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Abstract
In recent years deep learning models improve the diagnosis performance of many diseases especially respiratory diseases.

This paper will propose an evaluation for the performance of different deep learning models associated with the raw lung

auscultation sounds in detecting respiratory pathologies to help in providing diagnostic of respiratory pathologies in digital

recorded respiratory sounds. Also, we will find out the best deep learning model for this task. In this paper, three different

deep learning models have been evaluated on non-augmented and augmented datasets, where two different datasets have

been utilized to generate four different sub-datasets. The results show that all the proposed deep learning methods were

successful and achieved high performance in classifying the raw lung sounds, the methods were applied on different

datasets and used either augmentation or non-augmentation. Among all proposed deep learning models, the CNN–LSTM

model was the best model in all datasets for both augmentation and non-augmentation cases. The accuracy of CNN–LSTM

model using non-augmentation was 99.6%, 99.8%, 82.4%, and 99.4% for datasets 1, 2, 3, and 4, respectively, and using

augmentation was 100%, 99.8%, 98.0%, and 99.5% for datasets 1, 2, 3, and 4, respectively. While the augmentation

process successfully helps the deep learning models in enhancing their performance on the testing datasets with a

notable value. Moreover, the hybrid model that combines both CNN and LSTM techniques performed better than models

that are based only on one of these techniques, this mainly refers to the use of CNN for automatic deep features extraction

from lung sound while LSTM is used for classification.
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Abbreviations
CNN Convolutional neural network

LSTM Long-short term memory

SVM Support-vectors machine

ANN Artificial neural network

ReLU Rectified linear unit

KNN K-nearest neighbor

WHO World Health Organization

COPD Chronic obstructive pulmonary disease

KAUH King Abdullah University hospital

DL Deep learning

ML Machine learning

LRTI Lower respiratory tract infection

TP True positive

TN True negative

FP False positive

FN False negative

SPO2 Oxygen saturation

ICBHI International Conference on Biomedical Health

Informatics

GMM Gaussian mixture model

TF Time–frequency

TS Timescale

MFCCs Mel-frequency cepstral coefficients

DTCWT Dual-tree complex wavelet transform

PSD Power spectral density

HHT Hilbert–Huang transform

HOS Higher order statistics

MCC Matthews correlation coefficient
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1 Introduction

In recent years, lung diseases became the third largest

cause of death globally (Lehrer 2018). Based on the World

Health Organization (WHO) statistics, the main five lung

diseases (Moussavi 2006) are: tuberculosis, lung cancer,

chronic obstructive pulmonary disease (COPD), asthma,

and acute lower respiratory tract infection (LRTI). These

diseases are responsible for the death of more than 3 mil-

lion people each year worldwide (Chang and Cheng 2008;

Chang and Lai 2010). These lung diseases are affecting the

overall healthcare system severely while on the other hand,

they accordingly affect the general population’s lives. Like

other disease especially the serious one, prevention is the

key for decreasing it affect, diagnosis and treatment in

early stages are considered key factors and methods for

limiting the negative impact of these deadly diseases.

Auscultation of the lung using a stethoscope is the tradi-

tional method and one of the widely used diagnostic

method which is regularly used by specialists and general

practitioners for performing the initial realization of the

respiratory system condition.

The sound of the lungs can be normal or abnormal. An

irregularity in the auscultated sound typically denotes lung

fluid, infection, inflammation, or blockage (Chang and Lai

2010; Sengupta et al. 2016). Many different types of

anomalous (adventitious) lung sounds, such as wheezes,

stridor, rhonchi, and crackles, superimpose regular sounds.

Breathing whistle-like high-pitched continuous waves

lasting longer than 80 ms are referred to as wheezes (Naves

et al. 2016). These noises are caused by bronchial tube

irritation or constriction. Similar to this, stridor noises are

high-pitched waves lasting longer than 250 ms and

exceeding 500 Hz. They typically develop as a result of

tracheal or laryngeal stenosis. Rhonchi are low-pitched,

continuous waves of noises with frequencies under 200 Hz

that resemble snoring (Naves et al. 2016; Bardou et al.

2018; Palaniappan et al. 2014). They typically start when

the bronchial passages get overfilled with liquid or mucus.

Crackles are abrupt clicking or rattling noises that can be

either fine (short-lived) or coarse (long-lasting) (long

duration) (Palaniappan et al. 2014). These noises are a sign

of heart failure or pneumonia. Coughing, snoring, and

squawking are other respiratory noises. Lung sounds are

typically acoustic waves that have frequencies between

100 Hz and 2 kHz. The human ear is only susceptible to

waves between 20 Hz and 20 kHz, though (Rocha et al.

2017; Aykanat et al. 2017). Due to the classic manual

stethoscope’s inability to pick up on the matching respi-

ratory sounds of numerous ailments, these conditions may

be misdiagnosed or go unnoticed (Serbes et al. 2013). As a

result, crucial information regarding the health of the

respiratory organs that were delivered by lower frequency

waves is lost throughout the auscultation procedure

(Bahoura 2009). Additionally, the quality of the tool, the

expertise of the doctor, and the setting can all have an

impact on the diagnosis of lung disorders. As a result,

electronic stethoscopes have been emerging progressively

to take the role of conventional diagnostic equipment

(Bahoura 2009; Icer and Gengec 2014). It has the capacity

to record lung sounds as signals within a computer,

enabling medical professionals to analyze these signals

using time–frequency analysis more accurately. Addition-

ally, current developments in artificial intelligence and

signal processing help clinicians make decisions when

identifying respiratory disorders through lung sounds (Icer

and Gengec 2014; Jin et al. 2014).

