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Abstract

Atherosclerosis and valvular heart disease often require treatment with corrective surgery to 

prevent future myocardial infarction, ischemic heart disease, and heart failure. Mechanisms 

underlying the development of the associated complications of surgery are multifactorial and have 

been linked to inflammation and oxidative stress, classically as measured in the blood or plasma of 

patients. Post-operative pericardial fluid (PO-PCF) has not been investigated in depth with respect 

to the potential to induce oxidative stress. This is important since cardiac surgery disrupts the 

integrity of the pericardial membrane surrounding the heart, and causes significant alterations in 

the composition of the pericardial fluid (PCF). This includes contamination with hemolyzed blood 

and high concentrations of oxidized hemoglobin, which suggests that cardiac surgery results in 

oxidative stress within the pericardial space. Accordingly, we tested the hypothesis that PO-PCF is 
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highly pro-oxidant and that the potential interaction between inflammatory cell-derived hydrogen 

peroxide with hemoglobin is associated with oxidative stress. Blood and PCF were collected from 

31 patients at the time of surgery and postoperatively from 4 to 48 hours after coronary artery 

bypass grafting, valve replacement, or valve repair (mitral or aortic). PO-PCF contained high 

concentrations of neutrophils and monocytes which are capable of generating elevated amounts of 

superoxide and hydrogen peroxide through the oxidative burst. In addition, PO-PCF primed naïve 

neutrophils resulting in an enhanced oxidative burst upon stimulation. The PO-PCF also contained 

increased concentrations of cell-free oxidized hemoglobin which was associated with elevated 

levels of F2α-isoprostanes and prostaglandins, consistent with both oxidative stress and activation 

of cyclooxygenase. Lastly, protein analysis of the PO-PCF revealed evidence of protein thiol 

oxidation and protein carbonylation. We conclude that PO-PCF is highly pro-oxidant and 

speculate that it may contribute to the risk of post-operative complications.

Introduction

In the United States there are approximately 750,000 cardiac surgeries performed each year 

(1). Depending on the procedure, the incidence of postoperative complications such as atrial 

fibrillation is 15-50%, which results in a prolonged hospital stay and an estimated $10,000 

increase in hospital cost per occurrence (2). Therapeutic strategies are only partially 

effective, and a lack of understanding of the complication has resulted in minimal 

improvement in treatment over the last several years (3, 4). It has been documented that 

inflammatory markers are elevated in the serum of postoperative cardiac surgery patients 

and this correlates with increased occurrences of cardiac dysfunction and atrial fibrillation.

(5-7). Some investigators have reported partial improvement in cardiac complications with 

systemic anti-inflammatory treatments (8). However, these studies have focused on serum 

concentrations of inflammatory molecules and have not evaluated the composition of the 

pericardial fluid, which may be more reflective of local environment around the heart, 

especially for highly labile oxidation products and pro-inflammatory cytokines. Oxidative 

stress is known to exacerbate heart injury and can occur secondary to inflammation, surgical 

trauma, and cardiac ischemia (7, 9-11). Oxidative stress has been implicated in the 

development of atrial fibrillation immediately following surgery, but the extent of its 

contribution and mechanisms responsible have yet to be elucidated (12-15).

The pericardium is a specialized membrane surrounding the heart that performs specific 

physiological roles needed for cardiac function (16, 17). In addition to acting as a lubricant, 

the pericardial fluid (PCF) contains several paracrine modulators, such as prostanoids, 

natriuretic peptides, and endothelins, which may regulate sympathetic tone, coronary 

vasomotor tone, heart rate, blood pressure and complement responses (16, 18). The 

pericardium is breached at the time of surgery, causing significant alterations in the PCF. In 

pericardial diseases, it has been shown that the composition and volume of postoperative 

PCF (PO-PCF) is altered and associated with cardiac dysfunction (19-23). Specifically, 

pericarditis, inflammation of the pericardium, has been shown to cause increased fluid 

volume and accumulation of inflammatory cells in the PCF and contributes to decreased 

cardiac function. These findings provide evidence that components of PCF can act as 

modulators of cardiomyocyte function despite the presence of the epicardium (24-27). In 
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this study we tested the hypothesis that cardiac surgery results in the generation of highly 

pro-oxidant and pro-inflammatory molecules in the PCF and that these lead to oxidative 

damage in the pericardial environment.

