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Dysregulation of regulated exocytosis is linked to an array of pathological conditions, includ-
ing neurodegenerative disorders, asthma, and diabetes. Understanding the molecular
mechanisms underpinning neuroexocytosis including the processes that allow neurose-
cretory vesicles to access and fuse with the plasma membrane and to recycle post-fusion,
is therefore critical to the design of future therapeutic drugs that will efficiently tackle these
diseases. Despite considerable efforts to determine the principles of vesicular fusion, the
mechanisms controlling the approach of vesicles to the plasma membrane in order to
undergo tethering, docking, priming, and fusion remain poorly understood. All these steps
involve the cortical actin network, a dense mesh of actin filaments localized beneath the
plasma membrane. Recent work overturned the long-held belief that the cortical actin net-
work only plays a passive constraining role in neuroexocytosis functioning as a physical
barrier that partly breaks down upon entry of Ca2+ to allow secretory vesicles to reach
the plasma membrane. A multitude of new roles for the cortical actin network in regulated
exocytosis have now emerged and point to highly dynamic novel functions of key myosin
molecular motors. Myosins are not only believed to help bring about dynamic changes in
the actin cytoskeleton, tethering and guiding vesicles to their fusion sites, but they also
regulate the size and duration of the fusion pore, thereby directly contributing to the release
of neurotransmitters and hormones. Here we discuss the functions of the cortical actin
network, myosins, and their effectors in controlling the processes that lead to tethering,
directed transport, docking, and fusion of exocytotic vesicles in regulated exocytosis.
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INTRODUCTION
Regulated exocytosis relies on the timely fusion of secretory vesi-
cles or granules (SVs/SGs) with the plasma membrane. For this to
occur, SVs need to be mobilized, translocated, docked, and primed
at the plasma membrane. Translocation, docking/priming, and
fusion of SGs rely on dynamic changes in the cortical actin net-
work, a dense mesh of filamentous actin underneath the plasma
membrane (Figures 1A–C) that is controlled by actin effectors and
myosin motor proteins. The thick actin ring of the cortical actin
network can be visualized in chromaffin cells by staining actin
with a variety of methods ranging from classical immunofluores-
cence to phalloidin (covalently linked to fluorophores), a fungal
alkaloid that preferentially binds actin filaments (Figures 1B,C).
More recently, the development of lifeact-GFP, a 17-residue pep-
tide from S. cerevisiae that selectively binds to actin without
affecting neuroexocytosis (1, 2), has allowed the probing of the
dynamic changes occurring during stimulation of exocytosis on
the cortical actin network by time-lapse imaging (Figures 1C,D).
Following secretagogue stimulation the cortical actin ring frag-
ments, coinciding with a decrease in cortical F-actin labeling
(Figure 1B). This process is Ca2+-dependent and involves actin-
severing proteins such as scinderin (3–6). Although actin reorgani-
zation helps vesicles reach the plasma membrane (7), F-actin also

serves as an anchoring point for SGs and provides tracks for their
directed motion toward fusion sites (8). Molecular motors associ-
ated with F-actin, such as myosins (9), are involved in additional
functions (2, 10).

In nerve terminals, actin is a well-known modulator of neu-
rotransmitter release. Actin is involved in synaptic vesicle mobi-
lization as well as axonal vesicle trafficking and synaptic plasticity
(11). It is the most abundant cytoskeletal protein in synapses and
is highly enriched in dendritic spines, whose formation is initiated
by dendritic filopodia formation (12–15), an actin-driven process
facilitated by the action of myosin X (16, 17). Neurotransmitter
release at central synapses is regulated by actin and depolymeriza-
tion of F-actin by latrunculin A was found to transiently enhance
neurotransmitter release indicating a restraining role of F-actin in
active zones (18).

