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Estrogen exposure overrides the ® e
masculinizing effect of elevated

temperature by a downregulation of the

key genes implicated in sexual

differentiation in a fish with mixed genetic

and environmental sex determination

Noelia Diaz' and Francesc Piferrer’”

Abstract

Background: Understanding the consequences of thermal and chemical variations in aquatic habitats is of importance
in a scenario of global change. In ecology, the sex ratio is a major population demographic parameter. So far, research
that measured environmental perturbations on fish sex ratios has usually involved a few model species with a strong
genetic basis of sex determination, and focused on the study of juvenile or adult gonads. However, the
underlying mechanisms at the time of gender commitment are poorly understood. In an effort to elucidate
the mechanisms driving sex differentiation, here we used the European sea bass, a fish species where genetics and
environment (temperature) contribute equally to sex determination.

Results: Here, we analyzed the transcriptome of developing gonads experiencing either testis or ovarian differentiation
as a result of thermal and/or exogenous estrogen influences. These external insults elicited different responses. Thus,
while elevated temperature masculinized genetic females, estrogen exposure was able to override thermal effects and
resulted in an all-female population. A total of 383 genes were differentially expressed, with an overall downregulation
in the expression of genes involved in both in testicular and ovarian differentiation when fish were exposed
to Estradiol-178 through a shutdown of the first steps of steroidogenesis. However, once the female phenotype was
imposed, gonads could continue their normal development, even taking into account that some of the resulting females
were fish that otherwise would have developed as males.

Conclusions: The data on the underlying mechanisms operating at the molecular level presented here contribute to a
better understanding of the sex ratio response of fish species subjected to a combination of two of the most common
environmental perturbations and can have implications in future conservational policies.
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Background

The sex ratio is an essential demographic parameter in
population ecology, and its proper establishment is crucial
for the perpetuation of all sexually-reproducing species
[1]. In fish, the establishment of the primary sex ratio
mostly depends on the genetic and environmental contri-
bution to the process of sex determination and differenti-
ation [2, 3], although other factors such as differential
survival can also have an influence.

While downstream genes implicated in gonadal sex dif-
ferentiation are conserved [4, 5], master sex-determining
genes are not [6]. Importantly, and also in contrast to
mammals, in all non-mammalian vertebrates estrogens
are essential for proper ovarian differentiation [7]. There-
fore, blockade of gonadal aromatase, the steroidogenic en-
zyme that irreversibly converts androgens into estrogens
such as estradiol-17f8 (E,) results in the masculinization of
the gonads of genetic females in different species [8—11].
Conversely, exposure to E, feminizes the gonads of geno-
typic males in many species [9, 12—15].

Temperature increases related to global change and
pollution of water bodies, both ultimately due to hu-
man activity, greatly influence aquatic ecosystems, with
opposing effects on sex ratios of many fish populations.
In sensitive fish species, the sex ratio (gonadal differen-
tiation) response to elevated temperatures is an
increase in the number of males [16]. Thus, abnormally
elevated temperatures often result in a severely male-
biased population [17]. On the other hand, many
chemicals present in the aquatic environment have a
feminizing effect since they are able to disrupt the
endocrine system by mimicking the effects of estrogens
through binding to the estrogen receptor [18]. Conse-
quently, even at low environmental concentrations, a
sufficiently long exposure can lead to the feminization
of the entire population [19].

Fish transcriptomes have been analyzed during sexual
differentiation [20-25] and after E, exposure [18, 26—28].
Tissue- and gender-specific responses, [29, 30] as well as
biogeographical differences [31], have been shown. How-
ever, it is still not clear whether the exposure to exogenous
steroids elicits changes similar to those occurring during
natural physiological processes [32—34]. These exogenous
steroids inhibit the expression of several steroidogenic en-
zymes, as observed in different species [34—37] and thus
alter normal hormonal functions [38, 39]. However, most
of the studies referred to above were conducted in
species with a strong sexual determining system (XX/
XY or ZW/ZZ) where sex is highly canalized and not
easily influenced by environmental perturbations. This
contrast with species with a polygenic sex determin-
ation system, where the final sex depends on a deli-
cate balance between endogenous and external stimuli
[24].
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The European sea bass (Dicentrarchus labrax) is a
gonochoristic species that lacks sex chromosomes and
for which a polygenic system of sex determination in-
volving a two-biallelic system has been proposed [40].
Furthermore, sex determination and differentiation are
influenced by environment during early development
[41], when temperatures just a few degrees above 17 °C
applied during the thermosensitive period (0-60 days
post hatch; dph [24, 42]) masculinize about half of the
fish that under natural temperatures would develop as
females. This masculinization is induced through the
hypermethylation of the cypl9ala promoter in fe-
males that prevents the synthesis of the E, necessary
for ovarian development [43]. It is also known that E,
administered during the hormone-sensitive period
(HSP =90-160 days post hatch [44]) can result in
feminization of the whole population [14]. The study
of European sea bass responses to environmental cues
is also interesting because the nursing of this species
takes place in coastal shallow waters of 10 m depth
[45], that are more sensitive to thermal fluctuations
as the ones predicted in current climate change
models [46], and also likely containing xenoestrogens
that can act as endocrine disruptors [47].

