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Background and Objective: The introduction of photon-counting computed tomography (PCCT) 
represents the most recent groundbreaking advancement in clinical computed tomography (CT). PCCT 
has the potential to overcome the limitations of traditional CT and to provide new quantitative imaging 
information. This narrative review aims to summarize the technical principles, benefits, and challenges of 
PCCT and to provide a concise yet comprehensive summary of the applications of PCCT in the domain of 
coronary imaging.
Methods: A review of PubMed, Scopus, and Google Scholar was performed until October 2023 by using 
relevant keywords. Articles in English were considered.
Key Content and Findings: The main advantages of PCCT over traditional CT are enhanced spatial 
resolution, improved signal and contrast characteristics, diminished electronic noise and image artifacts, 
lower radiation exposure, and multi-energy capability with enhanced material discrimination. These key 
characteristics have made room for improved assessment of plaque volume and severity of stenosis, more 
precise assessment of coronary artery calcifications, also preserved in the case of a reduced radiation dose, 
improved assessment of plaque composition, possibility to provide details regarding the biological processes 
occurring within the plaque, enhanced quality and accuracy of coronary stent imaging, and improved 
radiomic analyses.
Conclusions: PCCT can significantly impact diagnostic and clinical pathways and improve the 
management of patients with coronary artery diseases (CADs). 
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Introduction

Background

Coronary artery disease (CAD) is a significant global health 
concern and a leading cause of morbidity and mortality (1). 
The accurate quantification of CAD extent and severity 
is a cornerstone of effective CAD management, enabling 
risk-stratifying patients, selecting the most appropriate 
treatment approach, and monitoring the patient’s progress 
and the efficacy of the selected therapeutic intervention. 

Since its introduction in the 1990s, coronary computed 
tomographic angiography (CCTA) has evolved as a valuable 
and increasingly utilized diagnostic tool for detecting and 
ruling out CAD (2). Indeed, computed tomography (CT) 
is a non-invasive and widely available imaging technique 
that offers rapid image acquisition, a broad field of view, 
and excellent spatial and temporal resolution (3). CCTA 
has demonstrated high diagnostic accuracy and negative 
predictive value compared to invasive coronary angiography 
(ICA), representing the gold standard for assessing CAD 
(4-7). With the current new-generation CT scanners, 
high diagnostic accuracy in detecting CAD can also be 
maintained in patients showing high and/or irregular 
heart rates (8). Large clinical trials have demonstrated that 
CCTA was similar to or more effective than functional 
testing, standard care, or ICA in managing CAD and 
reducing major adverse cardiovascular events in patients 
with stable chest pain (9-12). The pivotal role of CCTA in 
contemporary clinical practice has been reflected in several 
guidelines (13,14).

Thanks to its ability to look at both the wall and the 
lumen of the coronary artery, CCTA, besides defining 
coronary anatomy and luminal stenosis severity, can also 
provide information on atherosclerotic plaque morphology 
and composition (15,16). Intravascular ultrasound (IVUS) 
represents the current gold standard for this purpose (17), 
but is highly invasive. Several studies performing a head-
to-head comparison of CCTA with IVUS confirmed that 
CCTA, which offers the advantage of being non-invasive, 
had good diagnostic accuracy in quantifying plaque volumes 
and identifying adverse plaque characteristics (18-21).

Like any medical imaging technique, conventional CT 
faces certain critical challenges. Compared to invasive 
methods, CT has inherent limitations in spatial and 
temporal resolution and may be less appropriate for high-
risk patients presenting with dense calcifications, multiple 
or small-diameter stents, and irregular heart rhythms 
(22,23). From a patient safety perspective, the main 

concerns are the increased risk of cancer due to radiation 
and the administration of iodinated contrast agents, which 
can cause allergic reactions and be problematic for patients 
with impaired renal function (24). 

Rationale and knowledge gap

Photon-counting computed tomography (PCCT) 
represents the most recent breakthrough in clinical X-ray 
imaging. It harbors the potential to overcome many of the 
limitations and shortcomings of current CT systems (25,26). 
Indeed, thanks to the distinct approach to X-ray detection, 
photon counting detectors (PCDs) present a plethora 
of advantages over energy-integrating detectors (EIDs) 
employed in traditional CT scanners (27-30).

Objective

This narrative review aims to summarize the technical 
principles, benefits, and challenges of PCCT, to provide 
a concise yet comprehensive summary of the applications 
of PCCT in coronary imaging, and to illustrate with case 
examples how this cutting-edge technology may translate 
into improved clinical diagnosis. We present this article 
in accordance with the Narrative Review reporting 
checklist (available at https://cdt.amegroups.com/article/
view/10.21037/cdt-24-52/rc).

Methods

PubMed, Scopus, and Google Scholar electronic databases 
were searched from origin to October 2023. Original 
research, technical notes, review articles, and guidelines/
expert consensus in English were included. 

The search strategy is summarized in Table 1.

Conventional versus photon‑counting detectors

Conventional EIDs use a two-step process to convert 
X-ray photons into electrical signals (26). The first step 
involves transforming X-ray photons into visible light 
via a scintillating material. In the second step, the visible 
light emitted by the scintillator is captured by an array of 
photodiodes and converted into electrical impulses. EIDs 
incorporate optically opaque partitions called septa to 
separate the cells to avoid optical cross-talk. These layers 
are approximately 0.1 mm thick and decrease the geometric 
dose efficiency of the detector because the detected signal 

https://cdt.amegroups.com/article/view/10.21037/cdt-24-52/rc
https://cdt.amegroups.com/article/view/10.21037/cdt-24-52/rc
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is not influenced by the X-ray quanta that are absorbed in 
these areas (31-33). To maintain an acceptable level of signal 
loss caused by these “dead zones”, it becomes impractical 
to reduce the active detector elements’ size. This limitation 
ultimately constrains the spatial resolution achievable with 
scintillating detectors. To quantify the energy of all X-ray 
photons collected during a specific timeframe, the detector 
combines their signals, and the information about the 
energy of individual X-ray photons is lost. 

PCDs utilize a direct conversion approach (34,35) 
(Figure 1). They are made of semiconductors such as 
cadmium telluride, cadmium zinc telluride, or silicon (36).  
A high voltage, typically between 800 and 1,000 V, is 
applied between the cathode situated on the top side 
and the pixelated anode electrodes on the bottom side, 
creating a strong electric field. The interaction between the 
incident X-ray photon and the detector produces a charge 
cloud of electron-hole pairs. Under the influence of the 
electric field, the charge cloud moves towards the anodes 
and induces short current pulses. An electronic pulse-
shaping circuit amplifies and transforms the current pulses 
into voltage pulses (33). The height of the shaped pulses 
is proportional to the energy of the absorbed X-rays. A 
“counter” quantifies the pulses with wave heights exceeding 
a predetermined energy threshold. By comparing all pulses 
with multiple energy thresholds, PCDs can categorize 
the incident photons into various energy groups or bins, 
allowing for the distinction of X-ray photons according to 
their energy levels (33). The energy bins in contemporary 
PCD CT systems typically range from 2 to 8. The width 
and the number of the energy bins impact the image quality 
(37,38). Conventionally, the first threshold is set higher 
than the background noise level of the detector and the 

other thresholds are either uniformly spaced or strategically 
chosen to optimize performance for specific tasks.

Advantages of PCCT 

Increased spatial resolution

The properties of the detector, including pixel size and 
scattering characteristics, affect the spatial resolution of a 
CT scan. 

In recent years,  the spatial  resolution of EIDs 
has improved, and pixel pitches have now reached 
approximately 0.5 mm at the detector (39). However, the 
current dimensions of EID pixels cannot be significantly 
reduced beyond their current size without a decline in 
dose efficiency (40). On the other side, the septa cannot 
be made excessively thin to avoid photon cross-talk, which 
can compromise the quality of the image. Improving the 
spatial resolution of scintillator detectors, for example, 
using a dedicated attenuating filter decreasing the pixel  
aperture (41), causes a notable rise in radiation dose.

