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Epithelial cell-derived cytokines CST3 and
GDF15 as potential therapeutics for
pulmonary fibrosis
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Doo Hyun Chung1,4 and Jong-Wan Park 1,2,3

Abstract
While wound healing is completed, the epithelium functions to normalize the interstitial context by eliminating
fibroblasts excited during matrix reconstruction. If not, tissues undergo pathologic fibrosis. Pulmonary fibrosis is a fatal
and hardly curable disorder. We here tried to identify epithelium-derived cytokines capable of ameliorating pulmonary
fibrosis. Human lung fibroblasts were inactivated in epithelial cell-conditioned media. Cystatin C (CST3) and growth
differentiation factor 15 (GDF15) were found to be enriched in the conditioned media and to inhibit the growth and
activation of lung fibroblasts by inactivating the TGF–Smad pathway. In mouse and human lungs with interstitial
fibrosis, CST3 and GDF15 expressions were markedly reduced, and the restoration of these cytokines alleviated the
fibrotic changes in mouse lungs. These results suggest that CST3 and GDF15 are bona fide regulators to prevent
excessive proliferation and activation of fibroblasts in injured lungs. These cytokines could be potential therapeutics for
ameliorating interstitial lung fibrosis.

Key points

● Epithelial cell-derived CST3 and GDF15 are
fibroblast-inhibiting cytokines

● CST3 and GDF15 inhibit the TGF-signaling pathway
in fibroblasts

● CST3 and GDF15 in the lung are downregulated
during fibrosis

● Recombinant CST3 and GDF15 ameliorate
pulmonary fibrosis in vivo

Introduction
Pulmonary fibrosis is a chronic progressive lung dis-

order associated with excessive extracellular matrix

(ECM) deposition and collapse of the lung parenchymal
architecture, leading to severe respiratory dysfunction
with a median survival of 2–4 years1. Anti-inflammatory
and immunosuppressive drugs have been tested as ther-
apeutic regimens for pulmonary fibrosis, but none have
been sufficiently effective in prolonging the survival per-
iod of patients2. Based on a consensus that pulmonary
fibrosis is attributed to an overgrowth of activated fibro-
blasts3, anti-fibrotic agents have been tried as emerging
drugs for treating pulmonary fibrosis. Indeed, nintedanib
and pirfenidone were clinically tried and evaluated to
delay the progression of fibrosis4,5. However, these drugs
were reported to provoke serious adverse effects in the
clinical trial6–8.
In most tissues, epithelial–mesenchymal homeostasis

must be maintained for normal structures and functions9.
For appropriate recovery of injured epithelium, the wound
healing process must complete three steps—inflamma-
tion, proliferation, and maturation phases. Finally, for
the recovery of epithelial–mesenchymal homeostasis,
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outgrown fibroblasts should be eliminated from the
repaired tissue10. Currently, pulmonary fibrosis is under-
stood as a disorder of epithelial–mesenchymal home-
ostasis because the epithelial integrity fail to be repaired
during repeated injury–regeneration. Consequently, the

wound healing process cannot be halted and the fibroblast
stimulation continues, because11. Furthermore, myofi-
broblasts induce epithelial cell death and disturb the
epithelial repair process. In fibrotic tissue, injured epi-
thelial cells and outgrown myofibroblasts activate a
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Fig. 1 Lung fibroblast growth is inhibited in the conditioned medium from pulmonary alveolar epithelial cells. a CCD-18Lu cells were
incubated in conditioned media (CM) collected from the indicated cells. Viable CCD-18Lu cells (unstained with trypan blue) were counted using a
hemocytometer. b After CCD-18Lu cells were incubated in the indicated CMs for 1–3 days, the population of proliferating cells was determined by
counting BrdU-stained cells at the S phase on flow cytometry. c CCD-18Lu cells were incubated in the indicated CM, and dead cells (stained with
trypan blue) were counted using a hemocytometer. d, e CCD-18Lu cells were co-stained with annexin V-FITC for apoptosis and propidium iodide for
necrosis, and subjected to flow cytometry. f CCD-18Lu cells were incubated in the indicated CMs for 1–3 days. After floating cells were removed,
attached cells were subjected to immunoblotting. Data in all panels are presented as the means and s.d. (n= 3). *P < 0.05 vs. the CCD-18Lu CM
group. Statistics: Student t-test in (a, e) panels; one-way ANOVA with Post hoc Tukey test in (b–d)
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positive feedback loop that results in massive fibrosis and
alveolar destruction12.
Cystatin C (CST3) is a cytokine ubiquitously expressed