The goal of our study was to compare patterns of gene
expression in a species with polygenic sex determination
such as the European sea bass at the time when gonads
were experiencing opposite pathways of differentiation
as a consequence of the environmental cues to which
they were exposed. For that we generated two European
sea bass populations: 1) one male-biased (78% males)
through exposure to elevated water temperature, and an-
other female-biased (100% females) by exposing fish to
E2 during the HSP. We then examined gene expression
in gonads at 170 dph, i.e., during the sex differentiation
period by a custom-made oligo microarray.

Methods

Rearing conditions, experimental design and basic data
collection

Twenty-four hours post hatch European sea bass larvae
from a commercial hatchery (St. Pere Pescador, Girona,
Spain) were transferred to the Institute of Marine Sci-
ences “Experimental Aquarium Facility” (ZAE). Larvae
densities per tank, environmental and rearing conditions
followed the protocols previously described [48]. Fish
used for this article were reared and sacrificed in agree-
ment with the European Convention for the Protection
of Animals used in scientific experimentation (EST Nu
123, 01/01/91).

The male fish used in this study were siblings of males
used in a previous study [24]. Briefly, fish were divided
into four tanks and maintained at 17 °C during the first
20 dph. Then, water temperature was raised until 21 °C
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for two of the groups (Control “HT” and Estradiol “HT-
E,”) for the remaining two groups; temperature was de-
creased to 15 °C (Control low temperature “LT” and Es-
tradiol “LT-E,”), at a rate of 0.5 °C/day. At ~220 dph
(fall) water was left to follow the natural fluctuations in
temperature. From 90 to 154 dph, the HT and LT groups
(n =150 fish/group) were fed ad libitum two times a day
with dry food sprayed with 96% Ethanol, while the other
groups E, groups (n =150 fish/group) were fed with the
same diet supplemented with Estradiol diluted in 96%
Ethanol at 10 mg/Kg food (Additional file 1: Figure S3).
No treatment-related mortality was observed.

Following the protocols already detailed in [24]; bio-
metric data (standard length: SL, body weight: BW)
was collected periodically and gonads samples for
microarray and qPCR analysis of gene expression
were taken at 170 dph and immediately frozen in li-
quid Nitrogen. At 170 dph gonads were fixed in 4%
Paraformaldehyde to assess the female stages of oo-
cyte maturation and male spermatogenesis progres-
sion [49]. Gonadosomatic (GSI), hepatosomatic (HSI)
and carcass (CI) indices were determined to analyze
the possible effects of temperature and hormonal
exposure on fish maturation at 337 dph.

RNA extraction and cDNA synthesis

As previously described in [50], total RNA was obtained
from 170 dph sea bass gonads using Trizol and a
chloroform-isopropanol-ethanol protocol. RNA concen-
tration was measured with a ND-1000 spectrophotom-
eter, and quality was confirmed by examination on 1%
agarose/formaldehyde gels. Total RNA was treated with
RNase-free DNase, reverse transcribed to ¢cDNA and
checked using a Bioanalyzer 6000 Nano LabChip. Sam-
ples with a 100-200 ng/pl concentration and RIN values
>7 were selected for microarray hybridizations.

Quantitative real-time PCR (qPCR)

As previously described in [24] qPCR was used to: 1) se-
lect high cypl9ala expressors (presumably females) at
170 dph for microarray analysis (Additional file 2: Figure
S7) and, 2) validate microarray results and check several
genes related to sex differentiation (Additional file 3:
Table S1 for a gene glossary). cDNA was always diluted
1:10 for target genes and 1:500 for the r18S housekeep-
ing gene (previously validated in [47]). Briefly, primer
design and quality checking was done using Primer 3
Plus, primer specificity and performance was checked
with a melting curve analysis after amplification
(Additional file 4: Table S2: E: efficiency between
1.99 and 2.27; slope ranging from -2.6 to -3.3 and
R?: linear correlations higher than 0.94) and a stand-
ard qPCR program was performed. Samples were run
in triplicate on an ABI 7900HT in 384-wells plates

Page 3 of 13

in a final volume of 10 pl per well with negative
controls lacking cDNA/primers always included in
duplicate. Data were collected and analyzed using
SDS 2.3 and RQ Manager 1.2 software. Primer E was
used to adjust Ct values and the r18S housekeeping
gene was used to correct for intra- and inter-assay
variations [51].