PCDs enable for reduction in pixel size without 
sacrificing geometric efficiency because there are no non-
responsive regions in between the pixels (40). The pixel pitch 
can be as fine as 0.15–0.225 mm at the isocenter (42-45).  
Achieving this requires a corresponding small focal spot in 
the X-ray tube, even if it reduces tube power. 

Improved contrast

In EIDs, the quanta with lower X-ray energy levels emit 
comparatively less light than those with higher energy 
levels. As a result, the contribution of low-energy X-rays to 
the total detector signal is reduced. PCDs quantize all X-ray 

Table 1 The search strategy summary

Items Specification

Date of search October 2, 2023

Databases and other sources 
searched

PubMed, Scopus, and Google Scholar

Search terms used Photon-counting computed tomography, PCCT, photon counting detector, photon counting X-ray 
detectors, photon counting CT, spectral CT

Timeframe No time limit

Inclusion Original research, technical notes, review articles, and guidelines/expert written in English

Selection process A.M. analyzed the scientific papers to extract the relevant data for the purpose of this work

PCCT, photon-counting computed tomography; CT, computed tomography. 
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quanta possessing an energy greater than a predetermined 
minimum energy threshold with uniform weighting. 
Therefore, low-energy X-ray quanta have equal importance 
in contributing to the detector signal as their higher-energy 
counterparts (33,40,46). Since the information about the 
contrast between different materials is concentrated within 

the low X-ray energy range, the PCD-CT technology 
offers improved contrast and contrast-to-noise ratio (CNR) 
compared to traditional EID-CT, especially for materials 
with low X-ray attenuation, like iodine (36,47-49). The 
difference in iodine contrast between PCD-CT and EID-
CT is more pronounced as the X-ray tube voltage increases. 

X-ray photons

X-ray photons

Counter 1

Counter N−1

Multi-energy
“Color” image

Total energy
“gray” image

Counter N

Energy-selective images

Septum

Light photons

Cathode

Semiconductor

Anodes

Integrator

Scintillators

Photodiodes

Electronic signals

Electronic signals

Figure 1 Schematic representation of an energy integrating detector (top) and of a photon-counting detector that directly converts X-rays 
into electrical signals (bottom). In the photon-counting detector, the interaction between the incident X-ray photon and the semiconductor 
generates a cloud of positive and negative charges, which pull away from each other under the influence of the electric field. As the electrons 
reach the anodes, they generate short current pulses, which are converted into voltage pulses. The detector’s electronics analyzes the pulses 
by comparing their amplitudes (proportional to the photon’s energy) with predefined threshold levels.
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In EIDS, the increased variance relative to the mean 
value, caused by a non-uniform weighting of photons, 
can result in a reduced signal-to-noise ratio (SNR). PCDs 
eliminate this phenomenon and its negative effects on 
image quality.

Elimination of electronic noise 

In PCDs, only X-ray photons surpassing an energy 
threshold of approximately 20–25 keV are registered. This 
threshold is considerably higher than the electrical system’s 
background noise level. Consequently, electronic noise has 
not effect on PCDs count rates (33). 

Mitigating electronic noise enhances image quality for 
low-dose scans and scans of patients with large body sizes. 
In these specific contexts, PCDs have demonstrated their 
capability to reduce streak artifacts, enhance the uniformity 
of the imaging signal, and deliver more consistent CT 
numbers compared to conventional EIDs (50-52).

Multi-energy acquisition

Spectral CT goes beyond traditional CT scanning. It 
uses different energy levels of X-rays to gather detailed 
information about the composition and characteristics of 
tissues within the body and about the spatial and temporal 
distributions of the contrast agents, enabling better 
differentiation between materials, improved tissue contrast, 
and potentially more accurate diagnoses. 

Material decomposition is the basis for spectral CT 
imaging. The different base materials within an imaged area 
are separated and quantified based on their distinct X-ray 
attenuation characteristics at different energy levels. The 
number (N) of detectable base materials corresponds to 
the number of acquired spectral data points. The material 
decomposition in N+1 bases with measurements at N 
different energies is possible. However, it requires the use 
of supplemental constraints, such as having one material 
with different spectral behavior, assuming volume or mass 
conservation, or employing precalibrated subregions in 
the low- and high-energy space (53). These constraints 
may introduce inaccuracies in the material decomposition 
process (54). 

Conventional EID-based dual-energy CT (DECT) 
acquires data in two energy regimes. DECTs are divided 
into two major groups based on how the two different 
X-ray energies are generated: source-based and detector-
based (55-57). Source-based DECT involves acquiring CT 

measurements at two different energy spectra. It includes: 
(I) dual-spin mode in which two scans are performed 
sequentially by a single X-ray tube and the resulting images 
overlap; (II) dual-source (DS) mode which involves the 
use of two orthogonal X-ray tubes operating at different 
kilovoltages to achieve precise spectral separation and the 
co-registration of the two acquired images datasets; (III) 
rapid kVp switching mode in which a single X-ray tube 
rapidly changes kilovoltage during scanning; and (IV) twin-
beam mode in which a single X-ray spectrum is divided 
into two distinct energy spectra through pre-filtration 
methods. In detector-based DECT (dual-layer DECT), the 
energy separation takes place at the detector level due to 
the scanner’s configuration, which includes a single X-ray 
source and a multilayer detector. Every layer is designed to 
maximize sensitivity to particular photon energies: the top 
layer preferentially absorbs low-energy photons while the 
bottom layer absorbs the high-energy photons.

DECT can distinguish between up to three types of 
materials within the imaged region (53). Furthermore, 
DECT suffers from spectral overlap, which reduces the 
accuracy of material decomposition. PCDs, due to their 
capability of distinguishing photons with varying energies 
via pulse-height analysis, offer multi-energy spectral CT 
without spectral overlap (58) and have the potential for 
accurate discrimination of ≥3 materials (59). Conversely 
to DECT based on DS or rapid tube potential switching, 
PCCT data are inherently acquired at constant tube 
potential, and there is perfect temporal alignment of the 
different energy images (60). The material decomposition 
leads to the creation of material-specific images which 
provide a clear and detailed representation of the spatial 
distribution and concentration of a particular material 
within the region of interest. Post-processing algorithms 
can also generate virtual non-contrast (VNC) images, 
where the effects of the administered contrast agent are 
removed, serving the very important purpose to eliminate 
the need for acquisition of true non-contrast (TNC) images 
and save radiation dose, or iodine-specific images, which 
map the spatial distribution and concentration of iodine-
based contrast agents within the scanned region (61-65). 
Moreover, the energy-independent information can be used 
to generate synthetic monoenergetic images, which are also 
referred to as virtual monoenergetic or monochromatic 
images (VMIs) (66-70). VMIs simulate the appearance of 
images obtained with a monochromatic X-ray source. Low-
energy VMIs are used to improve the enhancement of 
iodinated contrast and contrast-to-noise-ratio, enabling a 
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reduction in contrast agent volume, while VMIs at higher 
energy levels (above 70 keV) are used to minimize artifacts.

The X-ray energy discrimination capabilities inherent to 
PCDs enable the realization of K-edge imaging, that is, the 
detection and quantification of elements with a K-edge in 
the diagnostic energy range. This is achieved by customizing 
the acquisition energy thresholds to catch the distinct 
energy shifts at the K-edge of the target materials (71).  
Different materials with high atomic numbers, besides 
iodine, can be identified based on their unique K-edge 
signatures. Typical elements with physical and toxicological 
properties suitable for human use are tantalum, tungsten, 
gold, bismuth, gadolinium, and ytterbium (59,72,73). The 
possibility to differentiate between multiple contrast agents 
clears the path for multi-material imaging and molecular 
imaging (74-77). Multi-material imaging can be used to 
capture the specific distribution of various contrast agents 
administered concurrently or to image at a single time 
point multiple contrast agents with different distribution 
properties (32,46). Capturing multiple contrast phases 
in a single scan acquisition reduces the radiation dose 
by eliminating the need for multi-phase CT scans. It 
allows for perfect spatial alignment between the different  
phases (78). Dual-contrast CT protocols can potentially 
furnish datasets rich in features and functional information. 
Molecular imaging provides real-time visualization of 
cellular functions of living organisms and related molecular 
interactions, providing information that cannot be achieved 
with anatomical and functional imaging (79). Molecular CT 
imaging may exploit the K-edge imaging to detect targeted 
contrast agents, that is, contrast agents conjugated with 
nanoparticles that enable interactions with a target (cells or 
enzymes) (80-83). 