Moreover, physicians tend to use different strategies like

oxygen saturation (SPO2) using plethysmography,

spirometry, and arterial blood gas analysis, but lung sound

auscultation still vital for physicians due to its simplicity

and low cost (Sengupta et al. 2016). The traditional aus-

cultation technique is usually used to collect lung sounds

by using a stethoscope (Lehrer 2018; Moussavi 2006;

Chang and Cheng 2008). This method is noninvasive, does

not need long time for diagnosis, and has no harm effect on

patient, but it might lead to wrong diagnosis if the physi-

cian is not well trained to use it (Lehrer 2018; Moussavi

2006). Lung sounds are non-stationary which leads to

complex analysis and recognition of sounds (Moussavi

2006). Therefore, it is necessary to develop an automatic

recognition system to solve the limitations of using the

traditional techniques to ensure more efficient clinical

diagnosis (Chang and Lai 2010; Sengupta et al. 2016;

Naves et al. 2016). In general, there are two types of lung

sounds: normal if the lung has no respiratory disorder, or

adventitious breathing sound when the lung has a respira-

tory disorder (Lehrer 2018; Moussavi 2006; Chang and

Cheng 2008; Chang and Lai 2010; Sengupta et al. 2016;

Naves et al. 2016). Respiratory disorder became a common

problem in all sides of the world. Smoking is the most

common cause of this disorder (Lehrer 2018; Moussavi

2006), but it can be also caused by genetics and environ-

mental exposure (Chang and Cheng 2008). There are many

categories of lung sounds with respiratory disorder,

including fine crackle, coarse crackle, polyphonic wheeze,

monophonic wheeze, squawk, and stridor, pleural rub,

stridor, and squawks (Lehrer 2018; Moussavi 2006; Chang

and Cheng 2008; Chang and Lai 2010; Sengupta et al.

2016; Naves et al. 2016; Bardou et al. 2018).

In the last years, large number of different research

approaches have been developed and evaluated for auto-

matic detection and classification of lung abnormalities

using lung auscultation sounds. Also, the researchers pro-

vided many types of feature extraction techniques that have
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been used with different types of machine learning (ML)

algorithms. ML techniques have been used for lung sounds

classifications (Bardou et al. 2018; Palaniappan et al. 2014;

Rocha et al. 2017; Aykanat et al. 2017). These techniques

mainly applied to create models to find better representa-

tions for large-scale unlabeled data (Palaniappan et al.

2014; Rocha et al. 2017; Aykanat et al. 2017; Serbes et al.

2013). Feature-based techniques are commonly used to

create automatic systems for classifying lung sounds

(Rocha et al. 2017).

The advancement of deep learning (DL) techniques and

new developments demonstrating very promising results in

different medical applications like diseases detection and

classification (Bahoura 2009). DL has many advantages

over the ML such as it has an automatic feature extraction,

and DL methods are more generic and mitigate the limi-

tations of traditional ML-based methods. Moreover, DL-

based methods that are used in recent years for the clas-

sification of respiratory abnormalities and pathologies from

lung auscultation records have produced very promising

results (Bahoura 2009; Icer and Gengec 2014). However, to

get the right functionality of DL, DL networks should

undergo an extensive training process using a huge training

dataset which requires a considerable amount of time and

powerful computational resources. As a result, it becomes

quite challenging to use DL frameworks in available

wearable devices and mobile platforms since it has low

computational resources. Many approaches for lung sound

classification using CNNs and compared it with features-

based approaches. Usually authors used Mel-frequency

cepstral coefficient MFCC’s statistics extracted from the

signals in the first handcrafted features-based approach,

and local binary patterns extracted from spectrograms were

used in the second approach, while the third approach is

based on the design of convolutional neural networks

(CNN) (Bardou et al. 2018).

Also, the researchers employed different types of

machine learning algorithms with handcrafted features like

Mel-frequency cepstral coefficient (MFCC) features in a

support-vector machine (SVM) or fed the spectrogram

images to the convolutional neural network (CNN). The

most common type of classifier with handcrafted features is

the SVM algorithm as a classification method for audio and

utilized its results to benchmark the CNN algorithm.

Moreover, different classification scenarios can be

involved for comparison like healthy versus pathological

classification; rale, rhonchus, and normal sound classifi-

cation; singular respiratory sound type classification; and

audio type classification with all sound types (Aykanat

et al. 2017). Recently, a new method for automatic detec-

tion of pulmonary diseases (PDs) from lung sound (LS)

signals, where the LS signal modes were evaluated using

empirical wavelet transform with fixed boundary points.

The time-domain (Shannon entropy) and frequency-do-

main (peak amplitude and peak frequency) handcrafted

features have been extracted from each mode. Then,

machine learning classifiers, such as support-vector

machine, random forest, extreme gradient boosting, and

light gradient boosting machine (LGBM), have been cho-

sen to detect PDs using the features of LS signals auto-

matically. The performance of these features shows a

promising result and can be enhanced further for multi-

class scenarios like normal versus asthma, normal versus

pneumonia, normal versus chronic obstructive pulmonary

disease (COPD), and normal versus pneumonia versus

asthma versus COPD classification schemes (Tripathy et al.

2022).

In addition, applying different homogeneous ensemble

learning methods to perform multi-class classification of

respiratory diseases has been raised recently to enhance the

performance of the systems. These systems can be applied

to a wider range of conditions involved including healthy,

asthma, pneumonia, heart failure, bronchiectasis or bron-

chitis, and chronic obstructive pulmonary disease (Fraiwan

et al. 2021b). The other types of ensembles of hybrid

methods are combining two different types of deep learn-

ing algorithms in one architecture, this can robustly

enhance the deep learning performance to recognize pul-

monary diseases from electronically recorded lung sounds.

But all researchers employ several preprocessing steps that

were undertaken to ensure smoother and less noisy signals

like wavelet smoothing, displacement artifact removal, and

z-score normalization. Usually, the deep learning archi-

tectures that consisted of two stages are mainly based on

combining convolutional neural networks and bidirectional

long short-term memory units (Fraiwan et al. 2021c).

1.1 Our contribution

In this work, we are presenting a study to investigate the

ability of three different deep learning models, illustrated

by convolutional neural networks, long short-term mem-

ory, and a hybrid model between them, in recognizing

multiple pulmonary diseases from recorded lung sound

signals. The used signals were obtained by merging two

publicly available datasets International Conference on

Biomedical Health Informatics (ICBHI) 2017 Challenge

dataset and King Abdullah University Hospital (KAUH)

dataset. The recordings represent signals from patients

suffering from normal, asthma, lung fibrosis, BRON,

COPD, heart failure, heart failure ? COPD, heart fail-

ure ? lung fibrosis, lung fibrosis, pleural effusion, and

pneumonia. A CNN and LSTM network, and hybrid

(CNN ? LSTM) were designed for the training and testing

classification processes to extract information from the

temporal domain of the signals in the raw formats without
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any preprocessing techniques. The three models have been

evaluated on non-augmented and augmented datasets

where the two datasets have been utilized to generate four

different sub-datasets. Several evaluation metrics were

used to evaluate the recognition of diseases using CNN and

LSTM networks individually as well as a combination of

both networks. To the best of our knowledge, single neural

network approaches have often been used in the building of

deep learning models for lung sound classification.