Materials and Methods

Surgery, Blood Collection and Cell Isolations

All study protocols for the collection and handling of human samples were reviewed and 

approved by the Institutional Review Board, University of Alabama at Birmingham. 

Consent was obtained from adult (>19 years old) patients undergoing cardiac surgery for 

ischemic heart disease or valvular heart disease: coronary artery bypass graft +/- aortic valve 

replacement/mitral valve repair/replacement, tricuspid valve repair or replacement, or a 

valve procedure alone. Patients with ventricular assist devices, atrial fibrillation surgery, 

thoracic aorta surgery, non-cardiac surgery, and patients with atrial fibrillation within six 

months were excluded from the study.

Blood samples (1-2 tubes, 8.5 ml/tube) were collected from 31 patients (22 males and 9 

females, 62 (± 26) years of age (Table 1) in vacutainers (BD Biosciences) containing 1.5 ml 

ACD solution (trisodium citrate, 22.0 g/L; citric acid, 8.0 g/L; and dextrose 24.5 g/L) as 

anticoagulant and processed within 2 hours of collection. Procedures were designed to 

prevent activation of the cells during isolation and were performed at room temperature 

unless otherwise specified. PO-PCF was obtained and assayed in parallel with peripheral 

blood drawn from the same patient at the time of the start of surgery, and 4, 12, 24, and 48 h 

after the patient left the operating room. PO-PCF was allowed to accumulate no more than 1 

h in the mediastinal drainage tube prior to collection. Cells were prepared from blood or 

PCF as described previously (28, 29). Monocytes and neutrophils were pelleted, counted, 

and plated on an extracellular flux analysis plate for measurement of oxidative burst. 

Prepared cells were ≥95% viable as determined by Trypan Blue exclusion (data not shown).

Measurement of Myoglobin, Troponin and Creatine Kinase

Cardiac injury markers were assessed by a Luminex bead-based multiplex assay using 

fluorescent bead technology (Milliplex kit, Millipore Corp.) in a 96-well format. 

Measurements were conducted in compliance with the manufacturer’s instructions. Standard 

curves correlating mean fluorescence intensity with concentration were generated for each 

analyte using the standards supplied by the manufacturer, and unknown values were 

calculated within the linear portion of the generated standard curves.

Hemoglobin concentration

The postoperative plasma and PCF were centrifuged at 1500 × g for ten min to remove cells 

and then at 5000 × g for 10 min to remove cellular debris. Absorbance spectra from 

500-700nm was measured using a DU 800 spectrophotometer (Beckman-Coulter). Total 

hemoglobin was determined after subtracting the background absorbance at 700nm from the 

isosbestic point for Methemoglobin (MetHb) and Oxyhemoglobin (OxyHb) at 523nm with 

an extinction coefficient of 7.12 as reported by Snell and Marini (30). MetHb concentration 

was calculated using the extinction coefficient of 4.4 mM-1 cm-1 at 631nm (31). Assuming 
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the two major species of hemoglobin, MetHb and OxyHb, were present in the PCF, OxyHb 

was measured as the difference between MetHb and total hemoglobin.

Flow Cytometry analysis and complete blood count in PCF

Pericardial fluid collected at the time of surgery and for the first 48 hours after surgery was 

centrifuged and the buffy coat isolated as described above. Isolated leukocytes were 

separated by forward and side scatter and analyzed by flow cytometry using CD14-PE and 

CD16-APC to differentiate monocyte and neutrophil populations.