in most mammalian cells and also detected in blood and
body fluids13. Given that it potently inhibits cysteine
proteases like cathepsins, CST3 is expected to stimulate
fibrosis by inhibiting the protease-mediated digestion of
ECM14,15. In contrast, cathepsins have been also reported
to promote liver or lung fibrosis by facilitating TGF-β-
driven differentiation of fibroblasts16,17. To date, the roles
of cathepsins and CST3 in organ fibrosis are controversial.
On the other hand, growth differentiation factor 15
(GDF15) is a TGF-β family member that is induced
immediately after a harmful stress18. GDF15 is believed to
be associated with stress responses, but its biological
functions have not been clearly identified. Although
GDF15 has been shown to promote cancer cell death,
whether it controls fibroblast proliferation and activation
is unclear18–20.
Despite many efforts to understand the pathogenesis of

pulmonary fibrosis, little is known about the mechanism
of epithelial cell control over fibroblasts in maintaining
epithelial–mesenchymal homeostasis. Identifying
fibroblast-controlling cytokines could provide novel pep-
tide drugs for pulmonary fibrosis therapy. In this study,
we identified two epithelial cell-derived cytokines CST3
and GDF15 capable of inhibiting proliferation and acti-
vation of fibroblasts. Furthermore, we tested the ability of
the cytokines to ameliorate bleomycin-induced pulmon-
ary fibrosis in mice.

Results
Lung fibroblast growth is inhibited in alveolar epithelial
cell-conditioned media
To determine which cells produced fibroblast-inhibiting

factors, we incubated lung fibroblast cell lines CCD-18Lu
in a mixture (1:1) of a fresh medium and a conditioned
medium (CM) collected from various epithelium-derived
cells, including human pulmonary alveolar epithelial cells
(hPAE) and 2 carcinoma (A549 and HCT116) cell lines.
Before collecting conditioned media, we verified that all
cells could maintain their viabilities in serum-free DMEM
medium (data not shown). The growth of CCD-18Lu cells
was significantly attenuated in hPAE CM (Fig. 1a). To
understand the properties of fibroblast growth arrest,
proliferating, dead, apoptotic, or necrotic cells were
counted. Given that BrdU-positive cell in the S phase were
regarded as proliferative (Figure S1a), cell proliferation
was halted in hPAE CM (Fig. 1b). To analyze cell death,
trypan blue-stained cells were counted, which indicates
that cells undergo death in hPAE CM (Fig. 1c). We
evaluates the types of cell death by co-staining cells with
annexin V and propidium iodide (Figure S1b), and found
that hPAE CM provoked either apoptosis or necrosis in

CCD-18Lu cells (Fig. 1d,e). To confirm apoptosis, cleaved
caspase 3 and PARP were detected by Western blotting.
Both apoptosis markers increased in CCD-18Lu cells
incubated with hPAE CM (Figure S1c). We next analyzed
the cellular levels of α-smooth muscle actin (α-SMA) and
collagen-1α, which are representative markers of active
myofibroblasts10,21. Given that both extracellular proteins
were upregulated incubation period-dependently, CCD-
18Lu cells were spontaneously activated under fetal
bovine serum and CM. However, this fibroblast activation
did not occur in hPAE CM (Fig. 1f). Based on the results,
normal epithelial cells are likely to release some factors
against fibroblast growth and activation.

Alveolar epithelial cell-derived CST3 and GDF15 inhibit
lung fibroblast growth
To examine whether the fibroblast-inhibiting factors are

composed of polypeptides, hPAE CM was heated to
denature polypeptides or trypsinized to degrade them.
After heating or trypsinizing, hPAE CM almost com-
pletely lost its ability to inhibit fibroblast growth (data not
shown). These results strongly indicate that the fibroblast-
inhibiting factors are polypeptides. To identify peptide-
based cytokines in CMs, CCD-18Lu and hPAE CMs were
tested with the Human XL Cytokine Array Kit. The red
boxes (1–14) indicate cytokines that were more abundant
in hPAE CM than in CCD-18Lu. (Fig. 2a). Cytokine levels
quantified from pixels in the ImageJ program are pre-
sented as bar graphs (Fig. 2b). The cytokines enriched in
hPAE CM are summarized in Fig. 2c. After reviewing the
literatures on cytokine functions, we determined two
candidates as fibroblast-inhibiting cytokines: cystatin C
(CST3) has been reported to inhibit fibrosis by antag-
onizing TGF-β;22,23 growth differentiation factor 15
(GDF15) to induce cancer cell death18,20. In immunoblot
analyses, CST3 and GDF15 were identified to accumulate
over time in hPAE CM. (Figure S2a). To examine whether
the cytokines inhibit fibroblast growth, we prepared CMs
from hPAE cells in which each cytokine was knocked-
down. To rule out off-target effects of siRNAs, we asses-
sed and confirmed the fibroblast-inhibiting effects of
CST3 and GDF15 siRNAs targeting different sites of each
mRNA (Fig. 3a and S2b). These siRNAs per se remaining
in the CMs did not affect the CCD-18Lu growth (data not
shown). When both cytokines were knocked-down toge-
ther, cell proliferation and survival both were additively
enhanced (Fig. 3b–d, and S3). To confirm the roles of
these cytokines in fibroblast inhibition, we incubated
CCD-18Lu cells in hPAE CM pretreated with a neu-
tralizing antibody against CST3 or GDF15 for 48 h. Each
antibody rescued fibroblast growth even in hPAE CM
(Fig. 3e). These results suggest that CST3 and GDF15 are
secreted from normal alveolar epithelial cells and are
involved in the inhibition of fibroblast growth.
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Recombinant CST3 and GDF15 inhibit fibroblast growth
and activity in cell culture
To confirm the actions of CST3 and GDF15 against