Artifact reduction 

Beam hardening is one of the most observed physical-based 
types of artifacts. Beam hardening artifacts arise due to 
the uneven attenuation of X-ray beams as they traverse an 
object. High-density materials absorb X-rays more readily 
than low-density materials such as water or its related 
substances. This disparity in attenuation leads to distortions 
in the reconstructed CT images, presenting as streaking or 
shading artifacts (84). In PCDs, constant weighting enables 
the normalization of attenuation measurements across 
various energy levels, effectively mitigating the impact 
of beam hardening (85). The high-energy-bin image in 
PCCT is less susceptible to the distortions caused by beam 

hardening than low-energy PCCT (34,86). 
PCDs have demonstrated significant advantages in 

mitigating calcium-blooming and metal artifacts, resulting 
from volume averaging, motion during scanning, and 
beam-hardening effects. This is achieved through enhanced 
spatial resolution, which reduces partial volume effects, 
and improved material decomposition techniques, which 
allow for the accurate differentiation between high-density 
materials like metals and surrounding soft tissues (34,87). 

The outstanding temporal resolution and precise 
spatial alignment between the low and high-energy images 
achievable with PCCT pave the way for creating iodine 
maps resistant to motion artifacts. In a phantom study, 
the DS PCCT system proved effective in freezing motion 
artifacts, while the DS DECT system, with its slower 125 ms  
temporal resolution, experienced more pronounced motion 
artifacts (88).

Issues of PCCT

Technical issues

The performance of PCDs can be affected by different 
physical effects, including cross talk due to charge 
sharing, K-fluorescence, Compton scattering, and pulse  
pile-up (31,33,89). 

Charge sharing takes place when the charge cloud 
arrives near the boundary between pixels and is detected by 
multiple neighboring pixel electrodes (71,90,91). The charge 
may be erroneously assigned to multiple pixels instead of 
being accurately allocated to just one pixel (92). Secondary 
photons resulting from processes like Compton scattering 
and fluorescence within the detector can be detected in 
neighboring pixels, leading to the occurrence of multiple 
events sharing the total energy of the incident photon (33). 
K-fluorescence is more likely to occur in detectors with 
higher atomic numbers (cadmium telluride), while the effects 
of Compton scattering are more pronounced in silicon 
detectors (32). Collectively, these effects give rise to several 
issues, including inaccurate assignment of energy to a pixel, 
undercounts or overcounts, reduced spatial resolution caused 
by the distribution of counts across neighboring pixels, and 
correlations between energy bins in different pixels (71). 
Since the likelihood of charge sharing and cross-talk from 
secondary photons increases as pixels become smaller, these 
effects impose a practical constraint on the minimum pixel 
size obtained in PCDs.

Pulse pile-up occurs when two X-ray photons hit the 
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detector within the detector’s readout time window. This 
overlap can result in a single, combined pulse that contains 
information from multiple photons (93). The introduced 
errors in both photon counting and energy measurement 
can lead to distorted energy spectra and compromised 
image quality. The pulse pile-up can be mitigated by 
reducing the pixel size of the detector, thereby reducing the 
number of incident photons per detector channel. Anyway, 
the impact of pulse pile-up is insignificant under the typical 
X-ray flux rates experienced during clinical CT scans (94).

Alternative contrast agents 

Certain clinical applications of PCCT employ alternative 
contrast agents (80,83). Moreover, the use of two contrast 
media with different pharmacokinetic profiles, distribution 
volumes, or application routes may further expand the 
diagnostic capabilities of PCCT by addressing new clinical 
indications (59,75). 

Compared to magnetic resonance imaging, PCCT 
requires a significantly higher dose of gadolinium (77,95). 
The increased dosage generates worries regarding patient 
safety and raises the need to evaluate the risk-benefit ratio 
carefully. 

Contrast agents l ike gold and bismuth are sti l l 
experimental and not approved for human examinations.

More studies on alternative contrast agents are needed to 
assess their safety, effectiveness, and potential benefits over 
conventional contrast agents.

High cost

The high cost of PCCT systems (3 to 5 times higher 
compared to conventional CT scanners) presents a major 
obstacle to their widespread implementation in clinical 
environments. However, once the technology becomes 
more established and the downstream improvements in 
health outcomes and efficiency are clearly proved, a notable 
reduction in costs is anticipated to take place.

PCCT for coronary imaging

Diagnostic accuracy 

Few in-vivo studies evaluated the diagnostic accuracy of 
ultra-high resolution (UHR) PCCT in detecting CAD 
compared with ICA.

In the multi-center study of Soschynski et al., nine 

patients underwent both PCCT and ICA for significant 
CAD detection (stenosis ≥50%) and PCCT showed 
no false-negative diagnoses and two false-positive  
diagnoses (96). Considering the 126 coronary segments, 
the diagnostic performance of PCCT for significant 
CAD was very high, with sensitivity =92% and specificity 
=96%. However, the limited sample size impacts the 
generalizability of these findings.

In another study on 68 high-risk subjects candidate 
for transcatheter aortic valve replacement, UHR PCCT 
provided high diagnostic accuracy in CAD detection 
compared to ICA, with sensitivity and specificity, 
respectively, of 96% and 84% per participant, 89% and 
91% per vessel, and 77% and 95% per segment (97). The 
accuracy remained high also in the subgroup of patients with 
severe calcifications (sensitivity =93%; specificity =70%) and 
prior stent placement (sensitivity =100%; specificity =86%). 
Similar results were obtained in the study by Eberhard et al., 
involving 31 patients candidate for transcatheter aortic valve 
replacement (98). When compared to ICA, UHR PCCT 
provided accurate quantification of diameter stenoses, with 
the Bland-Altman analysis showing a mean difference of 0% 
and limits of agreement between −8% and 8%, as well as 
accurate stenosis categorization. 

Although these findings need to be confirmed by larger 
studies, they support the use of PCCT as a valid, safe, and 
non-invasive alternative to ICA. 

Coronary lumen detection

Numerous studies have demonstrated how the increased 
spatial resolution, soft-tissue contrast, and reduced 
noise achieved with PCCT translate into an improved 
assessment of plaque volume and severity of stenosis. An 
early and accurate assessment of stenosis degree is essential 
for guiding clinical decisions regarding the subsequent 
course of treatment and determining whether preventive 
pharmacotherapy or surgical interventions are most 
appropriate. 

