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Abstract

Inter-hospital patient transfers (direct transfers) between healthcare facilities have been

shown to contribute to the spread of pathogens in a healthcare network. However, the

impact of indirect transfers (patients re-admitted from the community to the same or different

hospital) is not well studied. This work aims to study the contribution of indirect transfers to

the spread of pathogens in a healthcare network. To address this aim, a hybrid network–

deterministic model to simulate the spread of multiresistant pathogens in a healthcare sys-

tem was developed for the region of Lower Saxony (Germany). The model accounts for

both, direct and indirect transfers of patients. Intra-hospital pathogen transmission is gov-

erned by a SIS model expressed by a system of ordinary differential equations. Our results

show that the proposed model reproduces the basic properties of healthcare-associated

pathogen spread. They also show the importance of indirect transfers: restricting the patho-

gen spread to direct transfers only leads to 4.2% system wide prevalence. However, adding

indirect transfers leads to an increase in the overall prevalence by a factor of 4 (18%). In

addition, we demonstrated that the final prevalence in the individual healthcare facilities

depends on average length of stay in a way described by a non-linear concave function.

Moreover, we demonstrate that the network parameters of the model may be derived from

administrative admission/discharge records. In particular, they are sufficient to obtain inter-

hospital transfer probabilities, and to express the patients’ transfers as a Markov process.

Using the proposed model, we show that indirect transfers of patients are equally or even

more important as direct transfers for the spread of pathogens in a healthcare network.

Author summary

Direct patient transfers between hospitals have been shown to play an important role in

the spread of pathogens in a healthcare network. However, readmission of patients from
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the community (indirect transfers) to the same or a different hospital is not well studied,

and its role for the spread of pathogens in a healthcare network is not quantified. In this

work, we developed a network model of a healthcare system to study the impact of indi-

rect transfers on the prevalence in the individual hospitals as well as in the overall health-

care system. The model includes both, direct and indirect transfers of patients between

the healthcare facilities due to transferring as well as readmission of infectious (colonized

or infected) patients. Our results show that the readmission of patients (indirect transfers),

either to the same or different facility, is an important potential channel of pathogen

transmission. Such indirect transfers are of no less importance than direct patient trans-

fers in controlling the spread of pathogens in a healthcare network.

Introduction

Recent years brought an increased attention to the question of how patient traffic between

healthcare facilities contributes to the spread of healthcare-associated infections in general,

and of multidrug resistant pathogens in particular [1]. The movements of patients between

hospitals can be divided into transfers of patients from one hospital to another (i.e. direct

transfers), and in readmission of patients to the same or another hospital after having spent

some time in the community (i.e. indirect transfers). Based on patient movements, one can

derive a healthcare network, where nodes represent hospitals and communities, whereas con-

nections between the nodes reflect patient transfers. Both, direct and indirect transfers may

contribute to the spread of pathogens in healthcare networks. Effects of interventions to pre-

vent the spread of pathogens in such healthcare networks may differ for direct and indirect

transfers. While screening of patients, who are transferred from one hospital to another is an

obvious intervention measure, this is less clear for patients who are readmitted from the com-

munity [2]. The effectiveness/cost-effectiveness of screening of patients after an indirect trans-

fer depends on the time between admissions, the clearance rate of the pathogen, and whether

screening is applied in a targeted way, i.e. based on individual risk factors of the patient. To

quantify the effectiveness of such measures, we need to understand the contribution of indirect

transfers to the spread of pathogens through the network. In the past decade, eleven studies

assessed healthcare networks in countries or federal states. All of these used national or federal

registries in the US [3–7] or Europe (England, France, Germany, the Netherlands) [1, 8–12].

The definition of transfer and patient movement was quite heterogeneous. While some studies

took into account direct and indirect transfers independently of the length of the community

stay between two hospital admissions [8, 10], others restricted indirect transfers to readmis-

sions within 90 [7] or 365 days [12], or did not consider them at all [6] when deriving hospital

network flow characteristics. For studies which included indirect transfers, sometimes the

description of how such transfers were incorporated is not clear. Moreover, only preliminary

analyses were conducted for Germany [10]. Such heterogeneities make it difficult to compare

the findings. In this work, we aim to develop a model to explicitly account for indirect transfers

using data from one regional healthcare insurance company in Germany and to study the

impact of such transfers on the spread of multiresistant pathogens in a healthcare network. We

use methicillin-resistant Staphylococcus aureus (MRSA) as an example pathogen and describe

selected implications of either including or ignoring indirect transfers for the spread of a