fibroblast growth, CCD-18Lu was treated with recombi-
nant peptides of human CST3 (rCST3) and human
GDF15 (rGDF15), and cell numbers were counted 24 h
after the treatment. Both peptides reduced the number of
CCD-18Lu cells in a concentration-dependent manner
(Fig. 4a). Based on the IC50 (half maximal inhibitory
concentration) values, rGDF15 and rCST3 seem to have
the similar efficacy. In contrast, the peptides failed to
inhibit cell growth in hPAE cells (Figure S8a), supporting
the fibroblast-specific actions of these peptides. To test
the synergistic effects of rCST3 and rGDF15, we com-
pared the fibroblast-inhibiting effects of 1 ng/mL of each

peptide with a combination of half-concentrations (0.5+
0.5 ng/mL) of the two peptides. The combination showed
a greater (>twofold) effect than the single treatment of
each peptide (Fig. 4b). Given that the combination index
(CI) was <1.0 on the compusyn software (CompuSyn Inc.;
Paramus, NJ)24, the combination of CST3 and
GDF15 seems to have a synergistic effect on fibroblast
inhibition. Aside from growth inhibition, both peptides
downregulated collagen-1α and α-SMA protein and
mRNA levels (Fig. 4c,d). In addition, we isolated pul-
monary fibrosis-associated fibrosis (PFAF) from mouse
lungs with bleomycin-induced fibrosis to observe
responses of activated lung fibroblasts. rGDF15 or/and
rCST3 diminished PFAF numbers (Fig. 4e), promoted cell
death (Fig. 4f,g), and reduced proliferation potential
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(Fig. 4h). rGDF15 or/and rCST3 also downregulated
collagen-1α and α-SMA protein and mRNA levels (Fig. 4i,
j). These results encouraged us to investigate whether the
peptides are applicable to prevent pulmonary fibrosis.

CST3 and GDF15 inhibit the TGF-signaling pathway
Given that fibroblast growth and activation largely

depend on the TGF–Smad pathway, we first checked
whether CST3 and GDF15 inhibit the signaling pathway.

As expected, Smad2/3 in CCD-18Lu were phosphorylated
(or activated) in the presence of FBS. Interestingly, the
phosphorylation was attenuated by recombinant CST3 or/
and GDF15 (Fig. 5a). When the TGF-signaling pathway
was provoked by TGF-β1, TGF-β receptor, and Smad2/3
were inactivated by CST3 or/and GDF15 (Fig. 5b). In
either CCD-18Lu cells (Fig. 5c) or primary mouse lung
fibroblasts (Fig. 5d), cell growth was stimulated by TGF-
β1, which was abolished by the recombinant peptides.
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ECM production in CCL-18Lu and mouse lung fibroblast
was also stimulated by TGF-β1, but inhibited by the
recombinant peptides (Fig. 5e). Collagen 1α and αSMA
expressions in mouse lung fibroblasts were repressed at
the transcriptional level by the peptides (Fig. 5f). We next
evaluated the TGF/Smad-dependent gene expression
using the SBE-luciferase reporter, and confirmed the
inhibitory actions of CST3 and GDF15 to the TGF–Smad
signaling pathway (Fig. 5g).