Therefore, in addition to the suggested hybrid model

(CNN ? LSTM), the network’s capacity to recognize

diseases when it was functioning independently as either

CNN or LSTM was examined. In addition to feature

memorization, the key contribution of this study is the

implementation of the standard CNN feature extraction

approach and the LSTM network, which increases learning

efficiency. Our system presents fundamental differences

when compared to the mentioned systems in the literature.

Furthermore, the contributions of this work can be sum-

marized as follows:

• The first paper that compares three different types of

deep learning models, CNN model, LSTM model, and a

hybrid model that combined both CNN and LSTM

models.

• The first system is used to classify raw lung auscultation

sound without any preprocessing techniques.

• The first system used sound augmentation techniques to

enhance the accuracy of the models.

• Using a huge dataset of lung auscultation sounds

collected from two different datasets available online.

• A system to detect and classify 11 different classes

including ten diseases and healthy.

The remainder of the paper is organized as follows:

Sect. 2 provides details about recent related works. Sec-

tion 3 presents with a detailed explanation of the used

dataset and the proposed architectures. Section 4 is the

results, including the performance of the proposed different

architectures. Section 5 is the discussion of the method

results. And finally, Sect. 6 represents the conclusion of the

proposed work.

2 Literature review

In recent years, a substantial amount of previous related

research that employing both machine learning and deep

learning have been proposed. The methods focused on

automated raw and processed respiratory sound classifica-

tion. In this section, the most recent and related works to

the paper’s topic are discussed. Serbes et al. (2013) have

used time–frequency (TF) and timescale (TS) analysis to

detect pulmonary crackles. The crackles frequency

characteristics were extracted from the non-preprocessed

and pre-processed signals using TF and TS analysis. Dual-

tree complex wavelet transform (DTCWT) is applied in the

pre-processing step to filter out the frequency bands that

have no crackle information. They have used K-nearest

neighbors (KNN), SVM (support-vector machine), and

multilayer perceptron to classify crackling and non-crack-

ling sounds and achieved an accuracy of 97.5% from the

SVM classifier. Bahoura (2009) have proposed an approach

for two classes of lung sounds including normal and

wheeze signals, they have used the Mel-frequency cepstral

coefficients (MFCCs) for feature extraction and the Gaus-

sian mixture model (GMM) to classify the signals, and they

achieved an accuracy of 94.2%.

Icer and Gengec (2014) have used support-vector

machine (SVM) for automatic classification. They created

features using the frequency ratio of power spectral density

(PSD) values and the Hilbert–Huang transform (HHT) to

distinguish between three classes of lung sounds including:

normal lung sounds, crackles, and rhonchus with an

accuracy above 90%. Moreover, Jin et al. (2014) have used

SVM to distinguish between different classes of respiratory

sounds including normal, wheezing, stridor, and rhonchi

and achieved an accuracy between 97.7 and 98.8%. Reyes

et al. (2014) have used a technique to obtain the time–

frequency (TF) representation of thoracic sounds. The

performance of the TF representations for different classes

including the heart, adventitious, and normal lung sounds

was assessed using TF patterns and they stated that the best

performance was achieved from the Hilbert–Huang spec-

trum (HHS). Higher order statistics (HOS) were used by

Naves et al. (2016) for classifying different classes of lung

sounds including normal, coarse crackle, fine crackle,

monophonic and polyphonic wheezes. They have used

genetic algorithms and Fisher’s discriminant ratio to reduce

dimensionality, and k-NN, and naive Bayes classifiers were

used for classification with an accuracy of 98.1% on

training data, and 94.6% on validation data.

Orjuela-Canon et al. (2014) used MFCC features along

with artificial neural network (ANN) to distinguish

between normal sounds, wheezes, and crackles. The

achieved performance of classification was 75% for

crackles, 100% for wheezes and 80% for normal. Maruf

et al. (2015) have used GMM to classify crackles from

normal respiratory sounds. They have used a band-pass

filter for background noises reduction, and then they

extracted three spatial–temporal features, namely pitch,

energy, and spectrogram and an accuracy of 97.56% was

achieved. A novel attractor recurrent neural networks

(ARNN) technique based on the fuzzy functions (FFs-

ARNN) for the classification of lung abnormalities was

proposed by Bagher et al. and achieved an accuracy of 91%

(Khodabakhshi and Moradi 2017). Pinho et al. (2015) used
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signal processing methodologies for the detection of

crackles in audio files. Their method is based on using

fractal dimension and box filtering to extract the window of

interest to verify and validate the potential crackle, then

extracting the crackle parameters for characterizations.

Islam et al. (2018) used ANN (artificial neural networks)

and SVM for classifying lung sounds from 60 subjects 50%

of them have asthma. They obtained the best accuracy of

93.3% from SVM scenario. Accuracies of up to 93% and

91.7% were achieved using other configurations of neural

network for detecting crackles and wheezes, respectively

(Guler et al. 2005). A dataset of seven classes including

normal, coarse crackle, fine crackle, monophonic wheeze,

polyphonic wheeze, squawk, and stridor were used in

another work where different approaches of ANN were

used and the results from convolutional neural network

(CNN) were the best (Guler et al. 2005; Shuvo et al. 2020;

Garcia-Ordas et al. 2020; Tsai et al. 2020; Demir et al.

2020; Kevat et al. 2020; Andrade et al. 2021; Wani et al.

2021).

