed that Culex mosquitoes 
in Japan harbor several avian Plasmodium lineages and are vectors of avian malaria in Japan [7, 10, 20, 21, 24, 34]. However, no 
long-term studies monitoring the situation for over the years have been reported thus far, and changes in the occurrence of mosquitoes 
and of the prevalence of avian Plasmodium remain unknown.

Most of the Japanese archipelago belongs to the temperate zone and the environment is broadly classified into coastal area, rural 
area, urban area, and forest area. Each environment might have a distinct transmission cycle of avian Plasmodium maintained in 
native birds. The Plasmodium lineages and vector species are also different depending on the environment. Previously reports of the 
avian malaria prevalence in mosquitoes in Japan included zoos [9, 10], a subtropical island [7], wetlands [10, 21], coastal areas [24], 

Received: 1 May 2022
Accepted: 7 August 2022
Advanced Epub: 		
	 16 August 2022

 J. Vet. Med. Sci. 
84(10): 1391–1398, 2022
doi: 10.1292/jvms.22-0211

https://creativecommons.org/licenses/by-nc-nd/4.0/


T ODAGAWA ET AL.

1392J. Vet. Med. Sci. 84(10):

a city park [24] and a college educational farm in the rural area [34]. Many of these locations also serve as important landing zones 
for migratory birds. Some results indicated that the dominant Plasmodium lineages were consistently found in mosquito vectors, 
although there were significant annual variations in mosquito density and the prevalence of Plasmodium lineages in mosquitoes [21, 
25]. Lalubin et al. [25] showed antagonistic dominance patterns during their survey, but no seasonal surveillances have been reported 
in Japan except Kim and Tsuda [20]. To confirm these findings and to deepen our understanding of avian Plasmodium transmission in 
wild bird communities, we investigated the occurrence of mosquitoes and the prevalence of avian malaria parasites in these mosquitoes, 
over a 10-year period at a fixed study area in Japan as a follow-up surveillance for previous one-seasonal research at the same study 
area as Shirotani et al. [34].

MATERIALS AND METHODS

Study site
The study site was the college educational farm (28 ha) and the neighboring forest (5 ha) of Nihon University, located in Kanagawa, 

Japan (35°22’35.20” N, 139°27’55.16” E). The farm and forest are surrounded by residential area. Inside of the farm and forest is 
a typical environment very similar to that of rural areas in Japan. Over 30 cows and 200 pigs are bred in the farm, while the forest 
includes rice fields, small streams and a grove. Some wild birds such as Hawfinch (Coccothraustes coccothraustes), Japanese tit (Parus 
minor), Pale thrush (Turdus pallidus) and Brown-eared bulbul (Hypsipetes amaurotis) have been confirmed to inhabit the study site.

Mosquito collection and DNA extraction
Mosquitoes were collected from April 2006 to March 2016. Mosquito collection was carried out three times per month using 

battery-operated CDC-type traps, enhanced with 1 kg each of dry ice for attracting mosquitoes. Four different environments were 
selected for collection sites, and one trap was set per environment. The first trap was surrounded by shrub and nearby rice fields, and 
set at a height of 2 m. The second trap was set in open dirt and nearby rice fields. The third trap was surrounded by tall trees and 
nearby a river, and set at a height of 1 m. The fourth trap was set in open space and nearby cattle stall at a height of 1 m. The dry 
ice was placed within a cooler bag to extend the duration of CO2 release. We set these traps in the evening and let them operate for 
24 hr. If the trap had problems, we tried again another day. Furthermore, we calculated the number of mosquitoes per trap per day in 
each month for standardization.

Collected mosquitoes were morphologically identified into species [35]. The mosquitoes were then separated into two parts, head–
thorax and abdomen, in order to distinguish the developmental stages of avian Plasmodium parasites in the mosquitoes by PCR [22, 
23]. Unfed females of Cx. pipiens gr. and Aedes (Ae.) albopictus were pooled, 1 to 5 and 1 to 10 mosquitoes per pool, respectively. 
Blood-fed and gravid females of the above species, and members of additional species, were processed individually. DNA was extracted 
from each sample using REDExtract-N-Amp Tissue PCR kit (Sigma, St. Louis, MO, USA).