MRSA strain transmitted mainly in the hospitals.
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Materials and methods

Description of dataset

In the German healthcare system, over 90% of the population is insured by public insurance

companies and the remaining population by private insurance companies. Overall, there exist

more than 190 public insurance companies. These scattered data together with high standards

of data protection are a reason that reimbursement data in Germany are less accessible for sci-

entific analysis than in other countries. We used an anonymized hospital discharge dataset

provided by AOK Lower Saxony, a statutory regional healthcare insurance company. AOK

Lower Saxony includes almost exclusively residents of the federal state of Lower Saxony and

covers around 30% of the local population in this federal state.

The dataset contains hospitalisation records of 1 673 247 patients for the years 2008 to

2015. For each hospital stay, the anonymized patient ID, the anonymized healthcare facility

ID, the federal state where the healthcare facility is located, day of admission, day of discharge,

discharge diagnosis (ICD 10 GM code), as well as age and sex of the patient are available. For

data protection reasons, exact geographical locations of the healthcare facilities were not pro-

vided. In the dataset, we identified 4 573 584 hospitalisations in 223 healthcare facilities located

in Lower Saxony, and 680 908 hospitalisations in healthcare facilities in other German federal

states.

We excluded a subset of facilities because either they had very few hospitalisations in the

eight-year period, or they were not operational (no hospitalisations) for a sufficient time inter-

val. Thus, we finally considered 164 healthcare facilities located in Lower Saxony.

For more detailed information on e.g. sex of the patients, distributions of length of hospital

stays, detailed characteristics of overlaps as well as a technical description of the provided data-

set, we refer to a technical report [13].

Model input data

We constructed a directed, weighted graph, based on patient discharge data. In such a network,

nodes represent healthcare facilities and weights correspond to direct transfer probabilities. To

account for indirect transfers, we define additional community-nodes (see Sec. Sizes of com-

munity-nodes), which correspond to the communities associated with the healthcare facilities.

Patients leaving a healthcare facility go to such a community-node, and then they may be read-

mitted to the same or another facility, c.f. Fig 1. As a result, the model allows to simulate the

patient transfers from healthcare facilities to communities and back to healthcare facilities.

Extraction of direct and indirect transfers from data. We distinguish two types of trans-

fers. A direct transfer is when patients move from one facility to the next on the same or the

next day. In contrast, an indirect transfer means a new admission to the same or a different

hospital after at least one day outside of any hospital. We define duration of a transfer as the

time between discharge and the next admission. The situation when the patient is re-admitted

to the same facility after some time spent in the community is called (indirect) auto-transfer.
The direct transfers can be subject to overlapping (one day or longer) hospital stays, i.e. for

the same patient at least two hospitalisations are reported with overlapping periods (c.f. Fig 2).

We detected 304 833 overlapping cases for healthcare facilities located in Lower Saxony only.

Several factors contribute to the existence of overlaps. First, the granularity of admission/dis-

charge is in days, causing that a transfer may be indicated by a single-day overlap (112 368

cases corresponding to 38.1% of all detected overlaps) as well as two consecutive non-overlap-

ping stays. Moreover, an overlap may be longer than one day if a patient returns to the origi-

nating facility and his/her stay continues. Overlaps may also occur due to coding errors in the
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original dataset which cannot be corrected given the anonymized nature of the data. For fur-

ther details on overlaps, we refer the reader to an open access report [13].

To deal with overlaps of more than one day, we derived an algorithm declaring in which

hospital is the patient on the given day (see S2 Appendix for details). Using this algorithm, we

identified 2 733 286 transfers in Lower Saxony, among which 157 143 were direct transfers

(below 6% of all transfers) and 2 576 143 were indirect transfers (above 94%, including 1 648

400 auto-transfers).

Fig 3 shows the fractions of both detected types of transfers for each facility. For indirect

transfers, the average duration of stay in the community for indirect transfers was 320.1 days

(SD = 435.2), while the average length of stays in hospitals was 8.7 days (SD = 12.2). There

were only 573 045 indirect transfers (about 20% of all transfers) with a community stay dura-

tion of less than 30 days.