In a phantom study, PCCT images [ultra-high-resolution 
(HR) protocol] demonstrated a 2.3-fold higher detectability 
index for coronary lumen and a 2.9-fold higher detectability 
index for non-calcified plaque than EID-CT images (87). 
This study by Si-Mohamed et al. also included a clinical 
validation phase in which both PCCT and traditional 
CT angiography were conducted on 14 patients. Three 
radiologists conducted image processing, confirming that 
PCCT images had increased image quality and diagnostic 
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confidence compared to conventional CT images (87). 
The in-vivo study from Pinos et al. demonstrated 

that PCCT images (polychromatic images and virtual 
monoenergetic images at 40, 45, 50, 55, 60 and 70 keV) 
were characterized by superior subjective quality (improved 
image noise, vessel attenuation, and vessel sharpness) and 
higher CNR than polychromatic images from conventional 
CT (99). The relative CNR gain achieved in PCCT was 
higher in obese patients than in patients with a body mass 
index (BMI) <30 kg/m2 (53.1% vs. 39.9%), suggesting 
that PCCT can be particularly beneficial for patients 
with increased BMIs. In line with these findings, a larger 
multi-center study involving 92 patients demonstrated 
that images obtained with PCCT and analyzed by two 
experienced radiologists were characterized by very high 
image quality and CNR (96). Furthermore, the detectability 
of the relevant proximal and mid-coronary segments with a 
lumen diameter >2 mm was excellent. Yang et al. evaluated  
in vivo the influence of different kernels and strength 
levels on image quality in PCCT with spectral high-pitch  
mode (100). Reconstructions with the medium sharp kernel 
(e.g., Bv40) emerged as the most beneficial in terms of both 
objective image quality (attenuation, noise, CNR, and vessel 
sharpness) and subjective image quality evaluated using a 
five-point Likert scale. 

PCCT proved particularly beneficial in evaluating 
luminal stenosis within heavily calcified plaques. Severely 
calcified plaques can introduce blooming artifacts, which 
can make the examinations inconclusive or cause an 
overestimation of stenosis and a generation of false-positive 
diagnoses, impacting patient care and treatment decisions 
(101,102). In their phantom study, Koons et al. replicated 
coronary arteries with calcifications of different sizes and 
shapes and proved that, compared to conventional CT 
at an equivalent dose, UHR PCCT provided enhanced 
visualization of calcium plaques and a clearer view of the 
patent lumen (30). Furthermore, PCCT exhibited superior 
accuracy in quantifying luminal stenosis across all types 
of plaques. Notably, for a ring-shaped plaque causing a 
decrease of 75% in the vessel’s cross-sectional area, only 
PCCT-generated images could reveal the presence of iodine 
within the lumen, highlighting the distinctive ability of 
PCCT to identify partial blockages missed by conventional 
CT scans. The previously mentioned in-vivo study 
conducted by Si-Mohamed et al. unveiled a notable decrease 
in blooming artifacts in calcified coronary plaques when 
utilizing PCCT images instead of EID-CT images (87).  
Mergen et al. evaluated the impact of reconstruction kernel 

and matrix size on the feasibility and quality of UHR 
PCCT images in patients with a high coronary calcium 
load (103). They found that using an edge-enhancing sharp 
vascular convolution kernel, a field of view of 200×200 mm2,  
and a matrix size of 512×512 pixels guaranteed high-
quality images and allowed for a precise delineation of 
plaque characteristics and vessel lumen. In the in-vivo study 
by Halfmann et al. involving 114 patients with known 
or suspected CAD who underwent PCCT, the UHR 
reconstructions allowed significantly lower percentages 
of diameter stenosis for calcified stenoses compared with 
standard resolutions (104). In addition, UHR PCCT led to 
reclassification of the 54.4% of patients to a lower Coronary 
Artery Disease Reporting and Data System category.

Li et al. introduced an innovative method for calculating 
the percentage of stenosis in blood vessels (105). This 
method depended on the material decomposition of both 
dual-energy and multiple-energy CT images, obviating 
the necessity for traditional segmentation techniques. The 
computer simulations demonstrated that the proposed 
approach addressed issues like partial volume effects and 
blooming artifacts. The phantom experiments proved 
that multiple-energy CT images allowed for accurate and 
reproducible stenosis measurements and that the four-
threshold PCCT approach was more efficient in mitigating 
measurement inaccuracies than DECT and two-threshold 
PCCT. Moreover, applying the three-basis-material 
decomposition on the four-threshold PCCT images 
resulted in the generation of separate maps representing the 
distribution of calcium, iodine, and water. 

Allmendinger et al. introduced a new reconstruction 
algorithm based on spectral CT data, aimed at removing 
from the image only the calcified components, generating 
virtual non-calcium (VNCa) images (106). Their phantom 
study demonstrated that the algorithm enabled the 
generation of high-quality images even in the presence 
of motion across a broad spectrum of heart rates and a 
significant reduction of blooming artifacts, enhancing image 
interpretability and accuracy in the evaluation of stenosis. 
The efficacy and the diagnostic utility of the VNCa 
algorithm were confirmed by two recent independent in-vivo  
studies, where the patients performed both PCCT and ICA 
(reference standard). In the study by Mergen et al., involving 
30 patients with minimal to moderate coronary stenoses, 
no difference between the diameters stenoses measured 
on VNCa images and with ICA was detected, while 
diameter stenoses were significantly overestimated for VMI  
images (107). Nishihara et al. demonstrated that the VNCa 
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algorithm improved image interpretability in patients 
with heavily calcified coronary lesions and the diagnostic 
accuracy for detecting significant stenosis (≥50%) by ICA 
over conventional images (108).

Figures 2-9 show examples of coronary PCCT images, 
including normal coronary arteries (no calcium and no 
non-calcified atherosclerosis; Figure 2), non-obstructive 
(stenosis <50%) and non-calcified atherosclerosis (Figure 3), 
non-obstructive CAD with calcified lesions (Figures 4-6), 
obstructive CAD (stenosis >50%; Figures 7,8), and a high-
calcified plaque (Agatston score >1,000; Figure 9).

Coronary artery calcium (CAC) score

The CAC score is a reliable marker of atherosclerosis and 
cardiovascular risk (109,110). Furthermore, it possesses 
the capacity to function as a screening tool for the 
detection of occult CAD in asymptomatic individuals, 
facilitating the implementation of appropriate preventive 

and treatment strategies (111). The main systems for 
the quantification of the CAC score are the Agatston  
method (112), determination of the volume of calcium (113), 
and determination of the calcium mass score (113), with the 
Agatston score being the most widely used. In conventional 
CT scanners, the precision of CAC quantification is 
impacted by blooming artifacts causing an overestimation 
of the CAC burden and partial volume effects, which hinder 
the reliable identification of thin calcifications, resulting in 
an underestimation of the CAC burden (114,115). PCDs 
have demonstrated potential to address these challenges.

A phantom study illustrated that, in comparison to 
conventional EID-CT, PCCT enhanced CAC detection and 
offered a more precise and accurate quantification of volume 
scores, particularly when using reduced slice thickness (116).  
Another phantom study demonstrated the superiority 
of PCCT over conventional CT in detecting small 
calcifications, with PCCT emerging able to successfully and 
accurately detect calcified fragments of 0.4–0.8 mm (117). 

A B C

Figure 2 Cardiac/coronary PCCT examples of normal coronary arteries. The figure shows a proximal left coronary artery with 3D 
cinematic rendering (A), longitudinal MPR and axial cross-section of LAD (B), and longitudinal stretched MPR (C). In this case, coronary 
arteries are normal (no calcium and no non-calcified atherosclerosis). The scan was performed on a commercial whole-body Dual Source 
Photon Counting CT scanner (Naeotom Alpha, Siemens Healthineers) with 0.2 mm slice thickness, 0.1 mm reconstruction increment, FOV 
140 mm, and IQ level 55. The scan is performed with retrospective ECG gating with tube current modulation and images are displayed 
with a resolution matrix of 1,024×1,024 pixels on the source axial reconstructions with a kernel filtering of Bv60 (vascular kernel medium-
sharp) and with maximum intensity of QIR 4. The actual displayed resolution is 0.1 mm (100 microns). PCCT, photon-counting computed 
tomography; 3D, three-dimensional; MPR, multiplanar reconstructions; LAD, left anterior descending coronary artery; CT, computed 
tomography; FOV, field of view; IQ, image quality; ECG, electrocardiogram; QIR, quantum iterative reconstruction. 
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Figure 3 Cardiac/coronary PCCT examples of non-obstructive CAD. In the figure, a proximal left coronary artery is shown with 3D 
cinematic rendering (A), longitudinal MPR (B), and axial cross-section of LAD (C). In this case, proximal LAD shows predominantly 
non-calcified atherosclerosis with some positive remodelling. The scan was performed on a commercial whole-body Dual Source Photon 
Counting CT scanner (Naeotom Alpha, Siemens Healthineers) with 0.2 mm slice thickness, 0.1 mm reconstruction increment, FOV 140 
mm, and IQ level 55. The scan is performed with retrospective ECG gating with tube current modulation and images are displayed with a 
resolution matrix of 1024×1,024 pixels on the source axial reconstructions with a kernel filtering of Bv60 (vascular kernel medium-sharp) and 
with maximum intensity of QIR 4. The actual displayed resolution is 0.1 mm (100 microns). PCCT, photon-counting computed tomography; 
CAD, coronary artery disease; 3D, three-dimensional; MPR, multiplanar reconstructions; LAD, left anterior descending coronary artery; CT, 
computed tomography; FOV, field of view; IQ, image quality; ECG, electrocardiogram; QIR, quantum iterative reconstruction.