Microarray

Five individuals per group were individually hybridized
and randomly distributed on different slides to avoid
batch effects. Microarrays were hybridized at the Insti-
tute of Biotechnology and Biomedicine (UAB, Barce-
lona). Briefly, RNA was Cy3-labeled with Agilent’s
One-Color Microarray-Based Gene Expression Ana-
lysis, along with Agilent’s One-Color RNA Spikeln
Kit), cRNA was purified, quantified on a ND-1000
Nanodrop, verified on a Bionalyazer 2100, hybridized
in a custom sea bass array (Agilent ID 023790), washed
and scanned (see detailed protocol in [24]). Intensities
and control features were checked by Agilent’s Feature
Extraction software version 10.4.0.0. The platform that
validates the array can be seen at Gene Expression
Omnibus (GEO)-NCBI database (GPL13443). Datasets
used in this article are accessible at GSE52307 for the
LT and HT samples and at GSE52938 for LT-E, and
HT-E, ones.

Statistical analysis of data

Briefly, data were checked for normality (Kolmogorov-
Smirnov’s test), homoscedasticity of variance (Levene’s
test) and log-transformed when needed. GSI, HSI and CI
data were arcsine transformed before any statistical ana-
lysis. A two-step cluster analysis previously validated and
described elsewhere [52] of 2DCt cypl19ala values at
170 dph was used to select the highest cypI9ala expres-
sors per sample for the hybridizations based on the
available expression data (Additional file 2: Figure S7).
One-way analysis of variance (ANOVA) was used to de-
termine differences between relative cyp19ala mRNA
levels resulting from qPCR high and low expressors and
for length, weight, GSI, HSI and CI data sets. Post hoc
multiple comparisons (Tukey’s HSD test) were done
when statistical differences were present. Data are
expressed as mean + SEM (standard error of the mean).
In this study, differences were accepted as significant
when P < 0.05. Chi-square test with Yates’ correction [53]
was used for sex ratio analysis and qPCR 2DCt values
[51] were analyzed by Student’s t-test. Analyses were
performed using IBM SPSS Statistics 19.

Briefly, microarray raw data from the Feature Extrac-
tion output files was corrected for background noise
[54] and quantile normalized [55]. Limma [56] was used
to analyze differential expression, and then corrected for
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multiple testing (False Discovery Rate method, FDR).
Genes were considered to be differentially expressed
genes (DEG) when the absolute fold change between the
two compared groups, was higher than 1.5, the adjusted
P-value was lower than 0.05 and were reliable in all sam-
ples. A Principal Component Analysis was performed to
visualize the variability of the samples (Additional file 5:
Figure S4). Statistical analysis was performed with the Bio-
conductor project (http://www.bioconductor.org/) in the
R statistical environment (http://cran.rproject.org/) [57].

Gene annotation enrichment analysis

Briefly, Genecards (http://www.genecards.org/) and Uni-
prot (http://www.uniprot.org) were used to assign gene
names, gene symbols, synonyms and functions. The web
based tool AMIGO (http://amigo.geneontology.org/cgi-
bin/amigo/go.cgi; [58]) was used to obtain sequences of
the DEG, Blast2GO software [59], KEGG (http://
www.genome.jp/kegg/) and DAVID (http://david.abcc.n-
cifcrf.gov); [60, 61]) were used to assign GO terms as
well as the pathways associated to these genes. In
addition, Blast2GO was used with a reference set con-
taining all the genes from the custom-made microarray
to check GO term results by a two-tailed Fisher’s Exact
Test with Multiple Testing Correction of FDR [62].
Physical and functional protein interactions of the genes
were modeled with a web based tool STRING v9.1
(http://string-db.org/); [63]) using the STRING human
database as a background.

Results

Biometries

Standard length (SL) and body weight (BW) were
assessed at 170 (when samples for microarray hybridiza-
tions and qPCR were taken) and 337 dph (when sex ra-
tio was assessed). At 170 dph, in both the low and the
high ¢ypl9ala expressors, the Estradiol (E,) treated fish
were shorter (P <0.01) and lighter (P <0.001) than those
of the high temperature (HT) group indicating a nega-
tive effect of E; on growth. These differences were also
present when comparing low temperature (LT) vs. low
temperature plus Estradiol (LT-E,) fish (Table 1). At 337
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dph, sexual growth dimorphism (SGD) was not observed
in the HT group, since there were no differences in BW
between sexes (Table 2). In contrast to the situation ob-
served at 170 dph, at 337 dph HT females, despite being
slightly bigger and heavier than E,-exposed females,
showed no differences for SL nor BW (Table 2) and nei-
ther for hepatosomatic (HIS) nor carcass index (CI)
(data not shown).