Detection of avian malaria parasites by nested PCR
Avian Plasmodium DNA was amplified by nested PCR for the partial cytochrome b gene of the avian malaria mitochondrial genome, 

as previously described [5, 7]. From 2006 to 2012, we used DW2 and DW4 primers for the 1st PCR [33], and APFN and APRN 
for the 2nd PCR [7]. From 2013 to 2016, we used HEAMNF and HEAMNR2 for the 2nd PCR instead of APFN and APRN [41] to 
expect more lineage detection. All amplified fragments were sequenced in both directions using Big Dye TM terminator mix (Applied 
Bio systems, Foster City, CA, USA). Detected lineages were identified using the Basic Local Alignment Search Tool (BLAST) in 
the GenBank database (www.ncbi.nlm.nih.gov/BLAST/) and MalAvi [5]. To estimate infection rate of the mosquitoes examined, 
the minimum infection rate (MIR) of each mosquito species was calculated as previously described [43]. MIR has been utilized to 
estimate the infection rate by presuming that at least one individual in the positive pooled sample is infected. The formula of MIR is 
as follows: MIR=number of PCR positive/number of collected mosquitoes ×1,000.

RESULTS

A total of 8,965 mosquitoes were collected and identified, resulting in 13 species from seven genera: Cx. pipiens gr., Cx. 
tritaeniorhynchus, Cx. bitaeniorhynchus, Cx. orientalis, Lutzia vorax, Ae. albopictus, Ae. japonicus, Ae. nipponicus, Tripteroides 
(Tr.) bambusa, Armigeres subalbatus, Anopheles (An.) sinensis, An. sp., and Uranotaenia novobscura (Table 1). While the species 
composition varied from year to year during the study, Ae. albopictus and Cx. pipiens gr. were the dominant species throughout the 
study period, ranging from 24.4% to 63.6% and 30.5% to 73.2% of the total collected mosquitoes per year, respectively. Most of 
Plasmodium DNA (94.7%) was detected from Cx. pipiens gr. In addition, avian Plasmodium DNA was detected from Ae. albopictus 
and Tr. bambusa in 2015. To compare the annual variation in seasonal prevalence of Cx. pipiens gr. and avian Plasmodium parasites 
in mosquitoes, the month of their appearance, peak and end are presented for each year of the study (Figs. 1, 2). The appearance of the 
first female of Cx. pipiens gr. was generally observed in April, with the exception of 2007 and 2014 in January (Fig. 1a). The density of 
Cx. pipiens gr. generally peaked in June or July and then decreased until around November or December (Fig. 1b). We investigated the 
relationship between mosquito density and Plasmodium prevalence in Cx. pipiens gr., in which Plasmodium DNA was most detected. 
The appearance of avian Plasmodium parasites in Cx. pipiens gr. varied from year to year but could be constantly observed between 
April and July (Fig. 2a). The peak of MIR in Cx. pipiens gr. was generally observed between June to July and September to October. 
No avian Plasmodium DNA was detected during November through March of all years (Fig. 2b).
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We detected avian Plasmodium DNA from Cx. pipiens gr. consistently every year, although there were annual variations in the 
abundance of Cx. pipiens gr. and the prevalence of avian Plasmodium parasites in the vector population (Table 1). A significant positive 
correlation (r=0.93, P<0.001) was found in the relationship between vector abundance and the prevalence of avian Plasmodium in 
vectors (Fig. 3). The slope of the regression line was 0.0285, indicating an average annual infection rate of 2.85% in Cx. pipiens gr. 
throughout the whole study period. The x-intercept was calculated to be 58, indicating a threshold value of vector abundance below 
which no avian Plasmodium parasites were found.
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Table 1.	 Mosquito species and numbers examined in this study, the number of mosquito samples positive for avian Plasmodium DNA, and 
the minimum infection rate of mosquitoes from a study site at Kanagawa, Japan, between 2006 and 2015

Mosquito species 
collected

Year of mosquito collection
Total

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Culex pipiens gr. n 204 196 144 74 141 142 261 603 843 532 3,140

m 19.6 25.5 27.8 0 21.3 14.1 0 33.2 24.9 22.6 23.2
t 1.4 1.2 1.1 0.5 1.0 1.0 1.8 4.4 5.9 3.8 2.2

Aedes albopictus n 173 94 175 49 358 302 755 1,663 994 613 5,176
m 0 0 0 0 0 0 0 0 0 4.9 0.6
t 1.2 0.6 1.3 0.4 2.5 2.0 5.2 12.2 6.9 4.3 3.6