An ex-vivo study involving cadaveric hearts proved a strong 
correlation and agreement between the Agatston scores 
obtained from conventional CT and PCCT and good 
inter-scan reproducibility for both systems, underscoring 
the potential of PCCT to become a reliable method for 
calculating Agatston scores (28). In another ex-vivo study, 
13 CAC specimens were scanned with conventional EID-
CT, UHR PCCT, and micro-CT to create a volume 
reference standard (118). UHR PCCT showed reduced 
calcium blooming artifacts and increased accuracy in CAC 
assessment, leading to a significant reduction in the mean 
absolute percent error of volume measurements compared 
to conventional CT (24.1%±25.6% vs. 60.1%±48.2%; 
P<0.01). In their phantom and in-vivo study, Eberhard et al. 
showcased the capability of PCCT to quantify CAC burden 
accurately. They demonstrated that the optimization of the 
iterative image reconstruction algorithm and the increase 
in the kilo electron volt levels used for generating VMIs 
improved CAC assessment’s accuracy and reliability (119).  

Expanding on this research, a study using a dynamic 
phantom and intermediate monoE levels demonstrated that, 
when reconstructed at an increased monoE level of 74 or  
76 keV PCCT, Agatston scores were in line with the 
reference conventional CT scores for heart rates of  
<60 bpm (120). The disparity in the measurements was 
larger at increasing heart rates. 

Before introducing the CAC screening in asymptomatic 
individuals, it is crucial to balance the potential advantages 
and drawbacks of  exposure to ionizing radiat ion 
from recurrent CT scans. The capacity of PCCT to 
maintain a high degree of sensitivity in detecting CAC 
while simultaneously reducing radiation exposure was 
demonstrated by the different phantom studies conducted 
by van der Werf et al. For PCCT acquisitions performed 
at 90 kVp, monoE reconstructions set at 70 keV enabled 
consistent and reproducible Agatston scores for medium- 
and high-density CAC densities while reducing radiation 
exposure up to 67% (121). The key findings from the study 



Meloni et al. Photon counting CT in coronary imaging708

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2024;14(4):698-724 | https://dx.doi.org/10.21037/cdt-24-52

A B C

Figure 4 Cardiac/coronary PCCT examples of non-obstructive CAD. In the figure, a complete RCA is shown with 3D cinematic rendering 
(A), longitudinal MPR and axial cross-section of LAD (B), and longitudinal stretched MPR (C). In this case, proximal RCA shows calcified 
plaques that do not affect the lumen diameter. The scan was performed on a commercial whole-body Dual Source Photon Counting CT 
scanner (Naeotom Alpha, Siemens Healthineers) with 0.2 mm slice thickness, 0.1 mm reconstruction increment, FOV 140 mm, and IQ 
level 55. The scan is performed with retrospective ECG gating with tube current modulation and images are displayed with a resolution 
matrix of 1,024×1,024 pixels on the source axial reconstructions with a kernel filtering of Bv60 (vascular kernel medium-sharp) and with 
maximum intensity of QIR 4. The actual displayed resolution is 0.1 mm (100 microns). PCCT, photon-counting computed tomography; 
CAD, coronary artery disease; RCA, right coronary artery; 3D, three-dimensional; MPR, multiplanar reconstructions; LAD, left anterior 
descending coronary artery; CT, computed tomography; FOV, field of view; IQ, image quality; ECG, electrocardiogram; QIR, quantum 
iterative reconstruction. 

applying distinct monoE level-specific Agatston score 
thresholds for CAC scoring on PCCT were that the use of 
lower monoE levels led to a notable rise in CNR for each 
CAC density and that, at a 50% reduced radiation dose, 
the deviations in Agatston scores were non-relevant when 
using energy levels between 60 and 100 keV for medium-
density CAC and between 60 to 120 keV for high-density 
CAC (122). The comparative study between conventional 
CT and PCCT demonstrated that PCCT provided a 
substantial increase in CAC detection, with improvements 
of up to 156%, even when reducing radiation dose by 
50%, and more precise measurements of physical volumes, 
particularly when using thinner slice thickness and when 
dealing with high-density CAC deposits (123). In line with 
these findings, another group demonstrated on ten ex vivo 
human hearts that, at the lowest dose setting of 50 mAs, 
PCD scans were characterized by a significantly greater 
reproducibility of CAC scoring than EID scans (124).  
Moreover, for 10 healthy volunteers, the agreement 

between CAC scores obtained at the standard dose and 
those obtained at a low dose was significantly superior when 
using the PCD system compared to the EID system. 

Thanks to its inherent spectral capabilities, PCCT 
offers the possibility to reconstruct images without the 
signal of iodinated contrast and, consequently, to remove 
the need for a non-enhanced scan, mitigating the overall 
radiation dose burden experienced by the patient. On a 
clinical PCCT system, Emrich et al. evaluated the accuracy 
of CAC scoring employing a novel virtual non-iodine 
(VNI) reconstruction method known as PureCalcium 
(Siemens Healthineers, Erlangen, Germany). PureCalcium 
implements a series of procedures that intend to subtract 
iodine and preserve calcium in CT datasets. They compared 
it with VNC reconstructions, based on decomposition 
into two base materials (soft tissue and iodine), and 
TNC acquisitions (125). It is well known that the VNC 
algorithm underestimates the CAC score, likely due to 
the underestimation of plaque density and, to a lesser 
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Figure 5 Cardiac/coronary PCCT examples of non-obstructive CAD. In the figure, a proximal left coronary artery is shown with 3D 
cinematic rendering (A), longitudinal MPR and axial cross-section of LAD (B), and longitudinal stretched MPR (C). In this case, proximal 
LAD shows a severely calcified plaque that does not affect the lumen diameter; even though the plaque is large, it appears to stay across the 
coronary artery wall without impacting significantly the lumen diameter. The scan was performed on a commercial whole-body Dual Source 
Photon Counting CT scanner (Naeotom Alpha, Siemens Healthineers) with 0.2 mm slice thickness, 0.1 mm reconstruction increment, FOV 
140 mm, and IQ level 55. The scan is performed with retrospective ECG gating with tube current modulation and images are displayed 
with a resolution matrix of 1,024×1,024 pixels on the source axial reconstructions with a kernel filtering of Bv60 (vascular kernel medium-
sharp) and with maximum intensity of QIR 4. The actual displayed resolution is 0.1 mm (100 microns). PCCT, photon-counting computed 
tomography; CAD, coronary artery disease; 3D, three-dimensional; MPR, multiplanar reconstructions; LAD, left anterior descending 
coronary artery; CT, computed tomography; FOV, field of view; IQ, image quality; ECG, electrocardiogram; QIR, quantum iterative 
reconstruction.

extent, of the underestimation of plaque volume (126). 
CAC scoring (CACS) PureCalcium and CACS TNC 
exhibited a strong agreement in the phantom setting. 
The in vivo study involving 67 patients demonstrated that 
the precision of CACS quantification and the accuracy 
of CACS classification were notably improved when 
utilizing PureCalcium reconstructions compared to VNC 
reconstructions. A recent phantom study evaluating the 
impact of cardiac motion proved that VNI reconstructions 
consistently outperformed VNC reconstructions across all 
heart rates, resulting in a reduced underestimation of CAC 
scores in comparison to the actual calcium mass and that 
the Agatston scores obtained from VNI were less influenced 
by cardiac motion (127). The in-vivo study by Mergen et al. 
demonstrated that CAC quantification using VNI images 
(70 keV) reconstructed from late enhancement scans yielded 
similar results as compared with TNC images. Moreover, 
the concordance of CAC risk categories was 97%, with only 
two patients reclassified to lower risk categories (63). 