NEW ROLES FOR ACTIN IN EXOCYTOSIS
The cortical actin network plays an important and well-described
role during vesicle exocytosis (5, 7, 9, 10), and in recent years new
functions for actin and its associated proteins have emerged (2, 9,
10, 20–24). Ca2+-dependent reorganization and remodeling of the
cortical actin network help vesicles move toward the plasma mem-
brane by partial disassembly of the cortical layer (Figure 1B) (3,
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Papadopulos et al. Actin and myosins in regulated exocytosis

FIGURE 1 | Imaging the actin network in neurosecretory cells.
(A) Electron micrograph of a bovine chromaffin cell region attached to the
thermanox support. Note the presence of a filamentous cortical region that is
devoid of SG. Bar, 1 µm [adapted from Ref. (19)]. (B) Confocal images
showing the mid section of bovine chromaffin cells expressing lifeact-RFP and

counter stained with FITC-conjugated phalloidin in the presence or absence of
nicotine (50 µM). (C) Maximum intensity projection of the footprint of a
chromaffin cell. (D) TIRF images showing actin lengthening in a chromaffin
cell expressing lifeact-GFP (pseudocolor) after the addition of PI3Kδ inhibitor
IC87114. (B–D) Adapted from Ref. (2).

6). At the same time, this remodeling provides tracks that extend
further toward the center of the cell allowing the mobilization of
SGs from the reserve pool (25) to their docking and fusion sites
at the plasma membrane (4, 26, 27). Ca2+ regulates the cortical
F-actin disassembly in chromaffin cells via two pathways (28, 29).
The first involves stimulation-induced influx of extracellular Ca2+

through Ca2+ channels and results in activation of scinderin and
ensuing F-actin severing. The second pathway is triggered by Ca2+

release from intracellular stores (30) and can be induced in the
absence of secretagogue stimulation, by phorbol esters (3). Here
actin disassembly is achieved through protein kinase C (PKC) acti-
vation followed by myristoylated alanine-rich C kinase substrate
(MARCKS) phosphorylation that inhibits its F-actin-binding and
cross-linking properties (28). The cortical actin network provides
a layered structure that retains 2–4% of the total vesicles in close
proximity to the cell surface that contribute to the burst of cate-
cholamine release at the onset of stimulation (26, 31, 32). Indeed
the majority of SGs in the vicinity of the plasma membrane are
tethered to the cortical actin network (6), and newly arriving vesi-
cles are also caught in this dense mesh of F-actin (33). Other studies

point to the existence of F-actin cages that organize the SNARE
proteins SNAP25 and syntaxin-1 as well as L- and P/Q-type cal-
cium channels, creating sites in the cortical actin network where
SGs fuse preferentially (34). Consistent with these data, stud-
ies using total internal reflection fluorescence (TIRF) microscopy
revealed that vesicle motion becomes restricted in the vicinity of
the plasma membrane (35, 36). Interestingly, both actin depoly-
merization (37) and N-WASP- and Cdc42-dependent actin poly-
merization (Figure 1D) potentiate exocytosis (2, 38). While these
results may appear contradictory, such opposing role for actin is
not unlikely. Partial actin depolymerization helps SGs to cross the
actin layer that acts as barrier, and the remaining (10) as well as
newly forming actin fibers provide tracks for vesicles to reach the
plasma membrane (2, 38). The balance between actin polymeriza-
tion and depolymerization is likely regulated by scinderin acting
as a molecular switch capable of inducing both actin polymer-
ization and depolymerization (39). An important link connecting
membranes and actin during exocytosis is the glycerophospholipid
phosphatidylinositol 4,5-bisphosphate (PIP2). Although it is only
a minor component of cellular membranes, microdomains, and
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clusters of PIP2 play a crucial role in exocytosis. PIP2 is known
to control actin polymerization by modulating the activity and
targeting of actin regulatory proteins (40). PIP2 involvement in
SNARE-mediated exocytosis, i.e., its Ca2+-dependent interaction
with synaptotagmin-1 and syntaxin, has been described in numer-
ous studies (41–44). Decreased levels of PIP2 in the brain and
impairment of its synthesis in nerve terminals lead to early post-
natal lethality and synaptic defects in mice, including decreased
frequency of miniature currents, enhanced synaptic depression,
and a smaller ready release pool of synaptic vesicles, delayed
endocytosis, and slower recycling kinetics (45). The formation
of PIP2 microdomains at syntaxin-1A clusters with docked SGs
seems to be required for Ca2+-dependent exocytosis (46). Both
PIP2 and syntaxin-1A have been found in punctate nanoclusters
in isolated PC12 cell plasma membrane sheets, and similar PIP2