Aedes japonicus n 0 2 93 3 5 7 3 14 66 4 197
m 0 0 0 0 0 0 0 0 0 0 0
t 0  <0.1 0.7  <0.1  <0.1  <0.1  <0.1 0.1 0.4  <0.1 0.1

Tripteroides bambusa n 27 13 14 14 43 34 0 56 60 41 302
m 0 0 0 0 0 0 0 0 0 24.4 3.3
t 0.2 0.1 0.1 0.1 0.3 0.2 0 0.4 0.4 0.3 0.2

Armigeres subalbatus n 1 3 2 4 8 8 12 6 17 16 77
m 0 0 0 0 0 0 0 0 0 0 0
t  <0.1  <0.1  <0.1  <0.1 0.1 0.1 0.1  <0.1 0.1 0.1 0.1

Culex tritaeniorhnchus n 1 0 0 0 17 5 0 4 10 0 37
m 0 0 0 0 0 0 0 0 0 0 0
t  <0.1 0 0 0 0.1  <0.1 0  <0.1 0.1 0  <0.1

Culex bitaeniorhynchus n 0 0 0 0 0 0 0 6 5 1 12
m 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0  <0.1  <0.1  <0.1  <0.1

Lutzia vorax n 0 0 0 0 0 0 0 2 4 1 7
m 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0  <0.1  <0.1  <0.1  <0.1

Anopheles sinensis n 0 0 0 0 0 0 0 0 1 0 1
m 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0  <0.1 0  <0.1

Uranotaenia bimaculata n 0 0 0 0 0 0 0 2 1 0 3
m 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0  <0.1  <0.1 0  <0.1

 Culex orientalis n 0 0 0 0 0 0 0 0 1 0 1
m 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0  <0.1 0  <0.1

Aedes nipponicus n 0 0 0 0 1 0 0 0 0 0 1
m 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0  <0.1 0 0 0 0 0  <0.1

Anopheles group n 0 0 0 1 0 0 0 0 0 0 1
m 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0  <0.1 0 0 0 0 0 0  <0.1

Unknown n 0 0 0 0 3 1 0 0 6 0 10
m 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0  <0.1  <0.1 0 0  <0.1 0  <0.1

Total n 406 308 428 145 576 499 1,031 2,356 2,008 1,208 8,965
m 9.9 22.7 9.3 0 5.2 4.0 0 8.5 10.5 13.2 8.6
t 2.8 1.8 3.2 1.0 4.0 3.4 7.2 17.3 13.9 8.6 6.2

n: Number of mosquitoes collected; m: MIR=number of positive sample/number of mosquito collected×1,000; t: number of mosquitoes collected/traps/day.
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The following seven known avian Plasmodium lineages were detected in this study: CXPIP09, GRW04, PADOM02, SGS1, 
SPMAG10, SYCON02, and ZOCAP03 (Table 2). Of these, the dominant lineages were PADOM02, CXPIP09, SGS1 in order of 
prevalence at our study site and were detected from both head–thorax and abdomen samples of Cx. pipiens gr. The lineages GRW04, 
SPMAG10, and ZOCAP03 were detected from only abdomen samples of Cx. pipiens gr, while SYCON02 was detected from only 
head–thorax samples of Cx. pipiens gr. CXPIP09 and SGS1 were also detected from abdomen of Ae. albopictus. PADOM02 was 
detected from abdomen of Ae. albopictus and Tr. bambusa. This is the first report of avian Plasmodium DNA being detected in Tr. 
bambusa.

Annual changes in the avian Plasmodium parasite community composition are presented in Fig. 4. In this study, CXPIP09 and 
PADOM02 were detected in 6 out of the 10 years examined. SGS1 became prevalent in recent years, between 2013 to 2015. Although 
the most prevalent lineages changed between years, CXPIP09, PADOM02, and SGS1 comprised 90% of all lineages detected in this 
study (Table 2). The remaining four lineages were detected only one or two times.

The seasonal occurrence of genetic lineages of avian Plasmodium parasites in Cx. pipiens gr. is shown in Fig. 5. The seasonal 
occurrence of the three dominant lineages showed different patterns. CXPIP09 had a large peak in July and a small peak in September. 
SGS1 had a large peak in October and a smaller peak in April. The PADOM02 lineage had a larger peak in September to October. 