CST3 and GDF15 are downregulated in mouse and human
lungs undergoing fibrosis
At the last step of wound repair, the epithelium may

function to normalize the ECM microenvironment by
pacifying fibroblasts excited during ECM reconstruction.
Yet, the epithelium-derived, fibroblast-controlling factors
have not been identified. Our results prompted us to test
the possibility that CST3 and GDF15 are bona fide con-
troller of fibroblasts in the lung. First, we analyzed the
expression of CST3 and GDF15 in lung tissues of patients
with and without interstitial lung disease (ILD). Masson’s
trichrome staining verified that the lung tissues from ILD
patients were filled with massive ECM but those from
lung cancer patients without ILD had normal archi-
tecture. CST3 and GDF15 were observed to be highly
expressed along the alveolar wall in non-ILD lungs. Sur-
prisingly, both cytokines were barely present in ILD lungs
(Fig. 6a, top). All histological data in human lung speci-
mens are shown in Figures S7-10. To quantify the cyto-
kine levels, fluorescence intensities were normalized to
cell numbers. The expressions of both cytokines were
significantly lower in ILD lungs than in non-ILD lungs
(Fig. 6a, bottom). To confirm the suppression of the
cytokines during fibrosis, we adopted an animal model for
pulmonary fibrosis. C57/B6 mice were subjected to a
single challenge of bleomycin via bronchial instillation,
and intraperitoneally injected twice weekly with PBS. On
Day 21 after the bleomycin treatment, lung tissues were
prepared for histological analyses. Figure 6b shows the

experimental schedule and the results from Masson’s
trichrome staining. The procedure using bleomycin suc-
cessfully induced excessive deposition of collagen in the
interstitium of mouse lungs. As was shown in ILD lungs,
both the cytokines were markedly suppressed in fibrotic
lungs of mice, which was double-checked by immuno-
fluorescence analysis (Fig. 6c) and immunoblotting
(Fig. 6d, figure S11a). To examine whether these cytokines
were released from alveolar epithelium, we measured
CST3 and GDF15 in BALF, and found that CST3 and
GDF15 levels were substantially reduced in fibrotic lungs
(Fig. 6e and S11b). Accordingly, the suppression of these
cytokines in fibrotic lungs provides a rationale to restore
the cytokines for treating lung fibrosis.

Recombinant CST3 and GDF15 ameliorate pulmonary
fibrosis in vivo
After a bronchial instillation of bleomycin, C57/B6 mice

were systemically injected twice weekly with PBS, rCST3
(100 μg/kg), rGDF15 (100 μg/kg), or both peptides (50 μg/
kg of each). On the 21st day, lung tissues were excised, as
illustrated in Fig. 7a. Body weight was measured con-
tinuously to monitor apparent health. Mouse weights
gradually decreased over the 21 days, but was significantly
recovered by combined peptides (Fig. 7b). Mouse survival
was also improved by the combination (Fig. 7c). To
evaluate the extent of pulmonary fibrosis, we stained lung
specimens with Masson’s trichrome and hematoxylin/
eosin (Fig. 7d). As expected, bleomycin induced an
obstruction of the alveolar sacs with thickened inter-
alveolar septa and massive collagen in the lung inter-
stitium. Administration of either rCST3 or rGDF15 saved
airways spaces and lessened fibrosis in bleomycin-treated
lungs, and the combination of these peptides at the half
doses was more effective than any single administration
(Fig. 7d). To quantify the fibrotic changes, we measured
fibrotic areas and Ashcroft scores on Masson’s trichrome-
stained specimens, and biochemically analyzed hydro-
xyproline levels in lung tissues (Fig. 7e–g). The results of