clusters in PC12 cells have been reported to link synaptotagmin-1
and syntaxin-1A, thus providing a platform for SV recruitment
(46, 47). Likewise, the clustering of syntaxin-1A in model mem-
branes has been shown to be modulated by PIP2 (48). PIP2 also
plays a role in regulated exocytosis by controlling several pro-
teins involved in modifying the actin cytoskeleton (40), as well
as stimulating actin polymerization (49). PIP2 binds scinderin in
a Ca2+ and pH-dependent manner (50). PIP2 binding inhibits
scinderin-induced actin depolymerization (51, 52), as well as the
ADF/cofilin actin-severing activity (53) thereby promoting actin
polymerization. A transient increase in PIP2 levels is sufficient to
promote the mobilization and recruitment of SVs to the plasma
membrane via Cdc42-mediated actin reorganization (2). PIP2

therefore links exocytosis and the actin cytoskeleton by coordinat-
ing the actin-based delivery of SVs to the plasma membrane (2).
Likewise, decreasing PIP2 levels in neuroendocrine cells by either
ATP depletion or sequestering PIP2 rapidly reduces the amount
of cortical F-actin (54). In a similar study, nanomolar interac-
tion of HIV-1 transcriptional activator with PIP2 was found to
prevent the actin reorganization necessary for bringing SVs to
the plasma membrane and severely impaired neurosecretion in
PC12 and chromaffin cells (55). Another actin-binding protein
that PIP2 has been found to interact with is vilin, with PIP2-vilin
association inhibiting actin depolymerization and enhancing actin
cross-linking (56). The interplay of Rho GTPases such as Cdc42,
RhoA, and Rac with PIP2 and other actin regulatory proteins con-
trols Ca2+-regulated exocytosis in chromaffin cells (9, 22). Other
small GTPases implicated in regulated secretion in neurosecretory
and endocrine cells are Arf6 (57), Rab27A (58) as well as RalA and
Rab3A. RalA has not only been shown to tether insulin granules to
R- and L-type calcium channels (59) but also binds to the exocyst
complex and regulates filopodia formation linking morphological
changes and regulated exocytosis (60). RalA, which is present in
GLUT4 vesicles in adipocytes, also interacts with the exocyst com-
plex and its activation is required for insulin-stimulated GLUT4
trafficking. Impairment in the function of RalA in these cells atten-
uated insulin-stimulated glucose transport. RalA also interacts
with Myo1C acting as a cargo receptor for this motor protein (61).
In addition RalA has been found to control SG exocytosis in PC12
cells by interacting with phospholipase D1. It is activated during
exocytosis and the expression of a constitutively active mutant
was found to enhance neuroexocytosis whereas expression of an

inactive mutant or silencing resulted in reduced secretion (62).
Of the four homologs (A/B/C/D) Rab3A is the best character-
ized (63). Rab3A is involved in the late steps of exocytosis. Early
studies showed that Rab3A is associated with SG in bovine chro-
maffin cells and rat PC12 cells (64, 65). Overexpression of Rab3A
mutant proteins defective in either GTP hydrolysis or in guanine
nucleotide-binding inhibited exocytosis (66). Similarly the perfu-
sion of Rab3A and various guanine nucleotides into chromaffin
cells resulted in delayed catecholamine secretion suggesting a neg-
ative regulatory role in secretion (67). Rab3A plays a role in vesicle
priming, where it is involved in Munc13-1 activation and interacts
with Munc18-1 to regulate priming and fusion (68). Furthermore,
Munc13 and Rab3A localize in the acrosomal region in human
sperm, where they stimulate acrosomal exocytosis and play an
important role in membrane docking (69). In human spermatozoa
Rab3A and Rab27 act in a cascade that regulates dense core gran-
ule exocytosis (70). Rab3 interaction with Munc18 has also been
shown to regulate SG density at the periphery of PC12 cells (71)
and Rab3 guanine cycling is required for Munc18-dependent SG
docking (72). However, the high level of redundancy between the
four Rab3 isoforms makes it difficult to fully assess their individ-
ual contributions and the lack of an obvious exocytic phenotype
in double and triple knock-out animals points to a regulatory but
not essential role of Rab3A in exocytosis (73).

A number of new functions are now being attributed to the
interplay between actin and various myosins. Non-muscle myosin
II, and the unconventional myosins 1c/e, Va, and VI are involved
in different stages during regulated exocytosis of SGs.