1391–1398, 2022

Fig. 1.	 Annual variations in seasonal prevalence of Cx. pipiens group observed at Kanagawa, Japan, from 2006 to 2015. The number 
of Cx. pipiens gr./trap/day is shown for each month, by year (a) and overall (b).

Fig. 2.	 Annual variations in avian Plasmodium in mosquitoes observed at Kanagawa, Japan, from 2006 to 2015. Minimum infection 
rate (MIR) is shown for each month, by year (a) and overall (b).
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Seasonal changes in the total number of Cx. pipiens gr. infected with avian Plasmodium parasites had two peaks, the first in July and 
the second in September, indicating a high risk of avian Plasmodium transmission during these months.

DISCUSSION

Transmission dynamics and persistence of avian Plasmodium parasites
The present study showed that Cx. pipiens gr. is the primary vector species of avian Plasmodium parasites at our study site. Cx. 

pipiens gr. and Ae. albopictus were the dominant mosquito species, comprising 35.0% and 57.7% of the mosquito community, 
respectively. However, almost all avian Plasmodium lineages (96.1%) were detected from only Cx. pipiens gr. in this study, as seen 
in previous entomological studies of avian Plasmodium parasites in Japan [9, 23, 34].

The analysis of the annual variation in seasonal prevalence of Cx. pipiens gr. in our study site found that these mosquitoes appeared 
in April, with a peak density from May to July, then decreasing until October to December. This seasonal prevalence is quite similar 
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Fig. 3.	 Correlation between mosquito vector abundance and 
the number of mosquitoes with avian Plasmodium parasites. 
Each dot represents a year within the study. The line shows the 
regression line.

Table 2.	 Summary of avian Plasmodium lineages detected by PCR 
in all mosquitoes by body segment

Genetic 
lineage

Number detected in
Total %

Head-thorax Abdomen Head-thorax 
& abdomen

CXPIP09 3 20 1 24 33.3
PADOM02 1 20 4 25 34.7
SGS1 0 17 2 19 26.4
GRW04 0 1 0 1 1.4
SPMAG10 0 1 0 1 1.4
SYCON02 1 0 0 1 1.4
ZOCAP03 0 1 0 1 1.4
Total 5 60 7 72 100

Fig. 4.	 Annual changes in the avian Plasmodium parasite com-
munity detected from mosquitoes during 2006 to 2015 in 
Kanagawa, Japan.

Fig. 5.	 Seasonal minimum infection rate (MIR) of avian Plas-
modium lineages in mosquito vector, Cx. pipiens group.
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to that observed in Tokyo between 2003 and 2013 [37], suggesting that this observed seasonal prevalence of Cx. pipiens gr. could be 
common across eastern Japan. Cx. pipiens gr. in Japan can be classified into Cx. pipiens form molestus and a subspecies, Cx. pipiens 
pallens. A previous study reported that Cx. pipiens form molestus account for the high rates in April, May and October, and Cx. pipiens 
pallens account for the high rates from June to September in Tokyo [23]. This suggests that both Cx. pipiens pallens and Cx. pipiens 
form molestus were involved in avian malaria transmission at this study site. Compared to the relatively stable seasonal prevalence 
of Cx. pipiens gr., the appearance of avian Plasmodium parasites in the vector population showed a larger annual variation, varying 
from year to year between April to July. However, the peak of MIR was quite consistent, usually being observed between June to July 
and September to October. The appearance of avian Plasmodium parasites in the vector population principally depends on the arrival 
of infected migrating birds or a recrudescence of chronic infections in resident birds [37]. The results of our study indicated that the 
density of the vector population in the study site is usually high enough to begin the transmission of avian Plasmodium parasites 
when infected birds appear between April to July, and an annual MIR of 8.6 was achieved every year in the vector population, as 
suggested in Table 1. No lineages were detected from November to March, presumably because only a small number of mosquitoes 
were caught. In addition, since Cx. pipiens gr. overwinter as adults and infected Cx. pipiens gr. was collected in April, it is possible 
that the overwintered Cx. pipiens gr. cause new infections. Since feeding behaviors are regulated by temperature, investigating the 
timing of blood feeding behaviors may help to confirm whether infections may be carried over to the following year by overwintering 
mosquitoes.