Determination of lipid peroxidation products by mass spectrometry

Isoprostane and prostaglandin extractions of human serum and pericardial fluid were 

performed as described previously (32). Briefly, aliquots of patient PCF were stored frozen 

(-80°C) and contained 1 mM BHT and 50 μM EDTA and DTPA. Samples (1 ml) were 

thawed and diluted to 3 ml with 0.02 M Bis-Tris, pH 6.0 containing 8-iso-PGF2α-d4 as an 

internal standard and 1 mM BHT and 50 μM EDTA prior to being loaded on to prepared 

Strata X-AW 33u polymeric weak anion exchange cartridges (Phenomenex, Torrance, CA). 

Eluted samples were dried under a constant stream of nitrogen and reconstituted in methanol 

containing 1 mM BHT and 50 μM EDTA. F2α-Isoprostanes and prostaglandins were 

measured by isotope dilution, reverse-phase liquid chromatography-multiple reaction ion 

monitoring mass spectrometry as previously described (32)

Protein Thiol Oxidation

To detect protein thiols, Bodipy-IAM (Bodipy-iodoacetamide; Invitrogen, Eugene, OR), a 

fluorescently labeled alkylating agent capable of forming covalent adducts with cysteine 

thiol groups that are not involved in disulfide linkages was utilized. In brief, PCF samples 

from individual patients (0 and 4 h post-surgery) were diluted 1:10 with de-ionized water 

prior to determining protein concentration using the Lowry DC protein assay (Bio-Rad). 

Subsequently, 5 μg of PCF protein was treated with 500 μM Bodipy-IAM for 30 min to 

assess protein thiol modifications. The reaction was stopped with 5X SDS-PAGE sample 

buffer (1M Tris-HCl, pH 6.8, 10% SDS, 30% glycerol, 0.05% bromophenol blue) 

containing 5% β-mercaptoethanol.

Samples were resolved using 12.5% SDS-PAGE gels and imaged in-gel using a Typhoon 

imager (GE Healthcare Biosciences, Pittsburgh, PA). Following imaging, gels were 

immediately stained with Coomassie Brilliant Blue G-250 (coomassie blue; Bio-Rad 

Laboratories, Hercules, CA) for 1 hour, destained overnight, and imaged using the 

AlphaView SA imager (Protein Simple, Santa Clara, CA) to evaluate protein loading. The 

Bodipy-IAM fluorescent signal intensity for albumin was quantified using ImageQuantTL 

analysis software (GE Healthcare Biosciences, Pittsburgh, PA) and the coomassie blue 

protein stain for albumin was quantified using the AlphaView SA software.

Protein Carbonylation

To determine the extent of protein carbonylation due to aldehyde/ketone moieties on 

proteins in PO-PCF (0 and 4 h), samples were first depleted of albumin. PCF samples (100 

μl) were loaded onto rehydrated SwellGel blue Resin (Thermo Scientific) and eluted as per 
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the manufacturer’s instructions. The protein content was measured in the flow-through 

material. Next, 100 μg protein was incubated in the presence of 1 mM biotin hydrazide 

(Pierce) for 30 min at 37°C. The reaction was stopped with the addition of 1M Tris-HCl, pH 

7.4 after which proteins were resolved by SDS-PAGE and transferred to nitrocellulose.

Measurement of the Oxidative Burst

Monocytes and neutrophils were isolated from peripheral blood and PCF at 4 hours post-

surgery and compared with healthy donors (29). Where indicated, healthy donor neutrophils 

were pretreated for 1.5 h with the post centrifugation (1500 × g) supernatant from the 4 h 

PO-PCF sample (0-10% supernatant). After incubation, the oxidative burst was stimulated 

with phorbol 12-myristate 13-acetate (PMA, 100 ng/ml), after inhibition of mitochondrial 

respiration using antimycin A (10 μM). The oxygen consumption rate was measured using 

an extracellular flux analyzer (Seahorse Bioscience) as previously described (33). The area 

under the curve (AUC) after PMA stimulation was subtracted by the rate of oxygen 

consumption after antimycin A treatment to give the total generation of ROS over a period 

of 24 or 48 min. The oxidant production has previously been shown to be dependent on 

NADPH oxidase activity (33).