MYOSINS
Myosins are a 17-member superfamily of actin-based molecular
motor proteins (74) that are involved in many aspects of eukary-
otic cell functions, including cell movement, establishment of cell
shape and polarity (75–80), and vesicular trafficking (61, 81).
Myosin function is not limited to that of a molecular motor,
as myosins also regulate actin polymerization, serve as molec-
ular anchors (33), and even play a role in signal transduction
(82, 83). All myosins contain a heavy chain with a conserved
∼80 kDa N-terminal catalytic domain that includes the ATPase
activity and actin-binding regions (Figure 2) (84). This domain
is followed by an α-helical neck region containing one or more
IQ motifs that allow binding of light chains and calmodulin
(CaM). The C-terminal myosin tail contains cargo/membrane-
binding domains, kinase activity, and/or mediates heavy chain
dimerization depending on the myosin class (Figure 2) (83, 85).

MYOSIN I
Myosin I (Figure 2) is a single-headed membrane-associated pro-
tein that is expressed in all eukaryotic cells (84). Although there
is currently no evidence for myosin I involvement in neurosecre-
tion two isoforms of the human myosin 1C gene (86), myosin
1C (Myo1C), and myosin 1E (Myo1E) have been implicated in
regulated exocytosis. All members of this unconventional myosin
family interact with actin through their catalytic head domain
(87). Myo1C is also capable of binding phosphoinositides (88)
(Figure 3), thereby linking the actin cytoskeleton to the plasma
membrane (89). Myo1C is recruited to GLUT4-containing vesicles
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FIGURE 2 | Schematic diagrams of the myosin heavy chains involved
in regulated exocytosis. All myosins consist of a head (motor) domain
(blue), a neck that contains one or more IQ motifs for light chain and CaM
binding (black), and a tail domain with coiled-coil regions (green) and
membrane/cargo-binding domains (orange). The small insert of myosin VI,

shown to be essential for the tethering of SGs to the cortical actin
network, and the DYD-Src phosphorylation motif are highlighted.
Cargo-binding induced dimerization of myosin VI is likely to be mediated by
the coiled-coil regions and the cargo-binding domains. Adapted from
Ref. (83).

FIGURE 3 |The roles of myosins and accessory proteins involved in
regulated exocytosis. Myosins are involved in several steps of regulated
exocytosis. Myosin 1C (yellow), myosin 1E (burgundy), myosin II (orange), and
myosin Va (green) are involved in secretory vesicle transport. In contrast,
myosin VI (red) recruits SGs to the cortical actin network. Myosin 1C interacts
with SG through cysteine string proteins and myosin Va binds to MyRIP

(purple) on the membrane of SGs. Myosin 1C can be recruited to membranes
through PIP2 interaction. The effector that mediates binding between myosin
VI and SGs (light green) is currently unknown. Myosin 1E is also involved in
regulating actin polymerization through interaction with WASP/Arp 2/3. Cdc42
as well WASP/Arp 2/3 regulate actin polymerization in an activity-dependent
manner. Myosin II also regulates size and duration of fusion pore opening.

that undergo regulated exocytosis in 3T3-L1 adipocytes in an
insulin-dependent manner, and is involved in their transport to the
plasma membrane (Figure 3) (61, 81). In addition, Myo1C also
tethers GLUT4-containing vesicles to the cortical actin network

(Figure 3) underneath the plasma membrane in response to
insulin (90), and promotes GLUT4 insertion to the plasma mem-
brane by fusion (91), thereby regulating glucose uptake in adipose
and muscle tissue (92). Myo1C is required for vascular endothelial
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growth factor receptor-2 (VEGFR2) delivery to the cell surface
and for angiogenic signaling (93). VEGF stimulation promotes
the recruitment of VEGFR2 to Myo1C and its delivery to the cell
surface (93).

In Xenopus oocytes Myo1E, the only long-tailed myosin 1 class
motor protein has been found to rapidly relocate from the cytosol
to cortical SGs upon secretagogue stimulation and to bind to cys-
teine string proteins, components of cortical SGs that mediate
vital steps in regulated exocytosis (94) by interacting with SNAP25
and the calcium sensor synaptotagmin 9 in pancreatic β-cells
(95). While cortical granule exocytosis is enhanced by overexpres-
sion of Myo1E it is inhibited by injection of Myo1E antibodies
(94). Myo1E has also been implicated in the recruitment of sev-
eral actin-binding proteins leading to N-WASP recruitment and
Arp2/3-mediated actin polymerization (Figure 3) (96).