CNN was also used by Jacome et al. (2019) to deal with

respiratory sounds with accuracies of 97% and 87% in

detecting inspiration and expiration, respectively. Two

types of machine learning algorithms were proposed by

Aykanat et al. (2017), Mel frequency cepstral coefficient

(MFCC) features in a support-vector machine (SVM) and

spectrogram images in the convolutional neural network

(CNN). Four data sets were prepared for each CNN and

SVM algorithm to classify different respiratory conditions

including healthy versus pathological classification; rale,

rhonchus, and normal sound classification; singular respi-

ratory sound type classification; and audio type classifica-

tion with all sound types. They achieved accuracies of

CNN 86%, SVM 86%, CNN 76%, SVM 75%, CNN 80%,

SVM 80%, and CNN 62%, SVM 62%, respectively. Their

results have shown that pre-diagnosis and classifying of

respiratory audio can be done accurately using CNN and

SVM machine learning algorithms. Bardou et al. (2018)

used three approaches, two of them are based on the

extraction of a set of handcrafted features trained by three

different classifiers including SVM, KNN, and Gaussian

mixture models, while they applied CNN for their third

approach. The dataset they used consist of seven classes

(normal, coarse crackle, fine crackle, monophonic wheeze,

polyphonic wheeze, squawk and stridor, the results they

achieved show that the CNN outperform the handcrafted

feature-based classifiers.

Garcia-Ordas et al. (2020) used a convolutional neural

network (CNN) to classify the respiratory sounds into

healthy, chronic, and non-chronic disease and achieved

0.993 F-score in the three-label classification. They also

have done more challenging classification for different

types of pathologies or healthy conditions including URTI,

COPD, Bronchiectasis, Pneumonia, and Bronchiolitis and

achieved F-score of 0.990 in all classes. Moreover, Fraiwan

et al. (2021a) have used an electronic stethoscope to record

lung sounds from 112 subjects of healthy and unhealthy

conditions (35 healthy and 77 unhealthy) to create new

dataset. The dataset contains seven ailments including

normal breathing sounds, lung fibrosis, heart failure,

asthma, pneumonia, bronchitis, pleural effusion, as well as

COPD. This dataset was created for use in machine

learning models to distinguish the correct type of lung

sounds or detect pulmonary diseases. Fraiwan et al.

(2021b) used different ensemble classifiers to perform

multi-class classification of respiratory diseases. The

dataset they used included a total of 215 subjects with 308

clinically acquired lung sound recordings and 1176

recordings obtained from the ICBHI Challenge database.

The recorded data has different conditions including

asthma, pneumonia, heart failure, bronchitis, chronic

obstructive pulmonary disease, as well as healthy condi-

tion. Shannon entropy, logarithmic energy entropy, and

spectrogram-based spectral entropy were used for feature

representation of the lung sound signals. Bootstrap aggre-

gation and adaptive boosting ensembles were built using

decision trees and discriminant classifier. Boosted decision

trees achieved the best overall accuracy, sensitivity,

specificity, F1-score, and Cohen’s kappa coefficient of

98.27%, 95.28%, 98.9%, 93.61%, and 92.28%, respec-

tively. Among the baseline methods, SVM provided an

average accuracy of (98.20%), sensitivity (91.5%), and

specificity (98.55%) Furthermore, Fraiwan et al. (2021c)

have used a deep learning model-based CNNs and bidi-

rectional LSTM (BD-LSTM) for recognizing pulmonary

diseases. A dataset of 103 patients recorded at King

Abdullah University hospital (KAUH) in Jordan and data

from 110 patients were added from the Int. Conf. on

Biomedical Health Informatics publicly available chal-

lenge database were used. The highest average accuracy

achieved in classifying patients based on the pulmonary

disease types using CNN ? BD-LSTM is 99.62% with a

precision of 98.85% and a total agreement of 98.26%

between the predictions and original classes within the

training scheme.

Nguyen and Pernkopf (2022) proposed a methodology

for lung sound classification by employing co-tuning and

stochastic normalization to enhance the classification

results. They split sound record into 8 s segments then

calculating the corrected and normalized spectrogram.

After that they co-tuned a Resnet50 based model and

applied on three different scenarios 2 classes, 3 three

classes, and 4 classes. The results show that their highest

performance was obtained using 60–40 training and testing

sets for two classes problem using Logmel Spectrogram,

ResNet101 and scored specificity of 91.77% and sensitivity
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of 95.76%. Moreover, Tripathy et al. (2022) proposed a

methodology using empirical wavelet transform with fixed

boundary points. Where, the time-domain (Shannon

entropy) and frequency-domain (peak amplitude and peak

frequency) features have been extracted. Then, they

employ different classifiers like support-vector machine,

random forest, extreme gradient boosting, and light gradi-

ent boosting machine have been chosen to detect pul-

monary diseases using the extracted features. The best

accuracy values were 80.35, 83.27, 99.34, and 77.13%

have been obtained using the light gradient boosting

machine classifier with fivefolds cross validation for clas-

sification systems comparing normal to asthma, normal to

pneumonia, normal to COPD, and normal to pneumonia,

asthma, and COPD.

Bhatta et al. (2022) proposed a respiratory audio collec-

tion to forecast a variety of illnesses, including bronchiec-

tasis, pneumonia, and asthma. To put this study into practice,

we used respiratory and disease diagnosis audio datasets.We

then extracted characteristics from each audio dataset and

Fig. 1 The complete procedure followed in the proposed study

Table 1 The details of the used datasets

Dataset Type Number of classes Number of records

Dataset 1 Non-augmented 3 (normal, non-chronic, and chronic) 1457 (train: 919; test: 538)

Augmented 3637 (train: 3099; test: 538)

Dataset 2 Non-augmented 8 (normal, asthma, bronchiectasis, bronchiolitis, COPD,

LRTI, pneumonia, and URTI)

1457 (train: 919; test: 538)

Augmented 3977 (train: 3439; test: 538)

Dataset 3 Non-augmented 8 (normal, asthma, BRON, COPD, heart failure, lung fibrosis,

pleural effusion, and pneumonia)

335 (train: 233; test: 102)

Augmented 4995 (train: 4893; test: 102)

Dataset 4 Non-augmented 11 (normal, asthma, lung fibrosis, BRON, COPD, heart failure,

heart failure ? COPD, heart failure ? lung fibrosis, lung fibrosis,

pleural effusion, and pneumonia)

1792 (train: 1152; test: 640)