Sex ratio and gonadosomatic index (GSI)

Sex ratio was female- (100% females) and male- biased
(21% females) at the HT-E, and HT groups, respectively
(Fig. 1a) with statistically significant differences between
them (P<0.001) and between HT and LT, but not
between HT-E, and LT-E, (P>0.05, Additional file 6:
Figure S1). At 337 dph, the GSI was significantly higher
in HT females when compared to the HT-E, females (P
<0.05) (Fig. 1b), but with no differences when compared
to LT or LT-E, (Additional file 6: Figure S1). Females
were still immature, with ovaries replete with oocytes at
the cortical alveolar stage (Additional file 7: Figure S2a-
b). On the other hand, HT group males were fully ma-
ture and presented seminiferous tubules filled with
sperm (Additional file 7: Figure S2c).

Transcriptomic analysis of gene expression in sexually
differentiating gonads

Here we focus on the analysis of gonads undergoing differ-
ent developmental pathways by using the masculinization
effect of high temperature to force fish to develop as males
and then either rescuing the phenotype by administering
E, (HT-E, group) or studying the temperature-resistant fe-
males (HT group). A Principal Component Analysis showed
how samples clustered on a treatment-manner (Additional
file 5: Figure S4) and further microarray analysis yielded 383
significantly differentially expressed genes (DEG) where 92
were up- and 291 downregulated (Additional file 8: Table S3
and Additional file 9: Table S4). Hierarchical clustering
based on the DEG showed that fish clustered in a
treatment-related manner (Fig. 2). The associated pathways
analyzed by DAVID (Additional file 9: Table S4), suggested
that E, exposure inhibited pathways processes related to

Table 1 Growth of European sea bass juveniles at 170 days post hatch according to treatment and cypi9ala expression levels by

gPCR
Low cypl9ala expressors High cyp19ala expressors

Treatment N Length (cm) Weight (g) N Length (cm) Weight (g)

LT 10 9.25+0.196° 1316+ 0.967° 6 933+0061° 1353+0581°
HT 9 9.86+0.109° 1741 +0877° 7 10.28 + 0.495° 19.35+2.955°
LT-E, 16 9.15+0071° 12.70+0.385° 4 920+0.141° 12.72+1.130°
HT-E, 12 940+0.176™ 13.75+0875° 8 949+ 0.193% 14,65 +0.862°°

One- way ANOVAs for length and weight comparing low cyp19aia expressors for the four treated groups as well as for the high cyp79aia expressors. Results are
shown as mean + SEM. Different letters indicate statistical differences (P < 0.05) between groups
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Table 2 Growth of European sea bass juveniles at 337 days post hatch according to treatment and sex

Females Males

Treatment N Length (cm) £ SEM Weight (g) = SEM N Length (cm) + SEM Weight (g) £ SEM
LT 40 12,45 +0,180° 33,16+ 1560° 26 11,66 +0,223° 27,22 +1867°

HT 16 12,22 +0,171° 33,88 +3044° 60 1236+0,171%° 33,79+ 1544°
LT-E> 79 12,28 +0,138° 31,76 + 1247° 4 13,55 + 1582° 48,5 +20,963°
HT-E» 41 11,82 +0,236" 2945+ 21607 0 - -

Results are shown as mean + SEM. Different letters mark statistical differences (P < 0.05) between groups

DNA replication and repair, reproduction (progesterone-
mediated oocyte maturation), hormonal-signaling (gonado-
tropin releasing hormone GnRH, epidermal growth factor
erbB or Hedgehog), lipid metabolism or immunology. In
contrast, pathways related to oocyte meiosis, steroid biosyn-
thesis, sugar metabolism or cytokine receptor interactions
were induced (Fig. 2, Additional file 10: Table S5). The com-
parison between LT (fish reared at low temperature allowing
female development) and LT-E, (fish reared at low
temperature but forced to develop as females) had just 2
DEG, showing no differences between natural and artificial
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Fig. 1 Effects of thermal and estrogen exposure on one-year-old
European sea bass gonads. a Percent females in each group, with a
difference from a Fisherian 1:1 balanced sex ratio. b Female
gonadosomatic index. Data as mean + SEM. Males were not included
since no males were present in the E>-treated group. * = P < 0.05; ***

=P <0001

females (data not shown). On the other hand, when analyz-
ing the common DEG between the double comparisons of
the HT-E, group vs. LT or vs. LT-E, there were 91 upregu-
lated and 93 downregulated common genes in the E, group
(Fig. 3, Additional file 11: Table S6). These genes were
mainly involved in increased DNA repair, mitotic cell cycle
and apoptosis; and in a reduction of the integration of en-
ergy metabolism, adherent and tight junctions, adipocyto-
kine, epithelial cell signaling pathways and muscle
contraction (data not shown).