(see figure on previous page)
Fig. 4 CST3 and GDF15 peptides inhibit proliferation and ECM production in CCD-18Lu cells. a CCD-18Lu cells were treated with a
recombinant peptide of CST3 or GDF15 and cultured in 2% serum-containing medium for 24 h. IC50s are the doses of peptides showing 50% growth
inhibition. b CCD-18Lu cells were incubated with one of two peptides (10 ng/mL) or both peptides (5 ng/mL each) for 48 h. c CCD-18Lu cells were
incubated with CST3 or GDF15 peptide for 48 h, and subjected to immunoblotting. d CCD-18Lu cells were incubated with one of two peptides (10
ng/mL) or both peptides (5 ng/mL each) for 24 h. The mRNA levels were measured by RT-qPCR. All data are presented as the means+ s.d. from three
experiments. *P < 0.05 vs. the PBS group; #P < 0.05 vs. the CST3 or GDF15 only group. e,f Primary lung fibroblasts were isolated from fibrotic tissues of
bleomycin-treated mouse lungs, and cultured. The pulmonary fibrosis-associated fibroblasts (PFAFs) were pre-incubated in a 2% FBS-containing
medium for 16 h, and then treated with CST3 or/and GDF15 (5 or 10 ng/mL) for 24 h. Viable (unstained, e) and dead (stained, f) cells were counted
using a hemocytometer. g,h PFAFs, which had been treated with CST3 or/and GDF15 for 24 h, were co-stained with annexin V-FITC and propidium
iodide (g) or with co-stained with BrdU and 7-AAD (h), and subjected to flow cytometry. i Control lung fibroblasts were treated with PBS, and PFAFs
were treated with PBS or CST3 or/and GDF15 in 2% FBS-containing media for 24 h. The mRNA levels were measured by RT-qPCR. j PFAFs were
treated with CST3 or/and GDF15 for 24 h, lysed, and subjected to immunoblotting. All data are presented as the means+ s.d. from three
experiments.*P < 0.05 vs. the untreated PFAF group. Statistics: Student's t-test in (a); one-way ANOVA with post hoc Tukey test in (b–i)
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Fig. 5 CST3 and GDF15 inhibit the TGF-β signaling pathway in CCD-18Lu cells. a,b CCD-18Lu cells, which had been pre-incubated in serum-free
media for 16 h, were treated with a recombinant peptide (10 ng/mL) of CST3 or GDF15 in the presence of 5 % FBS (a) or 5 ng/mL TGF-β1 (b) for 1 h,
and subjected to immunoblotting. c CCD-18Lu cells were pre-incubated in a serum-free medium for 16 h, and then treated with TGF-β1 and CST3 or/
and GDF15 for 24 h. CCD-18Lu cells were counted using a hemocytometer. d Primary lung fibroblasts, which had been isolated from normal mouse
lung, were pre-incubated in a serum-free medium for 16 h, and then treated with TGF-β1 and CST3 or/and GDF15 for 24 h. CCD-18Lu cells were
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these fibrosis parameters further supported our hypoth-
esis that rCST3 and rGDF15 in combination attenuates
bleomycin-induced pulmonary fibrosis. Next, we analyzed
α-SMA and collagen-1α levels to evaluate the degree of
fibroblast activation. Both markers were densely stained in
the lungs treated with bleomycin, but were less obvious in
peptide-treated lungs (Fig. 7h, S12). Collectively, recom-
binant CST3 and GDF15 could be developed as potential
biopharmaceuticals for treating pulmonary fibrosis.

Discussion
Under the assumption that inflammation provokes

fibrosis, anti-inflammatory medications have been tested
as pulmonary fibrosis therapeutics, which include corti-
costeroids, azathioprine, chlorambucil, cyclopho-
sphamide, cyclosporine, and interferons25. However, these
therapeutics failed to reduce the mortality rate of pul-
monary fibrosis in clinical trials and induced side
effects26,27. More recently, agents with diverse pharma-
cological actions, including antioxidation and antic-
oagulation, have been tested clinically, but have not led to
sufficient improvements28,29. The poor outcomes of anti-
inflammatory therapies caused the change in the
assumption of pulmonary fibrosis pathogenesis. Pulmon-
ary fibrosis is now believed to result from aberrant wound
repair accompanying the hyperactivation of interstitial
fibroblasts and disorganization of the alveolar epithe-
lium30. Based on this concept, fibroblast-targeting thera-
pies are becoming a popular focus of research as a new
strategy to treat pulmonary fibrosis. For instance, pirfe-
nidone, tyrosine-kinase inhibitors, TGF-β inhibitors, and
connective tissue growth factor inhibitors have been
evaluated in phase II and III clinical trials31,32.
Fibroblast-targeting pulmonary fibrosis therapies can be

mainly classified as small molecules or monoclonal anti-
bodies. Since signaling pathways stimulating fibroblasts
have been considered as the primary targets, investiga-
tions might focus on chemical inhibitors or antibodies
that can block fibroblast-activating pathways33,34. How-
ever, we here shifted the anti-fibrosis strategy to

reinforcing fibroblast-suppressive signaling pathways.
According to the epithelial–mesenchymal homeostasis
theory, the pulmonary epithelium has the intrinsic ability
to suppress active fibroblasts after wound repair com-
pletion. This inspired our research for new pulmonary
fibrosis therapies. We discovered two fibroblast-inhibiting
cytokines, CST3 and GDF15, from normal epithelial cells
and demonstrated their therapeutic effects in a
bleomycin-induced pulmonary fibrosis mouse model.
Bleomycin-induced pulmonary fibrosis is common in