Sizes of hospital nodes. Since healthcare facilities are anonymized in the dataset, we do

not have information on their sizes. To estimate them (for 164 units), we counted all patients

present on a given day in a given facility, and then took the average over the facility operation

Fig 1. Graphical representation of transfers in a model comprising two exemplary hospitals. Direct transfers are

represented by solid lines, while indirect transfers are represented by dashed lines. Dotted loops indicate the situations

when patients stay for a night in the hospitals/community nodes.

https://doi.org/10.1371/journal.pcbi.1008442.g001
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period. The distribution of the resulting hospital sizes is presented in Fig 4. In addition, in S4

Appendix some examples of the length of stay histograms for considered facilities are

presented.

Sizes of community-nodes. To estimate the average number of people being subject to

indirect transfers, we first investigated the change in time of the number of people being in

community between two hospitalisations. To keep track of the originating hospital of a com-

munity dwelling patient, we created a community-node for each facility i, indexed by n + i,
where n is the number of all considered healthcare facilities. A patient was assumed to be in

the community-node n + i if the patient was discharged from the healthcare facility i and after

Fig 2. Examples of the results of the transfer detection algorithm in case of different types of overlaps. Results are

represented by red lines, numbers on the left-hand side indicate the numeric codes for particular units, while # stand

for days of stay reported for a given healthcare facility. For the classification of particular types of overlaps see [13].

https://doi.org/10.1371/journal.pcbi.1008442.g002

Fig 3. Fractions of outgoing direct and indirect transfers per day. Results are presented for all considered healthcare

facilities (164 units), which are ordered by the mean size of the units, the smallest first.

https://doi.org/10.1371/journal.pcbi.1008442.g003
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some time was admitted to another (or possibly the same) healthcare facility j 2 {1, . . ., n} or

was not admitted to any hospital in the considered period.

To estimate the average sizes of community-nodes, we iterated through the dataset period

and we calculated the number of patients being in indirect transfer, discharged from a given

facility, and waiting for their admission to another one for every day and for every facility. For

i community node we also counted patients who were subject to first hospital stay in unit i.
Then we took the means of these numbers. Fig 4 shows the relationship between healthcare

facility sizes and sizes of the corresponding community-nodes i.e. persons discharged from

healthcare facilities and waiting for (re)admission.

Model description

We describe the healthcare system as a graph, where the nodes represent healthcare facilities

and corresponding community-nodes, with weighted edges representing the probabilities of

transfers (both direct and indirect) between the nodes.

Fig 4. Hospital and community sizes analysis. (a) Histogram of estimated hospital sizes, defined as average numbers

of patients in the hospitals within the period 2008–2015, calculated for each healthcare facility separately (164 units)—

given the fact that AOK Lower Saxony covers 30.52% of the population in Lower Saxony, the number of beds has to be

multiplied by about 3 to get the actual sizes; (b) histogram of estimated community sizes, defined as average numbers

of patients in the given community within the period 2008-2015, calculated for each healthcare facility separately, as

above the populations have to be multiplied; (c) dependence of community-node sizes on corresponding healthcare

facilities (164 units).

https://doi.org/10.1371/journal.pcbi.1008442.g004

PLOS COMPUTATIONAL BIOLOGY Modelling pathogen spread in a healthcare network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008442 November 30, 2020 6 / 22

https://doi.org/10.1371/journal.pcbi.1008442.g004
https://doi.org/10.1371/journal.pcbi.1008442


Patient traffic. To construct the healthcare network, the model requires as an input a list

of healthcare facilities (n elements) and corresponding community-nodes (n elements) with a

matrix A ¼ ½Aij�
2n
i;j¼1

determining the transfer probabilities between the nodes.

Hospital discharge data were collected for a period of D 2 N days, thus by D ≔ f1; . . . ;Dg
we denote the set of all days for which admissions and discharges are registered. This means

that every number in D set corresponds to a single reported day.

Let tij(d), tij : D! N0 for any i 6¼ j denote a number of transitions from node i to node j,
within a single day d 2 D, which can be derived from the dataset provided by the insurance

company (see S2 Appendix).

We differentiate four categories of transfers, depending on indices i, j:

• i, j 2 {1, . . ., n}—direct transfers between healthcare facilities;

• i 2 {n + 1, . . ., 2n}, j 2 {1, . . ., n}—indirect transfers from community-nodes to healthcare

facilities;

• i 2 {1, . . ., n}, j 2 {n + 1, . . ., 2n}—transfers from healthcare facilities to community-nodes.