Validation of microarray results by qPCR

qPCR of some genes relevant for growth and
reproduction were used to validate the array (Fig. 4 and
Table 3). E, exposure significantly (P < 0.05) downregu-
lated genes related to testis differentiation, such as the
anti-Miillerian hormone (amh; P < 0.05), doublesex- and
mab-3-related transcription factor 1 (dmrtl; P<0.01)
and tescalcin (tesc;P <0.05) (Fig. 4a-c, respectively). It
also downregulated cholesterol import-related genes
such as the steroidogenic acute regulatory protein (star;
P <0.01; Fig. 4d) and two ovarian differentiation-related
genes: gonadal aromatase (cypl9ala; Fig. 4e) and the
Wntl-inducible-signaling pathway proteinl (wispI; Fig. 4g).
However, other genes related to ovarian differentiation such
as the transcription factor sox17 (Fig. 4f) and a germ cell
marker, vasa (Fig. 4h) were not affected. The neural isoform
of aromatase (cypI9alb) was significantly upregulated (P <
0.05) by E, exposure (Fig. 4i), while insulin-like growth
factor-1 (igfI) was not altered (Fig. 4j). For half of the ana-
lyzed genes, their expression was increased in the E,
group when comparing fold change changes (data not
shown).

Gene ontology enrichment analysis of genes regulated by
exposure to estradiol

Blast2GO analysis enabled the identification of the associ-
ated GO terms for the DEG and related then to biological
process (BP), molecular function (MF) or cell component
(CC) and always showed more downregulated GO terms
at any given comparison. The main subcategories were re-
lated to reproduction, signaling, responses to stimulus,
growth, immune system and developmental processes.
Binding and catalytic activities were the most abundant
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among the MF subcategories (Additional file 12: Table S7).
A two-tailed Fisher’s exact test with multiple testing cor-
rections for FDR (P-value filter of 0.05) was performed to
assess the over-representation of the functions related to
the downregulated genes due to E, exposure. Specifically,
there were 148 over-represented functions when taking the
microarray as background (Additional file 13: Table S8).
The most interesting enriched MF GO-terms (26) were re-
lated to nuclear hormone receptor binding, growth factor
and NADP-retinol hydrogenase activity. Enriched GO-
terms (97) were clearly related to reproduction, immun-
ology and growth.

KEGG pathway enrichment analysis of genes regulated by
estradiol exposure

There were 46 pathways affected by the E, treatment
(Additional file 14: Table S9), mainly related to metabol-
ism (i.e. retinol), immunological signaling and steroid
hormone biosynthesis. Furthermore, DAVID analysis on
the GO-terms with the highest stringency showed that
meiosis (two clusters with 1.47 and 1.06 enriched
scores), reproduction (three clusters with 1.17, 0.81 and
0.4 enriched scores) and hormone regulation (one clus-
ter with 0.33 enriched scores) were the most enriched
ones. Since we found the genes involved in reproduction
to be downregulated as a result of the E, exposure, we

further focused on the genes related to the ovarian ste-
roidogenic pathway, which for most of them showed the
same tendency towards downregulation. Among them,
star and gnrh genes exhibited a significant downregula-
tion (P <0.05). On the other hand, igfI exhibited an op-
posite significant increase in the expression (P < 0.05)
due to the E, exposure (Fig. 5).

Protein-protein interaction analysis

Proteins coded by the DEG analyzed using STRING,
showed enrichment in interactions (P < 0.001). E, expos-
ure caused an increase in protein interactions (range of
combined scores of interactions 0.400—0.999) for protein
networks related to transcriptional activation, DNA re-
pair, immunity, catabolism, oxidative phosphorylation
and muscle contraction (Additional file 15: Figure S5).
On the other hand, protein networks obtained from the
downregulated genes (range of combined scores of inter-
actions 0.402-0.999) were more related to: apoptosis, in-
flammation, histone demethylases and inhibition of
histone acetylase 1, cell adhesion, morphology and mo-
tility, protein complex assembly, intracellular trafficking
and secretion, Rho and Rac GTPases activators, response
to hormonal stimulus and reproductive structure devel-
opment (Additional file 16: Figure S6).
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HT-E, vs. LTUp

HT-E, vs. LT-E, Down

HT-E, vs. LT-E, Up HT-E, vs. LT Down

Fig. 3 Venn diagram representation of the common up- and
down-regulated genes for the comparisons HT-E, vs. LT and HT-E,
vs. LT-E»)

Genes related to epigenetic regulatory mechanisms

We found that demethylases, dicerl, helicases, most
of the histone deacetylases, polycomb complex mem-
bers, as well as DNA-methyltransferases 1 and 3 were
downregulated in the HT-E, group. In contrast, most
histone acetyltransferases and methyltransferases were
upregulated. Finally, histone acetylase 11 (hdacll)
and euchromatic histone lysine N-methyltransferase
(ehmt2), two genes previously analyzed by qPCR,
showed a heat-related upregulation even under the E,
exposure (Additional file 17: Table S10).