animal models to test potential pulmonary fibrosis ther-
apeutics. Bleomycin acutely simulates pulmonary inflam-
mation, followed by chronic progression of pulmonary
fibrosis. As molecular signatures of fibrosis, pro-
inflammatory cytokines, such as IL-1, IL-6, and TNF-α,
increase at the early phase in lung tissues treated with
bleomycin35. Later, pro-fibrotic markers, such as fibro-
nectin, procollagen-1, and TGF-β, gradually increase in
the tissues and their levels peak around 2 weeks after
bleomycin treatment36,37. Actually, therapy during the
acute inflammatory phase may not be practical in hospi-
tals, as pulmonary fibrosis can be diagnosed after onset of
respiratory symptoms and detection of radiological evi-
dence. Therefore, therapy might be started during the
fibrotic phase. Considering the practical period of therapy,
we started to inject the recombinant peptides 6 days after
the bleomycin treatment. Our preliminary experiment
indicated that the lung tissues partially underwent fibrosis
on day 6, which helped us to determine the schedule for
injecting peptides. Even though pulmonary fibrosis had
already started, the peptides were sufficiently effective as
to halt the disease progression (Fig. 7). Therefore, cyto-
kine therapy is expected to be effective in patients who are
already diagnosed with pulmonary fibrosis.
Given that cathepsins can digest ECM proteins, cathe-

psins is expected to reduce fibrotic burden. However, the
fibrosis-promoting effects of cathepsins have been shown
in several literatures. For instance, cathepsin B stimulates
hepatic stellate cells to promote fibrogenesis14, and inhi-
biting cathepsin B suppresses collagen deposition in

(see figure on previous page)
Fig. 6 CST3 and GDF15 are downregulated in mouse and human lungs with fibrosis. a Tissue specimens of non-ILD (n= 10) and ILD (n= 10)
human lungs were subjected to Masson trichrome staining (top, ×200 magnification) and immunofluorescence staining with anti-CST3 or anti-
GDF15 antibodies (middle, ×1000 magnification). The immune complexes and DAPI-stained nuclei were visualized under a fluorescence microscope.
Total fluorescence intensity was quantified using ImageJ and divided by the number of nuclei. Data are plotted as dots (bottom). b Experimental
schedule for bleomycin-induced pulmonary fibrosis (top). Saline-treated or bleomycin-treated lung sections were stained with Masson trichrome and
H&E (bottom). c Tissue specimens of saline-treated or bleomycin-treated mouse lungs (10 in each group) were subjected to immunofluorescence
staining with anti-CST3 or anti-GDF15 antibodies (top). Total fluorescence intensity was quantified using ImageJ and divided by the number of nuclei
(bottom). d CST3 and GDF15 proteins were immunoblotted in mouse lung homogenates prepared from saline-treated or bleomycin-treated mice for
21 days, and their levels vs. β-tubulins were quantified using ImageJ. e Bronchoalveolar lavage fluid were collected from saline-treated or bleomycin-
treated mice for 21 days, and proteins in the fluid were precipitated by TCA. CST3 and GDF15 levels were detected by Western blotting, and their
levels vs. protein levels were quantified using ImageJ. The means and s.d. in dot plots are presented by long and short horizontal bars and **P < 0.01
by Student's t-test
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mouse livers15. Cathepsin B also stimulates fibrogenesis
by facilitating TGF-β-driven differentiation of lung
fibroblasts16,17. Therefore, it is reasonable that CST3
ameliorates lung fibrosis by inhibiting cathepsins. Inde-
pendent of cathepsin inhibition, CST3 is known to block
fibrogenesis by directly antagonizing the TGF-β pathway.
It physically binds to the TGF-β receptor, inhibiting TGF-
β from interacting with its receptor16,22. Our results
showing that CST3 attenuates the TGF signaling in CCD-
18Lu support the latter mechanism of CST3. However, we
cannot rule out the possibility that CST3 prevents fibro-
genesis in bleomycin-treated lungs of mice via the dual
effects of CST3 against lung fibroblasts.
The biological roles of GDF15 have been investigated

restrictively in cancer cells. GDF15 is known to induce
apoptosis in colorectal, prostate, and lung cancer cells18–20.
Since the GDF15 gene harbors the p53 response element
in the promoter region38, GDF15 is also expected to
induce fibroblast death under harmful conditions like
hypoxia and inflammation. However, GDF15 was unex-
pectedly found to inhibit fibroblast growth and activation
through the inhibition of the TGF–Smad pathway. In
contrast to these results, a recent report demonstrated
that GDF15 stimulated proliferation of NIH 3T3 fibro-
blasts39. Although GDF15 was used at a 25-fold higher
concentration than TGF-β, its effect on fibroblast growth
was much less than that of TGF-β. This suggests that
GDF15 acts as a partial agonist to the TGF-β receptor. In
general, weak agonists can stimulate receptors in the
absence of full agonists, but function to inactivate
receptor signaling in the presence of full agonists because
it competes with the agonist for binding to receptors40.
Considering the TGF-β-enriched environment in fibrotic
lungs40. GDF15 could act as an inhibitor of fibrogenesis.
However, the precise role of GDF15 in lung fibroblast
growth and activation remains to be investigated.
In conclusion, cytokines CST3 and GDF15 are secreted