Statistics

Each blood sample was analyzed with the number of replicates indicated and data are 

presented as mean ± SEM. Statistical significance was determined using either student’s T-

test or One-way Anova, as indicated, followed by Tukey’s Post hoc analysis, with p≤0.05 

designated as statistically significant.

Results

Cell-free OxyHb and MetHb are present in the pericardial fluid surrounding the heart after 
cardiac surgery and followed by increased markers of myocardial damage

Following cardiac surgery, the pericardial membrane is left partially open leading to the 

mixing of blood from lacerations, lipids from the myocardial, perivascular, and epicardial fat 

surrounding the heart and from the traumatized tissue and exuded fluids from the surgical 

wounds with the PCF in the pericardial space. Figure 1 illustrates a chest CT scan of a 

representative patient 12 h after surgery and depicts the location of the mediastinal drains 

and the effusion surrounding the pericardial space. These drains typically capture 100-300 

ml in the first few hours following surgery and then taper to about <150 ml/24 h before the 

drains are removed. A major constituent of the post-operative pericardial fluid in the first 

few hours after surgery is blood from surgical trauma to the heart and vessels as well as non-

cardiac sources. The proportion of blood gradually diminishes and is largely absent by 24 h 

post-surgery in a normal post-operative course.

Continuous drainage of the PO-PCF is maintained up to 72 h post-surgery. As shown in 

(Figure 1A), PCF accumulates around the heart even in the presence of mediastinal drainage 

tubes in place. Indicators of cardiac muscle injury following surgery, including myoglobin, 

troponin-I, and CK-MB (Figure 1B), were present in the PO-PCF at significantly greater 

levels when compared to patient serum and increased in the PCF subsequent to elevated 
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markers of oxidative stress. Following surgery, blood was present in the PCF and significant 

hemolysis was also detected. Figure 2A and B show the oxyhemoglobin (OxyHb) and 

methemoglobin (MetHb) concentrations in PCF as determined by the visible absorbance 

spectra at 0-48 h post-surgery, indicating significant hemolysis and oxidation of the cell-free 

hemoglobin. Shown in Figure 2C is the quantification of the (MetHb)/ (OxyHb) ratio in the 

intraoperative and postoperative samples. The ratio is significantly increased at 12 h and 

consistent with a pro-oxidant environment.

The pro-inflammatory environment in the postoperative PCF promotes monocyte and 
neutrophil recruitment

Flow cytometry analysis of the PCF and blood at 4-48 h showed two major populations of 

leukocytes. The predominant population, visible by four hours, was CD14-CD16+ 

neutrophils which comprised 64.0 ± 19.7% of cells found in the PCF by 12 h (Figure 3A). 

The next most abundant lineage was CD14+CD16+ monocytes which were 1.01 ± 0.25% of 

cells at 12 h and increased to 6.02 ± 2.53% of total leukocytes by 24 h (Figure 3A). The 

lineages of these cells were also confirmed by CD66b and MHCII expression (data not 

shown). Monocytes were detectable in the 0 hour PCF as confirmed by a complete blood 

count performed on unprocessed PCF, but counts did not significantly increase after surgery 

(Figure 3B). Neutrophil counts were similar to monocytes at the commencement of surgery 

but were significantly elevated after 4 hours and for the duration of recovery (Figure 3C).

The postoperative pericardial environment primes the oxidative burst in monocytes and 
neutrophils

A major source of hydrogen peroxide production during inflammation is NADPH oxidase 2 

(NOX2) in monocytes and neutrophils. Using the monocytes and neutrophils isolated from 

both PCF and blood, the potential maximal activity of the NADPH oxidase system was 

determined. We found that monocytes isolated from PCF exhibited an increased oxidative 

burst when stimulated by PMA (100 ng/ml) as compared to monocytes isolated from the 

peripheral blood of healthy age-matched controls (Figure 4A). No significant difference was 

seen between the oxidative burst of monocytes (Figure 4A and 4C, p = 0.15) or neutrophils 

(Figure 4B and 4C, p = 0.33) isolated from postoperative patient blood and PCF at 4 h. 