Discussion

In this study, European sea bass, a fish with mixed gen-
etic and environmental influences [40, 41], was used to
analyze the transcriptome of fish gonads at the time of
sex differentiation after being exposed to thermal and
chemical perturbations. Here we show how the exposure
to estrogen at early juvenile development was able to
completely feminize the population that otherwise would
have developed as males due to the high temperature.
Moreover, estrogen-exposed females showed a transcrip-
tome reprograming that affected not only steroidogene-
sis but also pathways related to reproduction, immunity,
growth, response to stimulus and the metabolism of
lipids and xenobiotics. However, based on histological
analysis, we observed that once the female phenotype is
imposed gonads could proceed with apparent normal
development.

The HT group was masculinized (21% females) by the
elevated temperatures. However, this masculinizing ef-
fect was completely overridden by the E, exposure
(100% females at HT-E, group) without affecting the
histological structure of the immature ovary, where cor-
tical alveolar oocytes in both groups predominated.
However, GSI values indicate a reduction in ovarian
growth as already described in other fish species [64—66].
GSI values of E,-exposed females are higher than those of
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control females, without any apparent effect on fat con-
tent, opposite to what was found by Saillant et al. [14],
and with slightly higher HSI in E,-exposed females, in
agreement with previous studies on fish subjected to the
effects of xenoestrogens [67—69].

Microarray analysis showed that E, exposure caused
an alteration in the expression of 383 genes from gonads
at the time of sex differentiation. The most important of
those effects are discussed below.

Reproduction

It is well established that cyp19ala gene expression and
aromatase enzyme activity are necessary for normal
ovarian differentiation and maintenance in all non-
mammalian vertebrates including fishes [3]. E, treatment
caused a significant downregulation of cypI9ala at 170
dph, as assessed both by analysis of microarray and
qPCR data. This downregulation took place after the
hormonal exposure finished, as has also been observed
in rainbow trout and zebrafish [34, 70]. Nevertheless,
since 1) E, completely feminized the exposed fish, even
after initial heat-induced masculinization, and 2) the
European sea bass cypI9ala promoter lacks estrogen re-
sponse elements (EREs), as in other fish [71], these ob-
servations suggest that E,-induced feminization likely
did not involve direct c¢ypl9ala regulation. This inter-
pretation is supported by qPCR results showing that
star, an upstream component of the steroidogenic path-
way, also was significantly downregulated by E,, in
agreement with previous results in zebrafish [70], sug-
gesting that E, shuts down the first steps of steroidogen-
esis by blocking star expression. Furthermore, the
microarray analysis showed a whole downregulation of
the ovarian steroidogenesis pathway and this seems to
happen in a dose- and species-dependent manner. This
is supported by the fact that E, expression decreases in
some species and increases in some others [38, 66,
70, 72]; and because other downstream genes such
as cypl9ala and 17B-hsd are affected in females but
not in males [70, 72, 73]. However, studies in our
lab have shown how the c¢ypI19ala expression down-
regulation does not involve changes in its promoter
DNA methylation since unexposed and feminized fe-
males by E, showed no differences in the gonadal
aromatase promoter methylation levels [43]. Other
genes related to ovarian differentiation (i.e., wispl,
cypl9ala, 175-hsd and star) as well as male-related
genes (amh, dmrtl and tesc) or cypl9alb and soxl17
were downregulated after E, exposure, although in con-
trast to what has been found in other fish species [66].

Immunity
Some studies have suggested the possibility that sex
steroids affect the immune system ([74]. The
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microarray we used has a good representation of
immunity-related terms and contains probes for a
group of genes constituting the signaling pathways re-
sponsible for generating the immune response, includ-
ing the Toll-like, NOD-like, RIG-I-like and the T-cell
receptor signaling pathways. Interestingly, the latter
was downregulated in the E, group. Also, many
genes of the complement component, some cytokines
and lysozymes were also downregulated after E, ex-
posure, as seen before for medaka [29, 30]. In con-
trast, several terms referring to response to stimulus
were enriched, including response to estradiol,

mechanical stimulus, lipopolysaccharids and regula-
tion of response to stress.

Xenobiotic metabolism

Microarray DEG showed three pathways related to drug
and xenobiotic metabolism through cytochrome P450
downregulation. Furthermore, some proteins that are
able to metabolize xenobiotics like the glutathione S-
transferase proteins (GSTs; [75]) were up- (gst and gst6)
and downregulated (gsta, gstk, gstm) in the microarray.
The latter is in agreement with what have been seen for
gsta in goldfish when exposed to a hepatotoxin
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Table 3 Microarray validation by qPCR for the HT-E, vs. HT comparison

Microarray gPCR

Gene symbol log2 Fold change Adjusted P -value log2 Fold change Adjusted P-value
amh —248 0.037* -3.18 0.011*
aqgpl 2.16 0.349 0.70 0.094
col18a —4.28 0.035% -0.78 0.174
cypl9ala -1.03 0.781 -3.47 0.000%**
cypl19alb -137 0.089 0.12 0.028*
dmrt1 -1.54 0.007** -239 0.004**
gnrh 1.11 0.129 -1.83 0.051
igf1 595 0.035* =173 0.149
mettl22 -1.31 0.121 -1.21 0113
prl -1.03 0.806 -1.94 0.018*
sox17 1.08 0.779 0.35 0.570
star -1.87 0.051 —-2.00 0.006**
tesc =117 0.324 -1.88 0.017*
vasa - - -0.64 0.721
wispl 1.02 0816 -1.51 0.045%

Note: Asterisks note statistical significant differences: * = P < 0.05; ** =P < 0.01; *** =P <0.001. N 10 individuals analyzed per gene

(Carassius auratus; [76]) or to gstrr in Atlantic salmon
when exposed to tributyltin (Salmo salar; [77]).