Augmented 8972 (train: 8332; test: 640)
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Fig. 2 The used deep learning models

Table 2 The layer details of proposed deep learning models

Layer number CNN model LSTM model CNN–LSTM model

1 Input (size [12000, 1, 1]) Input (size [12000]) Input (size [12000])

2 Conv (filter [3, 1], # filter [16]) LSTM (hidden units 250) Sequence folding

3 ReLU Dropout (20%) Conv (filter [3, 1], # filter [4])

4 Conv (filter [3, 1], # filter [8]) LSTM (hidden units 125) Batch normalization

5 ReLU Dropout (20%) ReLU

6 FC layer (output 250) FC layer (output # classes) Sequence unfold

7 FC layer (output 125) Softmax Flatten

8 FC layer (output # of classes) Classification () LSTM (hidden units 200)

9 Softmax FC layer (output # of classes)

10 Classification () Softmax

11 Classification ()
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trained a convolution neural network (CNN)method, model.

We can add any new test data to predict an illness after the

training model. The authors report an accuracy and sensi-

tivity values of 86% using their own dataset. Finally, Soni

et al. (2022) proposed s method for gapping the problem of

heart and lung sounds labeling (diagnosing). They use the

ResNet-18model as a base to generate encodings in the latent

space of length N for training. They used clinical data, such

as age, sex, weight, and sound location, together with the

audio file to make use of the common context of the

recordings at the patient level. When using patient-specific

representations to choose positive and negative pairs, they

demonstrate better in downstream tasks for diagnosing heart

and lung sounds. The highest performance achieved using

linear evaluation and the AUC was 0.752 with 95% confi-

dence interval of 0.715, 0.791.

As we can notice from the scanned literature, most of

them are focused on using pre-trained model(s) not their

models, or small datasets for evaluation of their methods.

Moreover, they only focused on just employing the com-

parison between the pre-trained model(s) to select the best

of them. Also, the literature does not provide a generalized

capacity model either because of datasets or not using the

augmentation process. Finally, all literature spends most of

the research time on the development of signal enhance-

ment or features extraction methods instead of developing

new model or systems. Based on that this paper will enrich

the literature by combining the two publicly available lung

sound datasets to significantly enhance the generalization

capacity and model performance for systems that classify

adventitious lung sounds and respiratory diseases by

employing the augmentation process. Moreover, it will

provide a comprehensive comparison between three dif-

ferent types of deep learning models (CNN, LSTM, and

CNN–LSTM) based on various datasets by applying them

to raw sounds without any enhancement methods or feature

extractions except resizing and show the best model for

each scenario which open the way for further investigations

of designing new models.

3 Materials and methods

As shown in Fig. 1, the adopted methodology consists of

the following main phases: data acquisition and prepara-

tion, feature extraction, construction and training of the

ensemble and baseline classifiers, and finally performance

evaluation. These steps are detailed below.

3.1 Lung sounds datasets

In this paper, the data used incorporated two different

datasets, both datasets are consisting of stethoscope lung

sounds classified with different respiratory diseases. The

first dataset was the publicly available International Con-

ference on Biomedical Health Informatics (ICBHI) 2017

Challenge dataset. The second dataset was the new public

available King Abdullah University Hospital (KAUH)

dataset. Furthermore, both datasets have been merged

together to make four different datasets. The four datasets

vary in number and type of classes included in each one.

Table 1 provides a detailed overview of the used dataset

and the four datasets from their merging. Each dataset will

be discussed in detail in the next two sections.

3.1.1 KAUH dataset

The KAUH dataset which is a new public available dataset

with a total of 70 individuals with various respiratory

diseases such as asthma, pneumonia, heart failure,

bronchiectasis or bronchitis (BRON diseases), and chronic

obstructive pulmonary disease (COPD) (Fraiwan et al.

2021a). A total of 35 healthy controls were also surveyed.

The age of the participants in this study was not a variable

of interest in order to ensure fair research. The participants

ranged in age from youngsters through adults to the elderly.

After thoroughly comprehending the parameters of the

study and the technique involved, all participants signed a

written consent form. The complete dataset comprised of

308 lung sound recordings, each lasting 5 s. Based on the

average resting respiration rates for humans (12–20 breaths

per minute), this length is sufficient to encompass at least

one respiratory cycle and has been used in previous

investigations (Fraiwan et al. 2021a). In general, adopting

small length data windows alleviates the difficulty of

medical data availability while also increasing the model’s

computing efficiency. Furthermore, training the model on

lung sound signals rather than respiratory cycles makes

Fig. 3 A confusion matrix example
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data curation and labeling much easier. In clinical situa-

tions and real-time applications, these distinguished fea-

tures are usually advantageous (Fraiwan et al. 2021a, b, c).

3.1.2 ICBHI 2017 dataset

The International Conference on Biomedical Health

Informatics (ICBHI) 2017 dataset, which is a publicly

available benchmark dataset of lung auscultation sounds

(Rocha et al. 2017), was used in this research. Two

independent research teams from Portugal and Greece have

gathered the data (Nuckowska et al. 2019). The dataset

contains 5:5 h of audio recordings sampled at multiple

frequencies (4 kHz, 10 kHz, and 44 kHz), spanning from

10 to 90 s, in 920 audio samples of 126 participants in

various anatomical positions (Chen et al. 2019). The

samples are professionally annotated according to two

schemes: I according to the corresponding patient’s

pathological condition, i.e., healthy and seven distinct

disease classes, namely Pneumonia, Bronchiectasis,

(A) (B)

(C) (D)

Fig. 4 CNN model training results for non-augmented datasets, A Dataset 1, B Dataset 2, C Dataset 3, D Dataset 4
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COPD, URTI, LRTI, Bronchiolitis, and Asthma; and (ii)

according to the presence of respiratory anomalies, i.e.,

crackles and wheezes in each respiratory cycle. Zhang et al.

(2015) contains more information about the dataset and

data collecting technique. Table 1 shows the details of the

used datasets in our research.