These may also be interpreted as initiations of indirect transfers. Since a patient stays in the

community-node corresponding to the discharging facility, only ti,n+i 6¼ 0, and for j 6¼ n + i
we have tij� 0;

• i, j 2 {n + 1, . . ., 2n}—transfers between community-nodes. Due to the nature of commu-

nity-nodes, there is no transfer between them, thus these elements are zero except for tii.

Let T ¼ ½Tij�
2n
i;j¼1

be a matrix of aggregated numbers of all direct and indirect transfers

between nodes within a given time period:

Tij ¼
XD

d¼1

tijðdÞ: ð1Þ

We refer to each node (hospital or community-node) by their index in the matrix T.

Now, we define aij(d) to be a transfer probability per patient from node i to node j in a sin-

gle given day d 2 D. Then for an arbitrary chosen facility, the average number of transferred

patients at a given day is expressed by aij(d)pi, where pi is the average population size in the i-
th node, to be defined later. Thus,

tijðdÞ � aijðdÞpi: ð2Þ

Assuming that the probability of a transfer from node i to node j in a single given day does

not depend on the choice of a day, i.e. aij(d)� Aij = const, we get

Tij ¼
XD

d¼1

tijðdÞ ¼ DAijpi; ð3Þ

and we determine non-diagonal elements of the matrix A as

Aij ¼
Tij

Dpi
¼

1

Dpi

XD

d¼1

tijðdÞ: ð4Þ
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With elements Aij≔ Aij(pi) defined, we may easily determine the diagonal elements Aii≔
Aii(pi), corresponding to the probability of staying in a given node as

Aii ≔ 1 �
X

j6¼i

Aij; ð5Þ

and thus matrix A of a Markov chain is determined up to node average populations p = [p1,

. . ., p2n] and 0� Aii� 1. We picked the values of pi such that the average length of stay of the

patients in the nodes agree with the values determined directly from the data.

By the success at a given day k, let us denote a situation when a given patient leaves the hos-

pital. It means that for k − 1 days, with probability of Aii for each day, the patient was in the

hospital and then, at day k, the patient was dismissed with probability 1 − Aii. Thus, we get

Ak� 1
ii ð1 � AiiÞ that is the probability mass function of the geometric distribution. Therefore,

average patient length of stay in a given hospital i can be estimated using 1/(1 − Aii).

The transfer probability matrix obtained by the above procedure is visualized in Fig 5. It

has a block structure with the indirect transfer block clearly denser (see discussion in Section

Extraction of direct and indirect transfers from data). The upper right diagonal block corre-

sponds to discharge from healthcare facilities to community-nodes, and thus it accounts for

total indirect transfer quantity. The lower right diagonal block corresponds to patient

exchange between community-nodes. Since community-nodes are assumed to be separated,

only the diagonal elements are present to account for patients remaining at the community-

nodes.

In our model, patient traffic is simulated as follows. Assume that q0 ≔ ½q0
1
; . . . ; q0

2n� is an ini-

tial patient probability distribution in healthcare facilities and community-nodes (a vector of

the number of patients in each node, normalised to a sum of 1). The probability changes in the

following days is calculated by iterating

qk ≔ qk� 1A ¼ q0Ak: ð6Þ

If we start with q0 being an eigenvector of A (i.e. q0A = λq0, where λ is an eigenvalue of

matrix A), we get qk = λkq0. Moreover, if matrix A represents a regular Markov chain (i.e. there

Fig 5. Visualization of the transfer probability matrix. Healthcare facilities are numbered from 1 to n and

community-nodes numbered from n + 1 to n + n, n = 164. (a) schema presenting four distinguishable blocks; (b)

quantitative representation of obtained probabilities, colour pixels denote the probabilities; for the purpose of

visualization, all elements were raised to the power 0.075.

https://doi.org/10.1371/journal.pcbi.1008442.g005
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exists k such that all elements of Ak are positive), then we can find the stationary probability

distribution w of the patients in hospitals for our network model by solving system wA = w. In

such a case λ = 1 is an eigenvalue of the matrix A. On the other hand, if the considered Markov

chain is absorbing, then we would be able to calculate the probability of absorption from one

state to another and the average number of steps before the absorption happens. It is natural to

expect that a Markov chain describing the patient transfer process is not absorbing, as no such

phenomenon is observed in real healthcare systems.