Growth

Sex steroids can influence fish growth by altering the
GH-IGF system [78]. Furthermore, during the sexual
maturation of some fish species [79-81], plasma levels
of sex steroids and GH correlate indicating a crosstalk
between reproduction and growth-related pathways. In
this study, all genes related to growth hormone and its
receptor were downregulated. The same occurred with
the insulin-like growth factor II gene, its receptors, igfir,
and its associated binding proteins in opposition to what
has been described for the fathead minnow [38, 66]
when exposed only to E,. Further studies are needed
since, at present, it is not possible to discern if these dif-
ferences are species-specific or the result of the combin-
ation of both thermal and E, exposures.

Lipid metabolism

After E, exposure, terms related to lipid metabolism
such as white fat cell differentiation, regulation of fat cell
differentiation, plasma lipoprotein clearance, apolipopro-
tein binding or high and low density lipoprotein particle
remodeling were over represented. Similar downregula-
tions of apolipoproteins have been shown in different fish
species [82—84], but not in the mummichog (Fundulus
heteroclitus; [39]). Moreover, apoe, a protein related to
lipid uptake by oocytes, was also downregulated in our
study, in agreement with what has been previously shown
for zebrafish [85].

Epigenetic regulatory mechanisms-related genes
Although it is known that epigenetic mechanisms are re-
sponsible for the acquisition and maintenance of cell
identity, they have been only marginally explored in an
ecological context. Thus, we have analyzed by qPCR the
behavior of seven genes related to epigenetic regulatory
mechanisms present in our microarray. Among them,
dicerl, jarid2a, pcgf2, suzl2 and mett[22 were downreg-
ulated by E,, overriding temperature effects. In contrast,
the expression of ehmt2 and hdacll was unchanged.
Interestingly, we have also observed that the expression
of six heat shock proteins (hrsp12, hsbpl, hspl0, hsp60,
hspald and hsp70) was upregulated, implying that early
exposure to elevated temperatures had persistent effects
on the gonadal transcriptome, effects that were not over-
ridden by the subsequent E, exposure.

Conclusions

Taken together, these results show how at the population
level all fish developed as females since estrogen expos-
ure during early juvenile development is able to com-
pletely override the masculinizing effect of elevated
temperatures. However, these fish developed as females
despite showing at the time of sex differentiation a
downregulation of key genes in steroidogenesis. This
blockage happened not only at upstream genes of the
pathway such as star, but also at downstream genes such
as ¢ypl9ala and 17B-hsd. Furthermore, estradiol admin-
istration also affected pathways related to reproduction,
immunity, xenobiotic and lipid metabolism, signaling,
responses to stimulus and growth. Thus, exposure to



Diaz and Piferrer BMC Genomics (2017) 18:973

Page 10 of 13

GnRH signaling
pathway
I
|
Insulin % INSR
|

v
IGF1 |/ IGF1R ¢

e

Insulin signaling
pathway

\l, PN
LDL Cholesterol
oO— s O
P
| | 7 Mitochondria
HDL P4
o— /

Steroid hormone
biosynthesis

cAMP

e >0 >0
__Pregnenoloffe  17hydroxy-  Dehydroepi- Androstenedlol
: pregnenolone androsterone |

v v
O -0 ->0- \l'o
Progesterone  1-hydroxy- Androste-  Testosterone
progesterone nedione P ’/
Z 7

—>

________

v T

i i !
I 1 v

v

i
I
v

//Sterond hormone

e
sl V, INS blosynthesns O‘“‘k\ “““ ? -0
I Y Androste-  Testosterone  17B- —[4 - - - circulation
nedione

J/ _ estradiol

IGF1 ——> IGF1R¢
Insulln S|gnaI|ng
GnRH signaling athwa
pathway
|

\Z
R'_> ¢—>

—H---1FSHR .