3.2 Augmentation

Data augmentation is a very popular technique that can

be used to artificially expand the size of a training

dataset in general, this is done by creating modified

versions of audios in the dataset (Guler et al. 2005;

Shuvo et al. 2020). Training deep learning models on

huge datasets can result in more skillful models, and the

augmentation techniques can create variations of the

audio les that can improve the ability of the fit models to

generalize what they have learned to new audios. For

instance, with images, we might do things like rotating

the image slightly, cropping or scaling it, modifying

colors or lighting, or adding some noise to the image

(Garcia-Ordas et al. 2020; Tsai et al. 2020; Demir et al.

(A) (B)

(C) (D)

Fig. 5 CNN model testing results for non-augmented datasets, A Dataset 1, B Dataset 2, C Dataset 3, D Dataset 4
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2020). Since the semantics of the image have not chan-

ged materially, so the same target label from the original

sample will still apply to the augmented sample. Just like

with images, there are several techniques to augment

audio data as well. This augmentation can be done both

on the raw audio (Kevat et al. 2020; Andrade et al. 2021;

Wani et al. 2021). In this research the following audio

augmentation techniques have been applied:

• Time Stretch: randomly slow down or speedup the

sound.

• Time Shift: shift audio to the left or the right by a

random amount.

• Add Noise: add some random values to the sound.

• Control Volume: randomly increasing or decreasing the

volume of the audio.

(A) (B)

(C) (D)

Fig. 6 LSTM model training results for non-augmented datasets, A Dataset 1, B Dataset 2, C Dataset 3, D Dataset 4
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3.3 Deep learning models

Deep learning is one of the newest sorts and state-of-the-art

artificial intelligence technologies that has emerged in

response to the growing quantity of massive datasets

(Alqudah 2020; Esteva et al. 2021; Alqudah et al. 2021a, b;

Kanavati et al. 2020). Deep learning is primarily defined

and distinguished by the development of a unique archi-

tecture made up of many and sequential layers in which

successive stages of input processing are carried out

(LeCun et al. 1995, 2015). Deep learning is based on and

inspired by the human brain’s deep structure (LeCun et al.

1995; Alqudah et al. 2021c). The human brain’s deep

structures have a large number of hidden layers, allowing

us to extract and abstract deep features at various levels and

from various perspectives. In recent years, a slew of deep

learning algorithms has been presented (Alqudah 2020;

Esteva et al. 2021; Alqudah et al. 2021a, b, c; Kanavati

et al. 2020; LeCun et al. 2015). The most frequently used,

powerful, and efficient deep learning algorithms are the

(A) (B)

(C) (D)

Fig. 7 LSTM model testing results for non-augmented datasets, A Dataset 1, B Dataset 2, C Dataset 3, D Dataset 4
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CNN (Alqudah 2020; Alqudah et al. 2021a, c; Alqudah and

Alqudah 2022a) and Long Short-Term Memory (LSTM)

(Ozturk and Ozkaya 2020; Petmezas et al. 2021; Cinar and

Tuncer 2021; Jelodar et al. 2020). In the following sub-

sections we will discuss in detail the developed separated

and hybrid CNN and LSTM models. Moreover, Fig. 2

shows the developed models and Table 2 shows the layer

details.

3.3.1 CNN model

The CNNs have a large number of hidden layers that use

convolution and subsampling techniques to extract deep

features from the input data (Alqudah et al. 2021a; LeCun

et al. 2015). Input, convolution, RELU (rectified linear

unit), fully connected, classification, and output layers are

the different types of layers in a CNN. These layers are

(A) (B)

(C) (D)

Fig. 8 CNN–LSTM model training results for non-augmented datasets, A Dataset 1, B Dataset 2, C Dataset 3, D Dataset 4
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combined to create a CNN model that can complete the

assignment. CNN has excelled in a variety of scientific

fields, particularly in the medical field (Chen et al. 2019;

Esteva et al. 2021). Deep, representative, and discrimina-

tive characteristics are extracted primarily using CNN

layers. When utilizing CNN layers, the preceding layers

will do downsampling and feature selection, as well as

generate categorization of the data. Figure 2A shows the

used CNN Model.

3.3.2 LSTM model

Hochreiter and Schmidhuber first proposed the LSTM

in 1997 (Shadmand and Mashoufi 2016), and a group

led by Felix Gers improved it in 2000 (Gers et al.

2000). Researchers are now introducing many varieties

of LSTM, with Zaremba et al. (2014) providing details

on LSTM. A memory cell, input gate, output gate, and

forget gate make up the most typical LSTM design.

(A) (B)

(C) (D)

Fig. 9 CNN–LSTM model testing results for non-augmented datasets, A Dataset 1, B Dataset 2, C Dataset 3, D Dataset 4
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Assume that the input, cell, and hidden states at iter-

ation t are xt, ct, and ht, respectively. The cell state c t

and hidden state ht�1 are produced for the current

input xt, the previous cell state ct�1, and its corre-

sponding previous hidden state ht�1 (Zaremba et al.

2014). Figure 2B shows the used LSTM model.

3.3.3 CNN–LSTM model

Deep feature extraction and selection from the ECG beat is

handled by the CNN blocks, which are the 1D convolu-

tional layer and the max pooling layer in this hybrid model.

While the LSTM layer, which is fed these characteristics as

time-dependent features, will learn to extract contextual

time data (Shahzadi et al. 2018). Deep feature extraction

(A) (B)

(C) (D)

Fig. 10 CNN model training results for augmented datasets, A Dataset 1, B Dataset 2, C Dataset 3, D Dataset 4
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and classification utilizing a hybrid 1D CNN–LSTM out-

performs CNN- or LSTM-based methods, according to our

research (She and Zhang 2018). Furthermore, using the

LSTM layer allows for considerably shallower models to

be built than pure CNN models. Our research shows that

adopting a hybrid 1D CNN–LSTM for deep feature

extraction and classification outperforms CNN- or LSTM-

based methods. Furthermore, employing the LSTM layer

allows for a significantly shallower model to be built than

pure CNN models, resulting in better performance with

fewer parameters. Figure 2C shows the used CNN–LSTM

model.

3.4 Performance evaluation

Any artificial intelligence (AI)-based system must have a

performance evaluation that corresponds to any new data.