MYOSIN II
Class II myosins are most abundant in muscle cells where their
main function is to generate mechanical force. Non-muscle cells
also contain a subset of myosin II molecules with distinct func-
tionality. They all consist of two heavy chains (230 kDa), two
regulatory light chains, and two essential light chains (Figure 2).
In addition to actin cross-linking, bundling, and contractile prop-
erties, myosin II is known to regulate actin polymerization and is
therefore linked to a great number of functions in eukaryotic cells
including motility, adhesion (97), and regulated exocytosis (24, 98,
99). Non-muscle myosin II has been implicated in vesicle transport
through the actin cytoskeleton (Figure 3). Expression of an inac-
tive non-phosphorylatable regulatory light chain mutant myosin
II fused to GFP drastically impairs granule mobility and influences
actin dynamics, similar to blebbistatin treatment (100).

There is mounting evidence that myosin II is involved in con-
trolling fusion pore dynamics and release kinetics (Figure 3).
Expression of non-phosphorylatable regulatory light chain
mutant myosin II that produces an inactive protein alters sin-
gle vesicle fusion kinetics and slows fusion pore expansion (23,
24). Similarly, the release kinetics of fluorescently tagged tissue
plasminogen activator and brain-derived neurotrophic (BDNF)
factor are prolonged following overexpression of a wild-type form
of the myosin II regulatory light chain and shortened by overex-
pression of a dominant-negative form (101). The use of a green
fluorescent pH-sensitive protein (pHluorin) targeted inside the
SVs revealed that the altered kinetics of release were caused by
changes in the duration of fusion pore opening. Additional evi-
dence indicates that myosin II affects catecholamine release by
directly controlling the size of the fusion pore and the duration
of its opening (20). Actin cortex disassembly elicited by high fre-
quency stimulation promotes full fusion of SGs – an effect blocked
by pharmacological inhibition of myosin II or myosin light chain
(MLC) by preventing the fusion pore dilation (102). Inhibition
of either actin polymerization with cytochalasin D or myosin II
function with blebbistatin also slowed fusion pore expansion and
increased its lifetime, suggesting that the interplay between actin
and myosin II can accelerate catecholamine release (20). Similar
results indicating that myosin II activity maintains an open fusion
pore were obtained in exocrine pancreatic cells where myosin
II (blebbistatin) and MLC (ML-9) inhibition did not alter the

number of fusion events but resulted in a decreased fusion pore
lifetime (103).

It has been suggested that myosin II contractility could also help
to squeeze secretory cargo out of vesicles surrounded by an actin
coat once they are connected to the plasma membrane through a
fusion pore (104). Fusion pore opening and closing might not be
enough to release large cargo from SVs and myosin II might pro-
vide an active extrusion mechanism (104). The direct involvement
of MLC and myosin II was also observed in GLUT4-containing
vesicle fusion following insulin-stimulated glucose uptake in 3T3-
L1 adipocytes. Only active phosphorylated myosin II was recruited
to GLUT4 vesicles in an activity-dependent manner. Interestingly,
insulin specifically stimulates the myosin IIA isoform via MLC
kinase phosphorylation of MLC (105, 106). Myosin II inhibition
also increases the distance of SGs from the plasma membrane,
and promotes the retraction of the cytoskeleton, suggesting its
involvement in the final approach of vesicles toward the plasma
membrane (107).

Myosin II involvement in integrin-mediated cell adhesion and
exocytosis has been linked to changes in cell adhesion properties
(108, 109). Glucose stimulation of pancreatic β-cells promotes the
remodeling of integrin focal adhesions and phosphorylation of
focal adhesion kinases and myosin II (108, 109). As myosin II is
one of the main substrates of Rho-kinase 1/2, which stimulates
myosin–actin interactions and induces reorganization of the actin
cytoskeleton, this activity could modulate SG translocation and
cargo release in response to secretagogue stimulation.