However, to test the acute effect of PO-PCF on the priming of neutrophils to generate high 

levels of ROS, neutrophils from a healthy donor were incubated for 1.5 h with increasing 

concentrations of PO-PCF obtained from a patient at 4 h post-surgery and then stimulated 

with PMA as described above. Quantitation of oxygen consumption demonstrated that PO-

PCF exposure primes the neutrophils to increase the production of superoxide and hydrogen 

peroxide compared to the untreated controls, and the response is dose dependent (Figure 

5A&B).

Lipid peroxidation products indicate a pro-oxidant environment in the postoperative 
pericardial fluid

MetHb and myoglobin promote lipid peroxidation particularly in the presence of hydrogen 

peroxide (31, 34). Mass spectrometry analysis revealed high and variable concentrations of 

the non-specific lipid peroxidation products of arachidonic acid derived isoprostane 8-iso-

PGF2α and its stereoisomer 8-iso-15-PGF2α (F2 isoprostanes) in the PCF at 4 and 12 h 
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following surgery (Figure 6A). These concentrations returned to near basal levels by 24-48 

h. The prostaglandin F2α (PGF2α) and its stereoisomer 15(R)-PGF2α (Prostaglandins) 

showed a similar pattern although levels were approximately 10-fold higher than the 

isoprostanes consistent with the activation of cyclooxygenase (Figure 6B). Interestingly, the 

levels of isoprostanes were well correlated with prostaglandins (Figure 6C) suggesting that 

the available arachidonic acid, which is the substrate for both these lipid oxidation products, 

may also be increasing in PO-PCF.

Protein thiol oxidation and carbonyl formation are increased in postoperative pericardial 
fluid

Oxidants such as hydrogen peroxide and lipid peroxidation products are capable of 

modifying cysteine residues on proteins. To determine the extent of these reactions in the 

PCF, free thiol and carbonyl formation detection techniques were utilized. As shown in 

Figure 7A, Bodipy-IAM labeling of albumin, which has a single available thiol and is the 

predominant protein in both plasma and PO-PCF, was significantly decreased in the 4 h PO-

PCF post-surgery samples compared to the 0 h PCF samples. Carbonylation of PCF proteins 

as determined by biotin hydrazide labeling of albumin, detected significant carbonyl 

formation of proteins at 4 h post-surgery compared to the intraoperative sample (0h PO-

PCF). These findings indicate that significant oxidative modification and adduct formation 

of proteins occurs following cardiac surgery (Figure 7B). Furthermore, these data are 

consistent with the presence of hemoglobin and isoprostanes observed at the same time 

points (Figures 2 and 6).

Discussion

Alterations in the composition and volume of the pericardial fluid occur after cardiac 

surgery. These alterations include the accumulation of inflammatory cells and oxidative 

molecules which can potentially lead to postoperative complications and alter cardiac 

function. As shown these changes include elevated cardiac injury markers, increased levels 

of cell free hemoglobin and methemoglobin, inflammatory cell infiltration, and the 

accumulation of lipid peroxidation products. Taken together, surgical trauma initiates red 

blood cell hemolysis, pro-inflammatory cell recruitment, and the active generation of pro-

oxidative and pro-inflammatory molecules. It is likely that a major source of pro-oxidative 

molecules in the pericardial space post-surgery is the neutrophil population that immigrates 

into the area in large numbers.

An established link between oxidant production and inflammation is the oxidative burst, a 

process by which inflammatory stimuli and antigens activate NADPH oxidase to produce 

superoxide and hydrogen peroxide as an innate host defense. Inflammatory cells are a source 

of superoxide and hydrogen peroxide as well as nitric oxide and hypochlorous acid (35-37). 