The original annotations of the raw lung auscultation

sounds were compared to the identical lung sounds anno-

tations predicted by the models to assess the performance

(A) (B)

(C) (D)

Fig. 11 CNN model testing results for augmented datasets, A Dataset 1, B Dataset 2, C Dataset 3, D Dataset
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of the developed models. The accuracy, sensitivity, preci-

sion, and specificity of the data were then determined using

these annotations. These indicators show how exactly lung

sounds are diagnosed (Alqudah and Alqudah 2022a). True

positive (TP), false positive (FP), false negative (FN), and

true negative (TN) are four different sorts of statistical

values used to calculate these measures (Kanavati et al.

2020; Alqudah et al. 2021c). All these parameters are

extracted from the confusion matrix, the confusion matrix

shows four main statistical indices which are used later to

calculate performance metric (Obeidat and Alqudah 2021;

Alqudah and Alqudah 2022b; Alqudah et al. 2021d), these

indices are true positive (TP), false positive (FP), false

negative (FN), and true negative (TN) (Alqudah et al.

2020; Al-Issa and Alqudah 2022). Figure 3 shows a simple

confusion matrix. Then, the following performance evalu-

ation parameters (accuracy, sensitivity, specificity, preci-

sion, F1 score, and MCC have been calculated using these

values:

(A) (B)

(C) (D)

Fig. 12 LSTM model training results for augmented datasets, A Dataset 1, B Dataset 2, C Dataset 3, D Dataset 4
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Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
ð1Þ

Sensitivity ¼ TP

TPþ FN
ð2Þ

Specificity ¼ TN

FPþ TN
ð3Þ

Precision ¼ TP

TPþ FP
ð4Þ

(A) (B)

(C) (D)

Fig. 13 LSTM model testing results for augmented datasets, A Dataset 1, B Dataset 2, C Dataset 3, D Dataset 4
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F1 Score ¼ 2
Precision � Specificity
Precisionþ Specificity

ð5Þ

MCC ¼ TP � TN� FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ
p

ð6Þ

4 The experimental results

The investigated models were trained tested using a com-

puter with an Intel(R) Core TM i7-6700, a 3.40 GHz CPU,

and 16 GB RAM. The training process for each model is

taking around 45 min. All models are trained using Adam

optimizer, initial learning rate of 0.001, max epochs of 100,

mini batch size of 128, and validation frequency of 100.

(A) (B)

(C) (D)

Fig. 14 CNN–LSTM model training results for augmented datasets, A Dataset 1, B Dataset 2, C Dataset 3, D Dataset 4
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The performances of all deep learning models are descri-

bed using the confusion matrix and statistical parameters

extracted from it. The confusion matrix represents the

results of classification using a certain deep learning model.

After calculating the statistical parameters, namely false

positive (FP), false negative (FN), true positive (TP), and

true negative (TN), the raw lung sound classification

effectiveness is compared using the four statistical indices:

sensitivity, specificity, precision, and accuracy. The

performance evaluation results of all models for different

types of raw lung sounds classification using different

datasets are shown in the following subsections.

4.1 Non augmented dataset results

The following sections will show the performance of dif-

ferent deep learning models using non-augmented dataset.

(A) (B)

(C) (D)

Fig. 15 CNN–LSTM model testing results for augmented datasets, A Dataset 1, B Dataset 2, C Dataset 3, D Dataset 4
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4.1.1 CNN model results

In this section we will display the results of CNN model on

all of the non-augmented datasets, Fig. 4 shows the train-

ing results of all datasets using CNN model. While Fig. 5

shows the testing dataset results of all datasets using CNN

model.

4.1.2 LSTM model results

In this section we will display the results of LSTM model

on all of the non-augmented datasets, Fig. 6 shows the

training results of all datasets using LSTM model. While

Fig. 7 shows the testing dataset results of all datasets using

LSTM model.

4.1.3 CNN–LSTM model results

In this section we will display the results of CNN–LSTM

model on all of the non-augmented datasets, Fig. 8 shows

the training results of all datasets using CNN–LSTM

model. While Fig. 9 shows the testing dataset results of all

datasets using CNN–LSTM model.

4.2 Augmented dataset results

The following sections will show the performance of dif-

ferent deep learning models using augmented dataset.

4.2.1 CNN model results

In this section we will display the results of CNN model on

all of the augmented datasets, Fig. 10 shows the training

results of all datasets using CNN model. While Fig. 11

shows the testing dataset results of all datasets using CNN

model.

4.2.2 LSTM model results

In this section we will display the results of LSTM model

on all of the augmented datasets, Fig. 12 shows the training

results of all datasets using LSTM model. While Fig. 13

shows the testing dataset results of all datasets using LSTM

model.

4.2.3 CNN–LSTM model results

In this section we will display the results of CNN–LSTM

model on all of the augmented datasets, Fig. 14 shows the

training results of all datasets using CNN–LSTM model.

While Fig. 15 shows the testing dataset results of all

datasets using CNN–LSTM model.

5 Discussion

In general, computer-aided system for detection of res-

piratory diseases can expedite diagnostic and treatment

decisions and support the study of physiological patterns

associated with various respiratory pathologies. In this

work, we propose to apply different deep learning

models to perform multi-class classification of different

types of respiratory diseases. As imperative to all deep

learning frameworks, the design stage of the deep

learning models targeted toward providing a better

classification of the raw lung sounds pattern. Thus,

optimized models are key to building effective classifi-

cation models and enhance the model’s predictive

Table 3 Comparison between different deep learning models among different datasets using testing sub-datasets

Dataset Model

CNN LSTM CNN–LSTM

Acc Sen Spe Pre Acc Sen Spe Pre Acc Sen Spe Pre

Non-augmented

1 99.62 98.90 99.15 99.85 99.81 98.14 99.15 99.85 99.62 97.60 99.15 99.85

2 99.62 98.87 99.73 99.94 99.25 98.87 99.73 99.94 99.81 99.30 99.86 99.97

3 80.39 76.86 97.53 94.78 79.41 76.86 97.53 94.78 82.35 84.73 97.71 95.39

4 99.53 98.69 99.92 99.50 99.21 98.69 99.92 99.50 99.37 98.50 99.87 99.47

Augmented

1 99.81 99.92 99.93 98.24 99.81 99.92 99.93 98.24 100 100 100 100

2 99.81 99.97 99.97 99.66 98.14 99.97 99.97 99.66 99.81 99.97 99.97 99.16

3 98.03 99.18 99.65 99.18 97.05 99.18 99.65 99.18 98.03 96.47 99.65 99.21

4 99.06 98.19 99.87 98.47 99.06 98.19 99.87 98.47 99.53 98.8025 99.92 99.47
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accuracy. In general, respiratory sounds are characterized

as random and nonlinear signals that are highly complex

in nature; Because of the fluctuating lung volume, this is

especially true. These characteristics can be seen in both

healthy and pathological individuals, but they are more

noticeable in pathological lung sounds.