Coronary plaque characterization

Most acute myocardial infarctions or sudden coronary 
deaths are triggered by atherosclerotic plaque rupture or 
erosions leading to vascular thrombosis (128,129). The 
rupture/erosion-prone atherosclerotic plaques, the so-
called “vulnerable plaques” or “high-risk plaques”, are 
characterized by a thin fibrous cap (<65 μm), large necrotic 
or lipid core, inflammation (in the form of macrophage 
infiltration), plaque ulceration, intraplaque hemorrhage, 
spotty calcifications, and expansive vessel remodeling (130).  
Therefore, the assessment of plaque composition, 
in addition to plaque burden, can play a pivotal role 
in improving the prediction of future major adverse 
cardiovascular events and the tracking of disease progression 
and response to therapy (131-134).

CCTA performed with the last generation of EID-
based systems can be used, combined with dedicated 
coronary segmentation software, to identify different plaque 



Meloni et al. Photon counting CT in coronary imaging710

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2024;14(4):698-724 | https://dx.doi.org/10.21037/cdt-24-52

A B C

Figure 6 Cardiac/coronary PCCT examples of non-obstructive CAD. In the figure, a complete RCA is shown with 3D cinematic rendering 
(A), longitudinal MPR and axial cross-section of LAD (B), and longitudinal stretched MPR (C). In this case, proximal RCA shows diffuse 
calcified plaques from the ostium down to crux that do not affect the lumen diameter. The scan was performed on a commercial whole-body 
Dual Source Photon Counting CT scanner (Naeotom Alpha, Siemens Healthineers) with 0.2 mm slice thickness, 0.1 mm reconstruction 
increment, FOV 140 mm, and IQ level 55. The scan is performed with retrospective ECG gating with tube current modulation and images 
are displayed with a resolution matrix of 1,024×1,024 pixels on the source axial reconstructions with a kernel filtering of Bv60 (vascular 
kernel medium-sharp) and with maximum intensity of QIR 4. The actual displayed resolution is 0.1 mm (100 microns). PCCT, photon-
counting computed tomography; CAD, coronary artery disease; RCA, right coronary artery; 3D, three-dimensional; MPR, multiplanar 
reconstructions; LAD, left anterior descending coronary artery; CT, computed tomography; FOV, field of view; IQ, image quality; ECG, 
electrocardiogram; QIR, quantum iterative reconstruction.

components based on their diverse X-ray attenuation 
(135,136). However, with conventional CT systems, some 
fine characteristics of high-risk plaques cannot be accurately 
identified, the differentiation of lipid, hemorrhage, and 
fibrous tissue is problematic, and large calcifications impede 
the accurate assessment of other plaque constituents (137). 
PCCT has provided the possibility to overcome these 
limitations. 

The in-vitro study conducted by Rotzinger et al. 
compared the performance of PCCT with that of 
conventional EID-CT under different simulated patient 
sizes from small to large (138). For all scenarios, the lower 
noise and higher spatial resolution achievable with PCCT 
directly translated into improved detection of simulated 
non-calcified and lipid-rich coronary plaques. Boussel and 
colleagues imaged with PCCT 10 calcified and 13 lipid-
rich non-calcified plaques obtained from post-mortem 
human coronary arteries (27). By analyzing disparities in 

spectral attenuation and the concentration of the iodine-
based contrast agent, PCCT enabled clear discrimination 
among normal arterial walls, lipid-rich plaque, calcified 
areas, and surrounding adipose tissue. The in-vivo study by 
Mergen and colleagues, including 22 coronary plaques from 
20 patients, demonstrated that, by mitigating blooming 
artifacts, implementing the UHR mode in PCCT enabled 
a more precise and improved visualization of non-calcified 
plaque constituents (139). Specifically, when compared 
with reconstructions with the Bv40 kernel and slice 
thickness of 0.6 mm, used as the reference standard, UHR 
reconstructions with a slice thickness of 0.2 mm and the 
Bv64 kernel resulted in a significantly lower volume of 
calcified components (average difference =32%±7%) and 
an increased volume of lipid-rich components. Vattay et al.  
assessed in a cohort of 51 patients the effect of VMIs 
from PCCT on attenuation values and plaque component 
volumes, employing as reference polychromatic images at 
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120 kVp (T3D) (140). They found that using lower-energy 
images (40–70 keV) led to an enhancement in the CNR and 
to an augmented volume of calcified plaque while reducing 
volumes of non-calcified and lipid-rich plaques. The lowest 
relative difference compared to T3D images was obtained 
when using higher VMI levels (100–180 keV) for non-
calcified plaque volumes, VMIs at 70 keV for calcified 
plaque volumes, and low-energy images (40–50 keV) for 
lipid-rich atheromatous plaque volumes.

The underlying biological mechanisms involved 
in plaque vulnerability, such as inflammation and 

neovascularization, can be assessed using molecular imaging 
techniques. In this context, the new possibilities opened-
up by PCCT with K-edge imaging coupled with gold 
nanoparticles have been demonstrated by both phantom 
and animal studies. Cormode and colleagues were the first 
to prove the capability of PCCT to identify macrophages 
within atherosclerotic lesions while simultaneously 
visualizing blood vessels and calcified tissue (81). Indeed, 
on various phantom models and apoE-KO mouse models 
of atherosclerosis, PCCT could precisely discern among a 
gold nanoparticle contrast agent targeted at macrophages, 

Figure 7 Cardiac/coronary PCCT examples of obstructive CAD. In the figure, a proximal left coronary artery is shown with 3D 
cinematic rendering (A), longitudinal MPR and axial cross-section of LAD (B), longitudinal stretched MPR (C), and short axis view of 
the apical segments of the left ventricle first pass rest perfusion map (D). In this case, proximal and middle LAD are severely diseased with 
predominantly non calcified plaques with positive remodelling and serial significant obstructions of the coronary lumen; the first pass static 
rest perfusion map shows a perfusion delay (D) at the level of the anterolateral wall of the left ventricle in middle-apical segments (blue 
colored overlay). The scan was performed on a commercial whole-body Dual Source Photon Counting CT scanner (Naeotom Alpha, 
Siemens Healthineers) with 0.2 mm slice thickness, 0.1 mm reconstruction increment, FOV 140 mm, and IQ level 55. The scan is performed 
with retrospective ECG gating with tube current modulation and images are displayed with a resolution matrix of 1,024×1,024 pixels  
on the source axial reconstructions with a kernel filtering of Bv60 (vascular kernel medium-sharp) and with maximum intensity of QIR 4. 
The actual displayed resolution is 0.1 mm (100 microns). PCCT, photon-counting computed tomography; CAD, coronary artery disease; 
3D, three-dimensional; MPR, multiplanar reconstructions; LAD, left anterior descending coronary artery; CT, computed tomography; 
FOV, field of view; IQ, image quality; ECG, electrocardiogram; QIR, quantum iterative reconstruction.
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an iodine-based contrast agent, and calcium-rich material. 
Si-Mohamed et al. scanned atherosclerotic and control New 
Zealand white rabbits both before and 2 days after injecting 
them with gold nanoparticles and demonstrated an increased 
association of gold concentration with macrophage for 
PCCT compared to conventional CT acquisitions (0.82 vs. 
0.41) (42). Importantly, only PCCT employing gold K-edge 
imaging could differentiate between the enhancement of 
the inner lumen with an iodinated contrast agent and the 
enhancement of the vessel wall with gold nanoparticles. 
This differentiation was validated through transmission 
electron microscopy and inductively coupled plasma optical 
emission spectrometry.