\\‘l\
1 E

—>0—
cAMP

expression |
B A TGF-B signaling
pathway

)

HT comparison

Fig. 5 A KEGG pathway-based figure depicting the ovarian steroidogenesis pathway. Microarray results are marked with arrows (green arrows
indicate a fold change (FC) higher than 1.5, while red arrows indicate a FC lower than 1.5). Yellow stars note genes in the microarray HT-E, vs.

exogenous estrogens of sexually differentiating fish had a
profound reprogramming effect on their gonadal tran-
scriptome, causing not only a complete feminization of
the population but an inhibition of steroidogenesis in
developing females. It should be noted that some of the
resulting females will be fish that otherwise would have
developed as males. However, at 1 year of age, feminized
fish exhibited a normal gonadal histology suggesting that
once the female phenotype is imposed gonads can ap-
parently continue their normal development. Although
the impact of sex-reversed fish on natural populations
has been simulated in species with simple chromosomal
sex determining systems [86], the situation in species
with more complex systems like the one used in this

study remains unexplored. The data shown in this study
helps to fill in the gap on the underlying mechanisms
operating at the molecular level.

Additional files

Additional file 1: Figure S3. Experimental design. Upper graph
depicts thermal differences. High/low temperatures (21 °C/15 °C) are
marked in red/orange and blue/purple, respectively. The duration of the
Estradiol treatment (90 to 154 dph) is marked with a light orange box.
The bottom panel marks the key events related to sex differentiation and
maturation in the European sea bass, as well as the main sampling
points. (TIFF 2702 kb)

Additional file 2: Figure S7. Two-step cluster analysis of 2DCt values
to divide among high and low cyp19aia expressors. a) LT (blue circles)
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and HT(red squares) cyp19ala 2DCt values. b) LT-E2 (purple circles) and
HT-E2 (orange squares) cyp19ala 2DCt values. The black line denotes the
median. (TIFF 2702 kb)

Additional file 3: Table S1. Gene abbreviation glossary of the genes
analyzed by qPCR or selected from the list of differentially expressed
genes. (XLSX 9.44 kb)

Additional file 4: Table S2. Quantitative PCR primer characteristics.
(XLSX 11.3kb)

Additional file 5: Figure S4. Predicted protein-protein interactions by
STRING for the 92 upregulated genes in the HT-E, vs. HT comparison.
(TIFF 2702 kb)

Additional file 6: Figure S1. Sex ratio and GSI. a) Female percent is
shown in pink for all the four studied groups. b) GSI for females (pink)
and males (blue) at 337 dph. Letters mark statistical differences between
groups (females: uppercase; males: lowercase). (TIFF 2702 kb)

Additional file 7: Figure S2. Histological images of one-year-old European
sea bass. a) HT females; b) HT-E, females and; ¢) HT males. Scale bar =50 pm.
(TIFF 2702 kb)

Additional file 8: Table S3. Number of differentially expressed genes in
170 dph European sea bass gonads when comparing fishes from the HT-
E,- vs. HT group during sex differentiation. (XLSX 9 kb)

Additional file 9: Table S4. Differentially expressed genes for the HT-E,
vs. HT comparison. (XLSX 29 kb)

Additional file 10: Table S5. Pathway analysis by DAVID of clusters of
DEG for the HT-E; vs. HT comparison. (XLSX 14 kb)

Additional file 11: Table S6. Common DEG when comparing HT-E,
(artificial) females vs. LT and LT-E;, (natural) females. (XLSX 18 kb)

Additional file 12: Table S7. GO results subdivided into three
categories: biological process (BP), molecular function (MF) and cell
component (CO) for the HT-E, vs. HT comparison. (XLSX 12.3 kb)

Additional file 13: Table S8. Fisher's exact test with multiple testing
corrections of FDR results. (XLSX 17.1 kb)

Additional file 14: Table S9. KEGG pathways derived from the
differentially expressed genes (DEG) that were either up- or downregulated in
the HT-E, vs. HT comparison. (XLSX 11.3 kb)

Additional file 15: Figure S5. Principal Component Analysis (PCA).
Individuals from each group are marked with red squares (HT), orange
squares (HT-E,), blue circles (LT) or purple circles (LT-E,). (TIFF 2702 kb)

Additional file 16: Figure S6. Predicted protein-protein interactions
by STRING for the 291downregulated genes in the HT-E, vs. HT compari-
son. (TIFF 2702 kb)

Additional file 17: Table S2. List of the genes related to epigenetic
regulatory mechanisms discussed in the text for the HT-E, vs. HT comparison.
(XLSX 12 kb)
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hdac11: Histone deacetylase 11; HIS: Hepatosomatic index; hrsp12: Heat
responsive protein 12; hsbp1: Heat shock binding protein; HSP: Hormone-
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finger 2; prl: Prolactin; gPCR: Quantitative real-time PCR; r18S: r18S;

SGD: Sexual growth dimorphism; SL: Standard length; sox17: HMG-box
transcription factor SOX17; star: Steroidogenic acute regulatory protein;
suz12: Suppressor of zeste 12 homolog; tesc: Tescalcin; vasa: Vasa protein;
wispT: WNT1 inducible signaling pathway protein 1
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