In this study, an investigation was carried out on the use

of different deep learning models, as illustrated by the

combination of CNN and LSTM neural networks, in

identifying pulmonary diseases. The developed models

achieved high levels of performance. The highest achieved

accuracy/sensitivity/specificity were 100%, 100%, and

100% using the hybrid CNN–LSTM model, which paves

the way toward implementing deep learning in clinical

settings. Thus, a comparison of the results of the proposed

deep learning models using either non-augmented or aug-

mented datasets are shown in Table 3. Using Table 3 we

can notice that the hybrid CNNLSTM model outperforms

all other models (CNN and LSTM) either augmented or

non-augmented datasets.

Clinically, the proposed research ensures the accurate

detection and classification of different respiratory diseases

from lung sounds. Unlike the traditional stethoscope where

diseases are diagnosed manually and based on the practi-

tioner experience, electronic lung sounds combined with a

deep learning predictive models reduce the errors in

Table 4 Comparison between our proposed methods and literature

References # Method Performance

Bahoura (2009) Features engineering ? SVM Accuracy: 94.2%

Jin et al. (2014) Features engineering ? SVM Accuracy: 98.8%

Islam et al. (2018) Features engineering ? ANN and SVM Accuracy-ANN: 91.7%

Accuracy-SVM: 93.3%

Garcia-Ordas et al. (2020) CNN F-score: 0.993

Fraiwan et al. (2021b) Features engineering ? machine learning Accuracy: 98.27%

Sensitivity: 95.28%

Specificity: 98.90%

Fraiwan et al. (2021c) CNN ? BDLSTM Accuracy: 99.62%

Sensitivity: 98.43%

Specificity: 99.69%

Nguyen and Pernkopf (2022) CNN ? corrected and normalized spectrogram Sensitivity: 95.76%

Specificity: 91.77%

Tripathy et al. (2022) Empirical wavelets transform with fixed boundary

points and machine learning

Accuracy: 99.34 for normal to COPD Scenario

Bhatta et al. (2022) CNN Accuracy: 86%

Soni et al. (2022) CNN for audio files and clinical data AUC: 0.752

This study (non-augmented) CNN (best using Dataset 1) Accuracy: 99.63%

Sensitivity: 98.91%

Specificity: 99.16%

LSTM (best using Dataset 1) Accuracy: 99.81%

Sensitivity: 99.81%

Specificity: 99.93%

CNN–LSTM (best using Dataset 2) Accuracy: 99.81%

Sensitivity: 99.31%

Specificity: 99.87%

This study (augmented) CNN (best using Datasets 2) Accuracy: 99.81%

Sensitivity: 99.97%

Specificity: 99.98%

LSTM (best using Dataset 1) Accuracy: 99.81%

Sensitivity: 99.93%

Specificity: 99.93%

CNN–LSTM (best using Dataset 1) Accuracy: 100%

Sensitivity: 100%

Specificity: 100%
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diseases classification. Therefore, many clinical decisions

can be positively affected to prevent any further develop-

ment of the diseases and any treatment. Furthermore,

although manual diagnosis may lead to correct diagnosis in

some circumstances, it is highly recommended clinically to

build a model(s) that is able of detecting small variations in

signals across patients. However, they may be highly

affected by the patient-specific information within the same

disease. Thus, a deep learning model that can learn from

huge number of features which are which could automat-

ically enrich the diagnosis process and act like a supportive

decision maker in clinical settings. A comparison between

the proposed models and models in the literature is shown

in Table 4. Using Table 4 we can notice that our proposed

models achieved a better performance than any model in

the literature.

6 Conclusion

To sum up, this research paper, proposed a deep learning

model based on convolutional neural networks (CNNs),

long short-term memory (LSTM), and hybrid of them.

These models were utilized for the purpose of raw lung

sounds classification using combination of two datasets.

The first dataset proposed dataset of lung sounds recorded

at King Abdullah University Hospital (KAUH), while the

other dataset is the dataset used in the international con-

ference on Biomedical Health Informatics (ICBHI) 2017

Challenge. Different deep learning models like CNN,

LSTM, and CNN–LSTM were employed as classification

methods and were compared with using the achieved

results. The experimental results showed that the hybrid

CNN–LSTM classification model generally outperformed

the CNN and LSTM methods which are commonly

employed in the literature. This research paves the way

toward designing and implementing deep learning models

in clinical settings to assist clinicians in decision making

with high accuracy. Future works will focus on increasing

the number of classes of the used dataset to include more

records from different subjects and a wider range of dis-

eases such as COVID-19. Such future works will enhance

the credibility of the proposed model. Although the current

proposed classification deep learning models achieves high

performance metrics, it would be improved by making

more tuning on the hyperparameters.

For future works, we intend to expand the application

of the proposed automatic lung auscultation sounds

classification in real-time examination process. Initially,

we intend to test the proposed method on more datasets.

Then, we plan to develop an embedded system that

integrate the developed CNN–LSTM model into the

system with a digital stethoscope. Furthermore, we also

aim to create an Internet of Things (IoT) system for this

approach to be accessible in developing countries, where

we find the highest mortality rates. Finally, we intend to

analyze the feasibility of the system with the tele-

medicine system.

7 Limitations

We must acknowledge the limitations of current research.

As this research collects data from two datasets there are a

few records for some classes, while some classes have a

large number of samples. So, the main limitation is the

number of samples per class and the required future effort

to make records for all diseases. Furthermore, other factors

may affect the results like medications used by patients

may contribute to the development or deterioration of

symptoms; however, the current research did not investi-

gate the effect of these factors.
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