The oxidative burst is capable of generating these oxidative species in the micromolar range, 

which will oxidize MetHb to the ferryl form, an efficient initiator of lipid peroxidation (34, 

38-42). Inflammation has been found to be associated with atrial fibrillation, although most 

investigators have monitored the systemic inflammatory markers rather than the cardiac 

compartment in which inflammation directly occurs (43, 44). Recently, Pinho-Gomes et al. 

Kramer et al. Page 7

Lab Invest. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



demonstrated an association between ROS in atrial tissue and the onset of postoperative 

atrial fibrillation after cardiac surgery (45) providing evidence that ongoing myocardial 

injury from oxidative stress may contribute to post-operative complications such as atrial 

fibrillation.

The post-operative pericardial environment is lipid-rich, given the proximity of epicardial 

and pericardial fat (46, 47). The enzymatic (cyclooxygenase mediated) and non-enzymatic 

(heme-protein mediated) oxidation of polyunsaturated fatty acids generates biologically 

significant oxidation products which play a role in inflammation, signaling, and cell damage. 

Lipid peroxidation products have also been linked to the oxidative stress observed in 

ischemic heart disease (48-52) and might also contribute to postoperative cardiac 

dysfunction.

In this study, the PO-PCF showed high concentrations of oxidized hemoglobin and evidence 

of lipid peroxidation, which has been shown to be a quantitative marker of oxidant stress 

and has previously been associated with increased incidence of heart failure (53). The 

formation of lipid radicals ultimately results in bioactive and/or electrophilic lipids capable 

of modifying nucleophilic protein residues such as cysteine, tyrosine, arginine, and histidine. 

Consistent with oxidative protein modification, the available thiol pool on albumin was 

significantly decreased at 4 h post-surgery in PCF. Isoprostanes, a common product of non-

enzymatic arachidonic acid peroxidation, are commonly used markers of oxidative stress in 

vivo and were present at elevated levels in the PCF at post-operative time points 4 and 12 h 

(Figure 6). Although the pericardial drains serve the purpose of limiting postoperative 

tamponade, the cardiac tissues are still exposed to an effusion containing high levels of 

oxidative molecules which can contribute to postoperative cardiac dysfunction, possibly 

including electromechanical disturbances which are characteristic of atrial fibrillation. This 

concept is further supported by data from animal models demonstrating that oxidant 

production in the heart can lead to disruption of gap junctions and arrhythmic events, the 

blockade of reactive oxygen species (ROS) resulted in dramatic decreases in arrhythmias 

(54).

Oxidative stress has been shown to contribute to worse patient outcomes following cardiac 

surgery (55, 56). Traditionally, these markers were measured by the presence of reactive 

lipids such as malondialdehyde and HNE as well as the presence of antioxidant enzymes 

such as catalase (57). Using the thiol alkylating reagent iodoacetamide linked to the 

fluorophore Bodipy, we showed that albumin in the PO-PCF contained significantly fewer 

available thiols when compared to pre-operative PCF. Additionally, we examined protein 

carbonylation, a marker of oxidative protein modification in intra-operative and post-

operative PCF samples. Consistent with other indices of oxidative stress, the amount of 

protein carbonylation in post-operative PCF was significantly increased compared to intra-

operative PCF (Figure 7). These data support increased production of reactive lipids and 

increased oxidant production in the PCF following surgery.

Superoxide production plays an important role in ROS mediated inflammatory signaling 

(58-62). Under basal conditions, NADPH oxidase activity remains low; however under 

stimuli such as increased pro-inflammatory cytokines, enzymatic activity can be increased 
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by a process known as priming (63-67). Under chronic levels of low stimuli, phagocytic 

cells such as neutrophils can be primed, resulting in a heightened response to exogenous 

stimuli such as PMA. We determined whether monocytes and neutrophils isolated from the 

post-operative pericardial space or treated with pericardial fluid were primed for oxidant 

production by stimulation with PMA. When stimulated, monocytes from the pericardial 

space showed a much higher capacity for oxidative burst when compared to blood 

monocytes isolated from the same patient and age-matched controls. Using neutrophils 

isolated from healthy donors, we showed a dose-dependent oxidative burst capacity in 

response to priming with increasing amounts of 4 h PO-PCF (Figure 5). These data clearly 

demonstrate that monocytes and neutrophils, in response to the post-operative PCF milieu, 

are primed for oxidant production, supporting the concept that oxidative stress in the 

pericardium following surgery is in part due to the infiltrating inflammatory cells.