In our analysis, we mostly discuss the stationary distribution of patients counted as a num-

ber of patients in a given healthcare facility, while in the Markov processes we consider the sta-

tionary probability distribution i.e. vector of the probabilities of being in a given facility.

However, we can easily interchange these vectors by dividing/multiplying them by the number

of patients in the healthcare system. In case of the network derived from the provided data, the

regularity of matrix A was checked numerically by empirical verification (A5 has positive ele-

ments only), but this result is dependent on numerical errors. Nevertheless, we can use a

lemma providing an analytical argument, for details see [14] or S1 Appendix. A non-zero pat-

tern of matrix A is presented in Fig 5b. Fig 6 shows in- and out-degree of all network nodes,

calculated using transfer probability matrix A.

Pathogen transmission dynamics. To model the spread of MRSA within nodes, we use a

susceptible-infectious-susceptible model (SIS), [15] expressed by a system of ordinary differen-

tial equations. In this classic approach, we assume to have two well mixed and constant in time

populations of P individuals that can be susceptible or infectious. Infectious individuals

include those colonized as well as those who develop MRSA infection and we do not distin-

guish between these populations. Let Sf(t) and If(t) denote the fraction of susceptible and infec-

tious individuals at time t, respectively. The term βSf(t)If(t) describes the infection process due

to the contact of susceptible and infectious individuals, while γIf(t) describes the recovery pro-

cess. The equations of the SIS model are:

d
dt

Sf ðtÞ ¼ � bSf ðtÞIf ðtÞ þ gIf ðtÞ;

d
dt

If ðtÞ ¼ bSf ðtÞIf ðtÞ � gIf ðtÞ;

ð7Þ

Fig 6. Degrees of the nodes in the hospital network. (a) In-degree and out-degree for each hospital node of the

network (self-loops not included); (b) out-degree for each community node of the network (self-loops not included),

in-degree for all community nodes are equal to 1.

https://doi.org/10.1371/journal.pcbi.1008442.g006

PLOS COMPUTATIONAL BIOLOGY Modelling pathogen spread in a healthcare network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008442 November 30, 2020 9 / 22

https://doi.org/10.1371/journal.pcbi.1008442.g006
https://doi.org/10.1371/journal.pcbi.1008442


where Sf + If = 1 due to the definition of Sf and If, and as a consequence

d
dt

If ðtÞ ¼ � bðIf ðtÞÞ
2
þ ðb � gÞIf ðtÞ; ð8Þ

which is a logistic equation, [16], with analytical solutions which exist globally and are unique.

Eq 8 has two steady states: a trivial one (locally stable for β< γ and unstable for β> γ) and a

positive one providing β> γ (which is stable whenever it exists). Thus, for β� γ the fraction of

infectious individuals goes to zero, while for β> γ the fraction of infectious individuals stabi-

lizes at a certain level.

In our work, the use of absolute numbers of susceptible and infectious patients S, I is

favourable, therefore we consider

SðtÞ ¼ Sf ðtÞ � P; IðtÞ ¼ If ðtÞ � P; ð9Þ

where If(t) and Sf(t) are solutions to (7) and P denotes the population size in the node.

We apply this simple SIS model to all healthcare facilities and community-nodes in our net-

work. Since we focus only on hospital-acquired infections in this work, we assume no trans-

mission (β = 0) in the community-nodes. As a consequence in the following, we assume that

pk = sk + ik, sk ≔ ½sk
1
; . . . ; sk

2n�, i
k ≔ ½ik

1
; . . . ; ik

2n�, where as before pk ¼ ½pk
1
; :::; pk

2n� denotes the

average distribution of the patients in network nodes after k iterations, while ik and sk stand

for average distributions of infectious and susceptible patients in nodes, respectively.