We also detected avian Plasmodium lineages from Ae. albopictus and Tr. bambusa in 2015. Although a previous study already 
reported the detection of avian Plasmodium spp. in Ae. albopictus [7], this is the first report of the detection from Tr. bambusa. We only 
detected avian Plasmodium DNA from the abdomen of this mosquito species, so it remains uncertain whether this species is competent 
for avian Plasmodium parasites at present. Tr. bambusa is known as an ornithophilic mosquito [29] and is widely distributed throughout 
Japan [27]. Therefore, this species is likely to have frequent direct contact with infected birds, so it is important to investigate the 
vector competence of Tr. bambusa.

Occurrence of dominant and occasional genetic lineages of avian Plasmodium
During the ten years of our study, we detected 7 genetic lineages of avian Plasmodium parasites. Three of these (PADOM02, 

CXPIP09, and SGS1) were detected frequently and are referred to as “dominant lineages”, while the other four genetic lineages detected 
only once or twice are referred to as “occasional lineages” for the purpose of this study. SGS1 is distributed worldwide [14], whereas 
CXPIP09 has only been found in mosquitoes in Japan to date. Sporozoites of both genetic lineages was detected from Cx. pipiens 
gr., suggesting that Cx. pipiens gr. have competence of SGS1 and CXPIP09 [22]. PADOM02 has only been detected in mosquitoes 
in Japan and Switzerland [36]. However, sporozoites of PADOM02 was detected from experimentally-infected Cx. pipiens gr. [30], 
suggesting that Cx. pipiens gr. have competence for PADOM02.

SGS1 became prevalent in recent years between 2013 to 2015. Since the primer pair for PCR detection was changed in 2013, we 
could not distinguish whether SGS1 become more prevalent in the study area or whether SGS1 was just detected by the new primers. 
Different seasonal prevalence was distinguished among the dominant lineages in this study. CXPIP09 was detected from May to 
October, with two peaks in July and September. SGS1 was detected from April to October, with the peak of detection in September 
plus a smaller peak in July. PADOM02 could be detected from April to October with a peak in September and October. The different 
seasonal prevalence among dominant lineages may be partly because of seasonal changes in the availability of host birds for the 
dominant lineages of avian Plasmodium parasites.

Among the four occasional lineages of avian Plasmodium parasites found in this study, GRW04 has previously been detected 
in Cx. pipiens gr. in Japan [8, 10, 21, 22]. GRW04 has also been detected in Eurasian tree sparrows (Passer montanus) [7, 21]. 
Eurasian tree sparrows were often observed in our study site, suggesting they could be possible reservoirs of GRW04 there. The 
remaining three occasional lineages SPMAG10, SYCON02, and ZOCAP03 found in this study have been detected in Magellanic 
penguin (Spheniscus magellanicus) in Brazil [40], Spectacled warbler (Sylvia conspicillata) in Spain [16], and Thorn-tailed rayadito 
(Aphrastura spinicauda), White-crested elaenia (Elaenia albiceps) and Rufous-collared sparrow (Zonotrichia capensis) in Chile 
[28]. This is the first time in the world that these lineages have been detected in mosquitoes. Since SYCON02 was detected from 
the head-thorax, Cx. pipiens gr. may have vector competence for this lineage. The host birds of these avian Plasmodium lineages in 
our study site are unknown at present. Our study did not examine avian malaria prevalence in birds, and no field studies have been 
carried out to investigate bird–mosquito contact in this study site. Additional field studies focusing on these aspects will be required 
to understand the ecological background of avian malaria persistence in wild bird communities.

We have investigated the occurrence of mosquitoes and the prevalence of avian malaria parasites in these mosquitoes over a 10-year 
period in the same study site. Three dominant and four occasional avian Plasmodium lineages were detected from Cx. pipiens gr. 
mosquitoes. The dominant lineages were detected from both head–thorax and abdomen samples of Cx. pipiens gr., and a previous 
study reported that sporozoites of these three lineages was detected from Cx. pipiens gr. [22]. This indicated that this mosquito species 
may be a competent vector of avian malaria for these lineages, although further studies are necessary. The peak of avian Plasmodium 
occurrence in the vector population was quite consistent, usually being observed in June to July and September to October. Our 
results indicated that the density of the vector population at the study site is usually high enough to begin the transmission of avian 
Plasmodium parasites when infected birds appear between April to October.
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