Coronary artery stenting

Coronary artery stent implantation is widely regarded as 
a safe and well-established technique for treating CAD. 
Compared to open cardiac surgery, this procedure is 

minimally invasive and associated with lower mortality and 
morbidity in the long term and better outcomes in critically 
ill patients in the short term (141). In-stent restenosis (ISR) 
arising from neointimal hyperplasia remains one of the 
main stent-related complications (142). CCTA has emerged 
as a reliable diagnostic tool for evaluating stented patients, 
boasting a 98% negative predictive value for excluding 
significant ISR (143). The 2021 AHA/ACC/ASE/CHEST/
SAEM/SCCT/SCMR Guidelines for the Evaluation and 
Diagnosis of Chest Pain provided a class 2b (moderate) 
recommendation for the use of CCTA in the assessment 
of patency of proximal large stents (≥3 mm) (144). With 
conventional EID-CT scanners, about 8% of stents (thick-
strut or small-diameter stents) are not accessible, mostly due 
to blooming, metallic, and beam-hardening artifacts and 
reduced spatial resolution (145,146). Several in-vitro studies 
have demonstrated the potential of PCCT to address these 
issues, improving the quality and accuracy of coronary stent 
imaging. 

A B C

Figure 8 Cardiac/coronary PCCT examples of obstructive CAD. In the figure, a dominant circumflex coronary artery is shown with 3D 
cinematic rendering (A), longitudinal MPR (B), and two-chamber long axis view of the left ventricle first pass rest perfusion map (C). In this 
case the middle-distal left circumflex is occluded from a non-calcified plaque; the first pass static rest perfusion map shows a large perfusion 
delay (C) at the level of the inferior wall of the left ventricle (blue colored overlay). The scan was performed on a commercial whole-body 
Dual Source Photon Counting CT scanner (Naeotom Alpha, Siemens Healthineers) with 0.2 mm slice thickness, 0.1 mm reconstruction 
increment, FOV 140 mm, and IQ level 55. The scan is performed with retrospective ECG gating with tube current modulation and images 
are displayed with a resolution matrix of 1,024×1,024 pixels on the source axial reconstructions with a kernel filtering of Bv60 (vascular 
kernel medium-sharp) and with maximum intensity of QIR 4. The actual displayed resolution is 0.1 mm (100 microns). PCCT, photon-
counting computed tomography; CAD, coronary artery disease; 3D, three-dimensional; MPR, multiplanar reconstructions; LAD, left 
anterior descending coronary artery; CT, computed tomography; FOV, field of view; IQ, image quality; ECG, electrocardiogram; QIR, 
quantum iterative reconstruction.
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In a comparative study where 18 coronary stents made 
of various material compositions were scanned with 
both PCCT and conventional CT systems with identical 
imaging parameters (147), enhanced visibility of the stent 
lumen, reduced noise levels, decreased occurrence of 
blooming artifacts, and higher overall image quality were 
demonstrated for PCCT acquisitions. Different independent 
studies evaluating the impact of using the UHR mode in 
PCCT were concordant in reporting superior visibility of 
the coronary stent lumen and a reduction of metal blooming 
artifacts for UHR PCCT compared to standard-resolution 
PCCT and conventional EID-CT (148-152). However, it 
has been shown that the implementation of a convolutional 
neural network denoising algorithm to HR PCCT enabled 
to reduce image noise by about 50% without impacting 
lumen quantification. Other studies demonstrated that in-

stent lumen visibility and sharpness could be improved by 
using specific sharp reconstruction kernels tailored to the 
enhanced spatial resolution of PCDs and optimized for 
stent imaging (151,153,154). Optimized kernels and UHR 
imaging proved particularly beneficial for stents on a steady 
phantom with smaller diameters (151).

A complex scenario was considered in the study of 
Feuerlein et al., where a phantom mimicking a low-density 
calcified plaque situated within a coronary stent, exhibiting 
a degree of attenuation similar to the vascular lumen 
filled with gadolinium, was imaged with a PCCT system 
with six energy thresholds (155). Thanks to gadolinium 
K-edge imaging, it was possible to differentiate between 
intravascular gadolinium-based contrast agent, calcified 
plaque, and stent material and to effectively suppress beam-
hardening artifacts.

Figure 9 Cardiac/coronary PCCT examples of non-obstructive CAD. In the figure, a proximal left coronary artery is shown with 3D 
cinematic rendering (A), longitudinal MPR and axial cross-section of LAD (B), longitudinal stretched MPR (C), and longitudinal stretched 
MIP (D). In this case, proximal-middle LAD shows massively/bulky calcified plaques that, even though very thick and dense, do not 
significantly affect the lumen diameter (A-D; arrowheads); the Agatston score of the displayed LAD is above 1,000. Technically, the presence 
of severe calcifications should be approached as the presence of coronary stents. The scan was performed on a commercial whole-body 
Dual Source Photon Counting CT scanner (Naeotom Alpha, Siemens Healthineers) with 0.2 mm slice thickness, 0.1 mm reconstruction 
increment, FOV 140 mm, and IQ level 55. The scan is performed with retrospective ECG gating with diastolic tube current modulation 
and images are displayed with a resolution matrix of 1,024×1,024 pixels on the source axial reconstructions with a kernel filtering of Bv72 
(vascular kernel sharp) and with maximum intensity of QIR 4. The actual displayed resolution is 0.1 mm (100 microns). PCCT, photon-
counting computed tomography; CAD, coronary artery disease; 3D, three-dimensional; MPR, multiplanar reconstructions; MIP, maximum 
intensity projection; LAD, left anterior descending coronary artery; CT, computed tomography; FOV, field of view; IQ, image quality; 
ECG, electrocardiogram; QIR, quantum iterative reconstruction.
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In-vivo human studies have also demonstrated the 
advantages of PCCT in coronary stent evaluation. In the 
study by Boccalini et al., where eight patients with coronary 
stents were scanned using both PCCT and conventional 
CT, PCCT acquisitions resulted in a lower radiation dose, 
provided better objective and subjective visibility of both 
the stent and the coronary lumen, and demonstrated fewer 
blooming artifacts (156). In the study by Si-Mohamed et al.,  
the PCCT and EID-CT images of eight patients with 
coronary stents were blindly analyzed by three radiologists 
who used a five-point scale to measure the diagnostic quality 
of coronary stents. PCCT was demonstrated to significantly 
outperform conventional CT, improving overall diagnostic 
quality by 92% (87). Geering et al. assessed the quality of 
coronary stent lumen visualization with UHR PCCT. They 
found out that stent struts’ sharpness continuously increased 
at sharper kernels and that in-stent-lumen diameter and 
attenuation were not influenced by stent angulation (157).

The advantages of PCCT in terms of non-invasive 
detection of ISR were demonstrated by the in-vitro study 
conducted by Bratke et al. (158), where soft-plaque-like 
stenoses were placed into ten coronary stents embedded 
in a vessel phantom filled with contrast and imaged with 
both conventional CT and PCCT. Although both systems 
effectively identified or suspected the stenosis in all ten 
stents, the accurate delineation of the residual lumen was 
feasible for seven stents when utilizing PCCT and never 
attainable with conventional CT.

Hagar et al. compared in vivo (44 coronary stents in  
18 patients) the accuracy of UHR PCCT versus ICA 
(reference standard) in assessing coronary stent patency. 
UHR PCCT demonstrated a diagnostic accuracy for the 
presence of ISR ≥50% exceeding 88% and a negative 
predictive value of 100%, emerging as a promising non-
invasive alternative to ICA (159).