MYOSIN VA
Myosin Va (Figure 2) has been implicated in exocytosis and vesi-
cle movement to the cell periphery. In melanocytes, in a complex
with Rab27a and melanophilin, myosin Va regulates melanosome
transport to the plasma membrane (110, 111). In pancreatic β-
cells myosin Va also functions in the transport to and retention
of insulin granules at the cortical actin network under stimulated
conditions as well as their secretion (112–114). In neurosecre-
tory cells, myosin Va is associated with SGs and plays distinctive
roles during SG exocytosis (25, 115). Firstly, it assists the mem-
brane remodeling required for SG maturation by promoting the
removal of the transmembrane protein furin from maturing SGs
(116). Secondly, in a complex with the SG-associated small GTPase
Rab27 and its effector MyRIP, myosin Va regulates the interaction
of SGs with the cortical actin network (Figure 3) (58). This com-
plex has been implicated in exocytosis of SGs by modulating the
transport of SGs and their retention in the cortical actin network
on their way to the plasma membrane (117, 118). The interac-
tion between myosin Va and MyRIP facilitates the dissociation
of SGs from microtubules, enhancing their directed motion and
the probability of SG docking to the plasma membrane (118).
As a conventional processive molecular motor, myosin Va moves
selective cargo along actin filaments (117). This feature strongly
supports the key role of this protein in the translocation and teth-
ering of SGs to the cell periphery. Blocking myosin Va function
reduces the immobilization periods of SGs thereby decreasing the
density of docked SGs near the plasma membrane and their exo-
cytosis (117, 119). In resting conditions, myosin Va forms a stable
complex with synaptic vesicle membrane proteins, synaptobrevin
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II, and synaptophysin (120). This complex is rapidly disassembled
upon Ca2+ increase in either intact nerve endings or in vitro assays
(120). In chromaffin cells, influx of Ca2+ dissociates myosin V
from chromaffin vesicles supporting a role for Ca2+ in the regula-
tion of transient interactions between myosin V and its cargo (25).
Furthermore, when an antibody against myosin V head was intro-
duced in permeabilized chromaffin cells after a first stimulation of
40 s, the secretory response to a second stimulation several min-
utes after the first one, was greatly reduced. This points to a role for
myosinV in providing SVs for the refilling of the release-ready pool
following stimulation (25). The role of Ca2+ as a regulator of the
interaction between myosin V and its cargo has also been demon-
strated in melanosomes and Xenopus egg extracts (121). Released
CaM activates CaM kinase II (CaMK-II),a myosinVa binding part-
ner (122). CaMK-II activation leads to myosin Va phosphorylation
and the release of melanosomes from F-actin (121). Similarly,
microinjection of CaM antibodies into chromaffin cells resulted in
reduced catecholamine output in response to stimulation (123).
Ca2+-regulated phosphorylation of myosin Va is believed to repre-
sent a universal mechanism that regulates the association between
myosin Va and its cargo. These observations suggest that by regu-
lating the interaction between myosin V and SGs, Ca2+ could also
control the association between SGs and actin during SG mobiliza-
tion in the cortical region (124). Importantly, the Ca2+-regulated
attachment/release of myosin Va from SGs could be finely coor-
dinated by other molecular motors, such us myosin VI (33). This
cooperative model would allow a highly organized and controlled
mechanism that regulates SG transport, retention, and anchoring
and ultimately SG fusion with the plasma membrane.

MYOSIN VI
Another member of the myosin family, myosin VI is critical for SV
recruitment to the cortical actin network (Figure 2). The cellular
functions of myosin VI are attributed to its unique ability to gen-
erate movement from the plus to the minus end of actin filaments.
Myosin VI has an additional unique 53 aa insert, the “reverse gear,”
between the motor domain and the neck region that has been pre-
dicted to be responsible for this exceptional inverted movement
directionality (Figure 2) (125, 126). Interestingly, this insert binds
CaM even though it does not contain a recognizable IQ-CaM
motif (127). The tail domain region is the most variable amongst
the myosin VI isoforms. Four alternatively spliced isoforms are
generated due to the presence of a large insert (21–31 aa), a small
insert (9 aa), no insert, or both inserts in this domain (Figure 2)
(128, 129).

The function of myosin VI depends on the ability of its cargo-
binding domain (CBD) region to interact with different binding
partners that target myosin VI to specific cellular compartments
(130). MyosinVI undergoes cargo-mediated dimerization a poten-
tial regulatory pathway for all myosins (131, 132). Myosin VI
has been linked to clathrin- and non-clathrin-mediated endo-
cytosis, as well as maintenance of Golgi organization and cell
polarity. The large and no insert isoforms are the main iso-
forms mediating these functions (128, 133–137). Myosin VI has
also been implicated in autophagy (138), stereocilia maintenance
(139), spermatid individualization (140–142), nuclear transcrip-
tion (143), and cell–cell contacts (144, 145). Evidence of a role of