Let us define the numerical subroutine sisolve as follows. For a given S0, I0, t0, t1, β, γ, it

returns values S1, I1 (i.e. the numbers of susceptible and infectious individuals after time t1 − t0

= 1 day, respectively), where

S1 ≔ Sðt1Þ; I1 ≔ Iðt1Þ; ð10Þ

where functions S, I are the solutions of the SIS model (with initial condition S(t0) = S0 and I
(t0) = I0) given by (9). So basically sisolve : R6

! R2
together with the SIS model defines our

modelling approach as follows:

Require: s0 ¼ ½s0
1
; . . . ; s0

2n�, i
0 ≔ ½i0

1
; . . . ; i0

2n�, T 2 N;

1: t ≔ 0;
2: s = s0;
3: i = i0;
4: while t < T do
5: for all j 2 {1, . . ., 2n} do
6: (sj, ij) ≔ sisolve(sj, ij, t, t + 1, β, γ);
7: end for
8: s ≔ sA;
9: i ≔ iA;
10: st ≔ s; it ≔ i; ⊳ These are the results
11: end while

Loop 5 can be parallelized. This is also true for multiplications 8, 9, but here some inter-pro-

cess information exchange is necessary. Moreover, for our designed numerical procedure,

there is no need of having the same recovery and transmission rates for all healthcare facilities

and/or community-nodes. The results of the described algorithm, i.e. distribution of suscepti-

ble and infectious patients versus discrete time steps, are computed in line 10.

We assume that the time-step is one day, and that the recovery and transmission rates do

not vary between the facilities. This behaviour may be easily modified if necessary since the

developed code allows to run the simulations with non-homogenous parameters. However,

since there is no information available how recovery or transmission rates might differ

between hospitals (unlike within), we did not implement this in the primary analysis. We also
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assume that the transfer probabilities for susceptible and infectious individuals are constant in

time (lines 8, 9). To change this assumption, we would have to generate different Markov

Chain matrices for these groups, but otherwise the presented algorithm remains unchanged.

Estimation of SIS parameters

Model parameters for MRSA were based on reference values from the literature. Where neces-

sary, we varied the reference values to study the behaviour of our model under a borader set of

assumptions. Parameter values and applied ranges are shown in Table 1. The recovery rate γ is

equal to one over the mean time spent by an individual in the infectious state and it is mea-

sured in units of day−1. Following Scanvic et al. [17] and Donker et al. [8, 18], we assumed that

the mean time of MRSA colonization is 365 days leading to γ = 1/365 day−1. In addition, we

assumed that recovery rates in particular facilities do not depend on patient characteristics or

healthcare facility characteristics itself. Thus, we used the same value of recovery rate for all

healthcare facilities and community-nodes, if not indicated otherwise. MRSA transmission

rates have been parametrized heterogeneously in previous modelling studies [18, 19], and were

often not reported explicitely [8, 9]. We used a value compatible with literature values for the

transmission rate within hospitals in our base case scenario, and varied it for further analyses.

As stated earlier, we do not consider transmission in the community-nodes; therefore, we set

transmission rates for community-nodes to zero. The rationale for this was that we were spe-

cifically interested in hospital-associated infections and the role of indirect transfers for their

transmission. For the example of MRSA, this would correspond to healthcare-associated

MRSA strains (HA-MRSA) which are associated with only few transmissions in the commu-

nity [20]. While in general some transmission in community may exist, with much smaller

transmission parameter, it would not substantially affect the result of simulation (c.f. S3

Appendix). For the set of simulations presenting the impact of the SIS model parameters on

the dynamics of the whole model, we varied both SIS parameters recovery rate and transmis-

sion rate, as reported in Table 1 (set type: parameter analysis).

For the set of simulations investigating the impact of indirect transfers, we started with a

specific parameter combination, γh≔ γc = 1/365 day−1 and β = 0.06 day−1, resulting in stabili-

zation of the system-wide community prevalence within a period of 7000 days at the level of

6.7%, and stabilization of the system-wide hospital prevalence at the level of 17.8%. The latter

prevalence was close to the mean prevalence reported in [8, 9, 18].

In subsequent simulations, we modelled the effect of increased indirect transfers on patho-

gen transmission between the facilities by varying the γc parameter. We started with the value

Table 1. SIS parameters used in simulations.