In summary, these data show that post-operative PCF contains high levels of cell free 

hemoglobin, isoprostanes and prostaglandins, which were not found in concurrent sampling 

of blood serum from the same patients or in the intra-operative PCF. We also demonstrate 

that a highly pro-oxidant environment is generated in the post-operative pericardial fluid of 

cardiac surgery patients. Evidence supports that this pro-oxidant milieu surrounding the 

heart may trigger post-operative atrial fibrillation. The incomplete drainage of this effusion 

after surgery may not be sufficient to prevent oxidative injury to myocytes. Additional 

studies are required to investigate if therapies to inhibit oxidative stress in the pericardium 

may improve outcomes by preventing the onset or severity of atrial fibrillation. These data 

suggest an interesting relationship between oxidant production by infiltrating leukocytes, 

MetHb, and lipid peroxidation products and encourage larger scale trials to determine the 

nature and mechanism of this relationship and its potential role in the development of post-

operative complications.
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Abbreviations

AF Atrial fibrillation

PO-PCF Postoperative Pericardial Fluid

ROS Reactive oxygen species

RNS Reactive nitrogen species

RLS Reactive lipid species

PCF Pericardial fluid

PB Peripheral blood

WBC White blood cell

CABG Coronary Artery By-pass Graft surgery

AVR Aortic valve replacement/repair

MVR Mitral valve replacement/repair

FACS Fluorescence–activated cell sorting

BHT butylated hydroxyl toluene

COX-2 Cyclooxygenase 2

NOX2 NADPH oxidase 2

iNOS inducible nitric-oxide synthase

OCR Oxygen consumption rate

PMA phorbol 12-myristate 13-acetate

PKC Protein Kinase C

DPI diphenylene iodonium

Bodipy IAM Bodipy-iodoacetamide

MetHb methemoglobin

OxyHb oxyhemoglobin
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Figure 1. Post-operative pericardial fluid accumulates around the heart
A) Post-operative axial CT scan image of a cardiac surgery patient demonstrates 

accumulation of pericardial fluid around the heart. B) The cardiac injury markers, 

myoglobin, CK-MB and troponin-I are significantly elevated in the postoperative pericardial 

fluid compared to their plasma controls (p<0.05).

Kramer et al. Page 14

Lab Invest. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Hemoglobin and methemoglobin in postoperative blood and PCF
Samples collected from the same patient during surgery (0 hour) and post-surgery (4, 12, 24, 

48 hours) were immediately centrifuged at 500g for 15 minutes, supernatants collected, and 

centrifuged again to remove cells and large debris at 1,500g for 10 minutes. A) The 

oxyhemoglobin and B) methemoglobin levels are visualized for each patient at the 

corresponding time after surgery as measured by spectrophotometry. C) The 

methemoglobin/oxyhemoglobin ratio (MetHb/OxyHb) is shown to determine time points of 

relatively greater oxidative stress compared to the 0 hour control. The mean values are 

represented by a horizontal bar. Data from 31 patients. *= p<0.05, **= p<0.005.
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Figure 3. Flow cytometric analysis of the PCF
A) The proportions of gated cells expressing CD14 and CD16 characteristic of neutrophils 

and monocytes respectively were enumerated at each time point. Note the differences in the 

Y-axis scales for macrophages and neutrophils. B) Absolute monocyte C) and neutrophil 

counts were performed on unaltered PCF drawn during surgery (0 hour) and post-surgery (4, 