myosin VI in secretion were highlighted by Warner et al. (146)
using immortalized cells from Snell’s waltzer mice, a strain of
myosin VI knock-out mice (146–148). Immortalized fibroblas-
tic cells from these mice have a reduced Golgi complex (∼40%
smaller in comparison with that in normal cells) that is accom-
panied by a similar reduction in constitutive secretion (146). The
down-regulation of myosin VI expression using small interfering
RNA selectively reduces the secretion of prostate-specific antigen
and vascular endothelial growth factor in the prostate cancer cell
line LNCaP (149). Myosin VI together with its binding partner
optineurin, regulates the final stage of constitutive exocytosis by
mechanically controlling the formation of the fusion pore between
the SV and the plasma membrane in HeLa cells (150). Less is
known about the role of myosin VI in the nervous system (151).
Myosin VI is widely and highly expressed in the brain; it is found
in synapses and enriched at the postsynaptic density (151). In hip-
pocampal neurons, myosin VI forms a complex with α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR),
AP-2 and synaptic-associated protein 97 (SAP-97), and medi-
ates AMPAR clathrin-mediated endocytosis. Importantly, myosin
VI function underpins hippocampal neurons synapses and den-
dritic spines formation (151). Other work supports the role of
myosin VI in neurotransmission by demonstrating that myosin
VI; together with its binding partner GIPC1 is necessary for
BDNF-TrkB-mediated synaptic plasticity (152).

Myosin VI has a very slow rate of release of ADP from its
nucleotide-binding pocket, which therefore slows the dissocia-
tion of myosin VI from actin (153–155). Studies carried out
in Snell’s waltzer mice have shown that myosin VI allows the
formation, maturation, and function of sensory hair cells by medi-
ating the attachment of membrane compartments to the F-actin
cytoskeleton (148). Together these lines of evidence point toward
the possibility that myosin VI could regulate neuroexocytosis by
anchoring/recruiting SVs to the actin network before they undergo
fusion with the plasma membrane. Although little is known about
the precise molecular mechanism(s) underpinning this role, the
function of myosin VI in regulated in exocytosis in PC12 cells
has been questioned (156). However, Drosophila mutants lacking
myosin VI display altered neuromuscular junction morphology
and synaptic vesicle localization resulting in impaired synaptic
plasticity (157). Myosin VI could therefore mediate the mobiliza-
tion of synaptic vesicles from different functional pools, by a yet
to be elucidated mechanism. We recently described a novel role
for the myosin VI small insert isoform (Figure 2) in regulated
exocytosis in PC12 cells (33). Using purified SGs in a pull-down
approach followed by mass spectrometry, we identified myosin VI
as a cytosolic protein that interacts with SGs in a Ca2+-dependent
manner. We found that myosin VI maintains an active pool of SGs
near the plasma membrane by tethering them to the cortical actin
network (Figure 3). This allows the replenishment of the pool of
SGs near the plasma membrane and is key to sustaining exocytosis
during long periods of stimulation (33). Interestingly, we found
that c-Src phosphorylation in a DYD motif located in the CBD of
myosin VI small insert is one of the mechanisms controlling its
function in regulated neuroexocytosis (33). The mechanisms that
target myosin VI to SGs and the regulation of the isoform specific
tethering function still need to be elucidated.
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There are several other members of the myosin family that
could potentially be involved in regulated secretion, including
myosin X, a motor protein found predominantly at the tip of
filopodia of many cell types including neurons (16, 17). Filopodia
are important precursors for dendritic spine and synapse forma-
tion but more work is needed to assess whether neurosecretion
can occur in these structures.

CONCLUSION
Understanding the detailed roles of myosins and other accessory
proteins in regulated exocytosis is challenging. Although a great
deal is known about the involvement of these proteins and their
effectors during the different stages of secretion, there is still no
comprehensive model of the interplay of the different myosin
isoforms, e.g., the transition from myosin Va-mediated directed

transport to myosin VI-dependent recruitment to the cortical
actin network. Common pathways that are shared by other cel-
lular functions, such as adhesion or migration should also be
explored further. Future work should therefore aim at combining
in vitro techniques with live cell microscopy experiments in order
to explore the complex interplay between the different myosin
molecular motors during neuroexocytosis. In particular, it will be
necessary to address the nature of the pathways, which coordi-
nate and control myosin functions in order to achieve such precise
spatio-temporal trafficking of SVs en route to fusion with the
plasma membrane.
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