from normal epithelial cells and inhibit growth and acti-
vation of lung fibroblasts. These cytokines are severely
deregulated in mouse and human lungs undergoing
fibrosis, and systemic administration of them preserves
the air way architecture by lessening collagen deposition
in the interstitium of bleomycin-treated mouse lung.
CST3 and GDF15 appear to be bona fide regulators that
prevent excessive proliferation and activation of fibro-
blasts in injured lungs.

Materials and methods
Cell culture and conditioned media
CCD-18Lu (normal lung fibroblast), A549 (adeno-

carcinomic alveolar epithelial cell), and HCT116 (colon
cancer cell) were purchased from the American Type
Culture Collection (ATCC, Manassas, VA); hPAE (human
pulmonary alveolar epithelial cell) was from ScienceCell

Research Laboratory (Carlsbad, CA). hPAE cells were
cultured in Eagle Alveolar Epithelial Cell Medium sup-
plied by the manufacturer. To prepare conditioned media,
various types of cells were seeded in a 100-mm dish at
80% confluency and incubated in cell type-specific media
for 24 h. Next day, the cells were washed with PBS and
incubated commonly in Dulbecco’s Modified Eagles
media without FBS. After 2 or 3 day-incubation (~1 × 107

cells per 100-mm dish), the CM (5mL per dish) was
centrifuged, filtered, and mixed with an equal volume of a
fresh medium.

Human lung tissues
Lung biopsy samples were obtained from 10 patients

with ILD and 10 lung cancer patients without ILD. Of 10
ILD patients, 3 lung cancer patients with interstitial
pneumonia were included. ILD was finally diagnosed by
pathologists in Seoul National University Hospital.
Detailed information on tissue donors is summarized in
Supplementary table 1. The study protocol was approved
by the Institutional Review Board of Seoul National
University Hospital (approval No. 1704-172-849).

Bleomycin-induced pulmonary fibrosis
C57BL/6J mice (male, 11 weeks) were purchased from

Central Laboratory Animal Inc., and kept in specific
pathogen-free rooms. Mice were anesthetized with a mix-
ture of tiletamine/zolazepam (30mg/kg) and xylazine (10
mg/kg), and subjected to an intratracheal injection with
saline or bleomycin sulfate (2mg/kg, MBcell, CA) in a total
volume of 50 μL. CST3/GDF15 peptides (50 μg/kg each) or
PBS were injected intraperitoneally into mice on days 6, 9,
12, 15, 18 after the bleomycin challenge. Recombinant
peptides of mature CST3 (aa. 27–146, NM_000099) and
mature GDF15 (aa. 195–308, NM_004864) were purchased
from Abcam and Sino Biological Inc. (Beijing, China),
respectively. On day 21, the lung tissues were removed from
mice and divided into two lobes. The left lobes were fixed in
4% paraformaldehyde, and the right lobes were stored in
liquid nitrogen. All procedures were approved by the Seoul
National University Institutional Animal Care and Use
Committees (Approval No. 141006-3).

Mouse lung fibroblast isolation and culture
Normal lung fibroblasts were isolated from the lung tis-

sues of normal mice. To get pulmonary fibrosis-associated
fibroblasts (PFAF), mice were subjected to a single chal-
lenge of bleomycin via bronchial instillation and the lungs
were excised on day 12. Lung tissues were washed and
dissected using surgical blades. The minced tissues were
digested with 2.4 U/mL dispase and 0.1% collagenase at 37 °
C for 45min. The suspension was filtered through 70 μm
nylon strainer and centrifuged at 1000 × g for 10min. The
cell pellet was resuspended in DMEM containing 20% FBS
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and incubated overnight at 37 °C. Attached fibroblasts were
subcultured in DMEM containing 10% FBS, 100U/mL
penicillin, and 100 g/mL streptomycin.

Cytokine profiling
Cytokine profiling was performed using the proteome

profiler Human XL cytokine array kit (# ARY022) pro-
vided by R&D Systems. Cells were incubated in serum-
free media for 3 days and the conditioned media were
prepared as mentioned above. The media (1 mL per
membrane) were applied to the nitrocellulose-based array
membrane and incubated at 4 °C overnight. Array mem-
branes were treated with the detection antibody cocktail
(R&D Systems) for 1 h and further with the streptavidin-
HRP solution for 30min. The immune complexes were
visualized using the Chemi-Reagent Mix kit and the arrays
were exposed to X-ray films. Based on the mean intensity
of reference spots (A1/2, A23/24, and J1/2), the intensity
of each dot was normalized.