Figures 10,11 show PCCT examples of coronary artery 

A B C D

Figure 10 Cardiac/coronary PCCT examples of coronary artery stent. In the figure, it is shown a stent in the mid left anterior descending 
coronary artery with 3D cinematic rendering (A), longitudinal MPR and axial cross section of coronary lumen within the stent segment (B), 
stretched MPR (C) and stretched MIP (D). In this case, the stent is perfectly visualized (even the metal stent struts) with perfect visualization 
of the in-stent lumen. The scan was performed on a commercial whole-body Dual Source Photon Counting CT scanner (Naeotom 
Alpha, Siemens Healthineers) with 0.2 mm slice thickness, 0.1 mm reconstruction increment, FOV 140 mm, and IQ level 55. The scan is 
performed with retrospective ECG gating with tube current modulation and images are displayed with a resolution matrix of 1,024×1,024 
pixels on the source axial reconstructions with a kernel filtering of Bv72 (vascular kernel sharp) and with maximum intensity of QIR 4. 
The actual displayed resolution is 0.1 mm (100 microns). PCCT, photon-counting computed tomography; 3D, three-dimensional; MPR, 
multiplanar reconstructions; LAD, left anterior descending coronary artery; CT, computed tomography; FOV, field of view; IQ, image 
quality; ECG, electrocardiogram; QIR, quantum iterative reconstruction.
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A B C

Figure 11 Cardiac/coronary PCCT examples of coronary artery stent. In the figure, it is shown a stent in the proximal left anterior 
descending coronary artery with 3D cinematic rendering (A), longitudinal MPR (B) and axial cross section of coronary lumen within the stent 
segment (C). In this case, even though there are some calcifications around the stent, the stent is perfectly visualized (even the metal stent 
struts) with perfect visualization of the in-stent lumen. The scan was performed on a commercial whole-body Dual Source Photon Counting 
CT scanner (Naeotom Alpha, Siemens Healthineers) with 0.2 mm slice thickness, 0.1 mm reconstruction increment, FOV 140 mm,  
and IQ level 55. The scan is performed with retrospective ECG gating with tube current modulation and images are reconstructed and 
displayed with a resolution matrix of 1,024×1,024 pixels on the source axial reconstructions with a kernel filtering of Bv72 (vascular kernel 
sharp) and with maximum intensity of QIR 4. The actual displayed resolution is 0.1 mm (100 microns). PCCT, photon-counting computed 
tomography; 3D, three-dimensional; MPR, multiplanar reconstructions; LAD, left anterior descending coronary artery; CT, computed 
tomography; FOV, field of view; IQ, image quality; ECG, electrocardiogram; QIR, quantum iterative reconstruction.

stents, demonstrating the perfect visualization of the metal 
stent struts and the in-stent lumen, even in presence of 
some calcifications around the stent.

Fractional flow reserve (FFR) 

Applying Computational Fluid Dynamics to conventional 
CCTA data allows to determine the FFR (160,161). CT-
derived FFR (CT-FFR) provides a combined anatomic and 
physiologic evaluation of coronary artery stenosis, allowing 
enhancement of the specificity of CCTA when evaluating 
CAD, reducing the occurrence of non-obstructive disease 
findings during ICA, and playing a crucial role in making 
informed decisions and plans for revascularization (161,162). 

The in-vivo study of Zsarnóczay et al., which involved 
23 patients, demonstrated a strong agreement between 
CT-FFR obtained from PCCT and conventional EID-CT 
acquisitions in the per-vessel analysis and the per-patient 
analysis (163). A hemodynamically significant CT-FFR 
(≤0.75) was detected in 10 patients with EID-CT and in 

nine patients with PCCT.
The in-vivo study by Brendel et al, involving 260 patients 

referred for pre-transcatheter aortic valve replacement 
work-up, demonstrated that PCCT combined with 
deep learning models had a good diagnostic accuracy in 
comparison with ICA for the detection of hemodynamically 
significant stenosis, defined as invasive FFR ≤0.80 (per-
patient sensitivity, specificity, positive predictive value, 
negative predictive value, and accuracy of 96.8%, 87.3%, 
87.8%, 96.7%, and 91.9%, respectively) (164).

Radiomics 

Radiomics is a method that involves extracting numerous 
quantitative features from a medical image, providing 
detailed descriptions of abnormalities beyond what can be 
visually assessed by the human eye (165). Key requisites for 
the extraction of reliable and insightful texture features are 
high spatial resolution and SNR (166). Therefore, thanks to 
its associated benefits, PCCT presents the opportunity to 
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enhance radiomic analyses based on CT imaging data. 
In the study by Dunning et al., 19 patients underwent 

CCTA using PCCT and VMIs at 50, 70, and 100 keV, 
iodine maps, and VNC images were reconstructed with 
the goal of assessing how the different image types, by 
impacting contrast and texture appearance of the coronary 
plaques, affected the efficacy of coronary plaque risk 
stratification (167). Ninety-three radiomic features were 
retrieved from each image and compared between plaques 
categorized as low- and high-risk by an expert radiologist. 
The 100 keV VMIs and the VNC images had the highest 
accuracy in coronary plaque risk classification, due to the 
decreased presence of iodine and calcium.

Pericoronary adipose tissue (PCAT)

PCAT is the fat deposit surrounding the coronary arteries. 
PCAT mean attenuation (PCATMA) measurement 
through CT represents an indirect measure of adipocyte 
size and lipid content, reflecting inflammation status (168). 
PCATMA is associated with the severity of stenosis, plaque 
components, and high-risk plaque features (169-172)  
and can help in the identification of individuals at increased 
risk of adverse cardiovascular events, improving the 
cardiovascular risk stratification beyond the traditional 
approach, including measurement of coronary calcium and 
CCTA evaluation (173-175).

Mergen and colleagues evaluated the impact of 
monoenergetic energy levels on PCAT measurements 
in 30 patients who underwent CCTA using a first-
generation whole-body PCCT system (176). Their findings 
demonstrated that PCATMA of the right coronary artery, 
the left anterior descending artery, and the circumflex 
artery increased with increasing energy levels. They showed 
significant differences between patients without CAC and 
with mild CAC at multiple energy levels.

Strengths and limitations

The main strength of this narrative review lies in its 
comprehensive nature. It provides a technical background 
of the PCCT technology and highlights its unique features, 
advantages, and potential limitations, contextualizing 
PCCT within the broader landscape of medical imaging 
technologies. Moreover, it synthesizes findings from 
multiple studies, offering a cohesive overview of the 
applications of PCCT in coronary imaging and providing 
insights into its potential impact on patient care and 

outcomes. 
The primary limitation is that, despite our best efforts to 

encompass the most relevant research, the field of PCCT 
is continually evolving. Thus, there may be newer findings 
that were not included in this review. Other limitations 
encompass potential biases due to the selection of included 
studies, as well as the reliance on subjective interpretations 
of the literature. However, every effort has been made to 
provide a balanced, informative, and rigorous perspective 
on the topic.

Conclusions

PCCT is based on the direct conversion of X-ray photons 
into electrical signals and provides a wide range of 
advantages over traditional CT systems, encompassing 
improved spatial  resolution, better iodine signal, 
elimination of electrical noise, reduced beam-hardening 
and metal artifacts, improved dose efficiency, and ability 
to differentiate multiple intrinsic and contrast materials 
in a single scan. As demonstrated in phantom, animal and 
clinical studies, these key features have paved the way for 
a greatly enhanced CT performance in assessing coronary 
plaque burden and composition, quantifying coronary 
calcium, imaging coronary stents, and extracting radiomics 
features. Although the use of alternative contrast agents 
has emerged as a promising avenue for enhancing medical 
imaging, its implementation into clinical routine can be 
challenging.

Large clinical studies are warranted to unveil the 
potentialities of PCCT further and prove its ability to 
improve prognostic stratification and aid in medical 
decision-making for patients with CAD.
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