12, 24, 48 hours). Data reported as mean ± SEM. * = p ≤ 0.05, **= p<0.005.
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Figure 4. Priming of the oxidative burst of monocytes and neutrophils isolated from the blood 
and pericardial fluid of postoperative cardiac surgery patients
A) Healthy age matched control (n=8) monocytes and B) neutrophils isolated from freshly 

drawn blood were stimulated with PMA (100 ng/ml). Oxygen consumption was monitored 

over time on a Seahorse Extracellular Flux analyzer and compared with cells collected from 

blood and pericardial fluid obtained from at 4 hours post-surgery (n=7). C) The oxidative 

burst was measured as the area under the curve (AUC) of oxygen consumption over 24 

minutes following PMA injection, and normalized to the oxygen consumption rate after 

antimycin A (10 μM) injection to inhibit mitochondrial respiration. 250k cells/well 
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(monocytes) and 125k cells/well (neutrophils), 3-5 replicates per sample. Data reported as 

mean ± SEM. * = p ≤ 0.05
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Figure 5. Post-operative pericardial fluid primes neutrophils for increased oxidative burst
Priming of the oxidative burst in normal, healthy donor neutrophils collected from 

pericardial fluid at 4 hours post-surgery. Pericardial fluid was centrifuged at 1,500xg and 

then diluted to 2.5%, 5%, and 10% in XF DMEM. It was then added to freshly isolated and 

plated neutrophils 1.5 hours prior to the assay. A) Baseline OCR was measured in 

neutrophils prior to inhibition of mitochondrial respiration with antimycin A (10 μM) and 

induction of the oxidative burst with PMA (100 ng/mL). B) The area under the curve (AUC) 

during the 48 minute oxidative burst response was calculated and plotted by PCF dose. *= 

p<0.05, **= p<0.005. 3-5 replicated wells per group.
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Figure 6. Quantitation of F2α Isoprostanes and Prostaglandins in postoperative PCF by 
LCMS/MS
Lipids were extracted from post-operative pericardial fluid using solid phase extraction 

columns as described in the methods and analyzed by mass spectrometry. A) 8-iso-

prostaglandin F2α concentrations and B) prostaglandin F2α concentrations were assessed in 

0, 4, 12, 24, and 48 hour postoperative PCF patient samples. C) Regression analysis of F2α 

Isoprostanes plotted against prostaglandins over all time points. Data represented as 

individual patient values plus with the mean represented by a horizontal bar at 0 hours 

(n=13), 4 hours (n=22), 12 hours (n=23), 24 hours (n=12), and 48 hours (n=8). Statistical 
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significance was determined using One-way Anova followed by Tukey’s Post hoc analysis, 

with p<0.05 indicating statistical significance. *= p<0.05, **= p<0.005.
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Figure 7. Oxidative modifications to proteins in Postoperative PCF
A) Representative in-gel fluorescence image of individual patient PCF (0 and 4 hr) treated 

with 500 μM Bodipy-iodoacetamide (Bodipy-IAM) for 30 min to assess protein thiol 

modifications, where lower fluorescence intensity represents increased oxidized protein 

thiols. Following alkylation, 5 μg of protein was resolved by 12.5% SDS–PAGE and imaged 

in-gel using a Typhoon imager. The bottom panel shows coomassie blue stain to confirm 

equal protein loading. Quantitation of the Bodipy-IAM fluorescence signal for albumin 

normalized to coomassie blue protein staining. n=7 patients; Data expressed as mean ± 

SEM.*= p<0.05 compared to 0 hr PCF. B) Carbonylated proteins (100 μg) from 0 and 4 hr 

albumin depleted PCF were derivatized with biotin hydrazide (1 mM) for 30 min at 37°C. 

Reactions were stopped with 1M Tris-HCl, pH 7.4 and proteins (10 μg) separated using 
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SDS-PAGE. The extent of carbonylation was determined by western blotting using 

Streptavidin. The quantification of lane intensities is shown to the right. n = 4 patient 

matched sets; Statistical significance was measured using Student’s T-Test. Data expressed 

as mean ± SEM. *= p<0.05, **= p<0.005.
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