Masson’s trichrome assay and Ashcroft scoring
The paraffin sections (4 μm) of lungs were depar-

affinized, rehydrated, and sequentially stained with Wei-
gert’s iron hematoxylin and biebrich scarlet-acid fuchsin
for 10min. Finally, the sections were stained with 2.5%
aniline blue for 10 min and destained with 1% glacial
acetic acid for 3 min. Photomicrographs were taken from
four random fields in a tissue section. The severity (0 to 8)
of interstitial fibrosis was evaluated based on the Ashcroft
fibrosis scoring system41.

Hydroxyproline assay
The frozen right lungs were homogenized in distilled

water (100 μL/10 mg tissue). The homogenates were
incubated at 95 °C for 3 h and centrifuged at 16,000 × g for
10 min. Collagen content in the supernatant was mea-
sured using the hydroxyproline colorimetric assay kit
provided by BioVision (Milpitas, CA). Hydroxyproline
levels were spectrophotometrically determined based on
the absorbance at 560 nm.

Immunoblotting
Cells were lysed in a denaturing SDS sample buffer.

Proteins in the cell lysates were separated on SDS/10-15%
polyacrylamide gels and transferred to Immobilon-P
membranes. The membranes were pre-incubated with
5% skim milk for 30min, incubated overnight with pri-
mary antibodies (1:1000 dilution) at 4 °C, and incubated
with HRP–conjugated secondary antibodies (1:5000) at
room temperature for 1 h. The immune complexes were
visualized using the SuperSignal West Femto kit (Thermo
Scientific, Waltham, MA). Antibodies against Smad2, p-
Smad2, Smad3, and p-Smad3 were purchased from Cell
Signaling Tech. (Danvers, MA); TGFβR1 antibody from

Santa Cruz Biotech. (Dallas, TX); α-SMA, collagen-1α,
and p-TGFβR1 antibodies from Abcam (Cambridge, MA);
CST3 antibody from R&D Systems (Minneapolis, MN);
GDF15 antibody from Fisher Scientific (Pittsburgh, PA).

Immunohistochemistry and immunofluorescence
Paraffin sections (4 μm) of lung tissues were depar-

affinized, rehydrated, and autoclaved at 121 °C for 10 min
in 100 mM citrate buffer (pH 6.0) to retrieve antigens.
After treated with 3% hydrogen peroxide for 10min, the
sections were incubated in 10% bovine serum at room
temperature for 1 h to block nonspecific interactions.
They were incubated with an antibody against collagen-1α
(1:250 dilution; Abcam), α-SMA (1:500; Abcam), CST3
(1:1000; R&D Systems), or GDF15 (1:10,000; Abcam)
overnight at 4 °C. For immunohistochemistry, the sections
were incubated with biotinylated secondary antibodies
(1:500) provided by Vector Laboratories (Burlingame,
CA). The immune complexes were visualized using the
VECTASTAIN ABC Kit (Vector laboratories). For
immunofluorescence, the sections were incubated with
Alexa Fluor 488-conjugated anti-goat secondary antibody
(Thermo Fisher), and counterstained with DAPI (Invi-
trogen). Fluorescent images were acquired using Olympus
fluorescence microscope (DP30BW, Melville, NY) or
Nikon confocal laser microscopy (A1, Nikon Instruments,
Tokyo, Japan). Four high power fields were randomly
selected in each section to analyze stained areas or
fluorescent intensities using the ImageJ program (NIH,
Bethesda, MD).

Quantitative RT-PCR
Total RNAs were extracted from cells using the TRIzol

kit (Thermo Fisher Scientific). cDNAs were synthesized
from 2 μg of RNAs using M-MLV reverse transcriptase
(Promega, San Luis Obispo, CA). The cDNAs were
amplified with SYBR Green (Enzynomics, Daejeon,
Korea), and quantified using a 7900HT real-time PCR
detection system (Bio-Rad, Hercules, CA). The sequences
of PCR primers are informed on Supplementary Method.

Statistical analysis
The statistical analyses were performed using the SPSS

(window version 15.0.0) software package. Comparisons
between two groups were analyzed by Student’s t-test for
parametric data or by Mann–Whitney U test for non-
parametric data. We performed one-way ANOVA and
post hoc Tukey test for analyzing three or more groups.
Survival rates were analyzed by the log-rank test. Sig-
nificant difference was defined when P < 0.05.
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