Set type Parameter Reference values Unit Reference

MRSA Recovery rate (γ) 1/365 day−1 [8, 17, 18]

Transmission rate in hospital (β) 0.06 day−1 see Section Estimation of SIS parameters

Transmission rate in community (β) 0 day−1 assumed

Parameter analysis Recovery rate (γ) 0.5/365–8/365 day−1 assumed

Transmission rate in hospital (β) 0.04–0.85 day−1 assumed

Transmission rate in community (β) 0 day−1 assumed

Indirect transfer impact Recovery rate in hospital (γh) 1/365 day−1 [8, 17, 18]

Recovery rate in community (γc) 0.125/365–4096/365 day−1 see Section Estimation of SIS parameters

Transmission rate in hospital (β) 0.06 day−1 see Section Estimation of SIS parameters

Transmission rate in community (β) 0 day−1 assumed

https://doi.org/10.1371/journal.pcbi.1008442.t001
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0.125/365 day−1� 3.42 × 10−4 day−1 corresponding to much lower (than the one proposed in

[8, 17, 18]) recovery in community. Then, we gradually increased the recovery rate in the com-

munity up to 4096/365 day−1� 11 day−1, which gives a mean duration of recovery of about

two hours. Using this approach, the movement of patients in the system remains the same, but

the patients recover faster in the community, so that pathogen transmission through this chan-

nel is reduced, and in the most extreme case (γc = 4096/365 day−1� 11 day−1) it is virtually dis-

abled. In this case, the transmission is limited to the hospital environment only.

Numerical simulation setup

For simulations of the pathogen spread in the healthcare network, we used software developed

by K. Sakowski and M.J. Piotrowska (for details and documentations see [21]). The software is

written in Python and comprises two main modules: one for patient transfers between health-

care facilities and one for pathogen spread within healthcare facilities. The former module is

superior to the latter one in the sense that it governs the simulation flow. Moreover, it per-

forms the parallelization through the MPI library.

In the first step, the healthcare facility nodes and their community-nodes are distributed

between the available processors. Next, the transfer matrix, described in detail in Section

Patient traffic, is divided into submatrices, corresponding to blocks of nodes given to the sub-

sequent processes; then these blocks are also distributed to the corresponding processors. The

internal model, responsible for calling independent instances of the intra-facility model for

pathogen spread simulation with a SIS model as defined in Section Pathogen transmission

dynamics, is then initialized. After the intra-facility simulations (covering a one day period)

are finished, the patients are transferred between nodes and this process is repeated for the

next day, and so on.

Simulation plan

Using the static network structure described above and the SIS transmission model, we first

assess how MRSA spreads in the network including direct and indirect transfers. We further

investigate the effects of parameter values on the spread of MRSA within healthcare facilities

and corresponding communities. We also check if the starting point of MRSA spread strongly

influences model dynamics.

A particular focus is placed on the role of transmission parameters and the initial infection

point for the behaviour of the system until a steady state is reached, and on the prevalence of

MRSA colonization during steady state in individual healthcare facilities and their correspond-

ing community nodes. By increasing the recovery rate in community-nodes from 0.125/

365 day−1 to about 4096/365 day−1 (instant recovery in the community), we investigate the

effects of stepwise restricting the contribution of indirect transfers to the spread of the

pathogen.

Results

Impact of the initial infection point

Independently of the initial starting point of pathogen spread, we observed three phases of

MRSA spread in our network. In the initial phase (time to reach the prevalence of 10% of the

final prevalence, see also S5 Appendix), the overall prevalence is small, close to zero. With

time, prevalence increases slowly mainly in the initially colonized facility. Then, there is a tran-

sition phase (time from the end of phase 1 till reaching the level of 99.9% of final prevalence),

where the number of infectious patients increases rapidly. Then, the final phase is reached in
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individual facilities where the proportion of infectious individuals does not change substan-

tially any more.

The final states for all simulations are similar, independently of the initially infected health-

care facility (cf. Fig 7). These results suggest that there is a single final state, corresponding to

some stationary state of the simulated system. The time to reach the system-wide final state

depends on the initial conditions, but differences are very small. The system-wide initial phase

lasts about 400-600 days, and then the system-wide transition (second) phase takes up to 7700

days (see Fig 8a).

Fig 7. MRSA prevalence in the individual healthcare facilities and community-nodes. MRSA prevalence (over time) expressed as the percentage of

infectious individuals per healthcare facility (a,c) and corresponding community-node (b,d). Deep blue corresponds to low infection proportions

(lower than 5%); yellow or red to facilities with high infection proportions (higher than 20%). Healthcare facilities are ordered by average size, with the

smallest first. The process was started by a single infectious patient located in facility number: (a,b) 1 (the smallest facility); (c,d) 164 (the biggest

facility).

https://doi.org/10.1371/journal.pcbi.1008442.g007
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If we focus on the individual facilities (see Figs 7 and 8b), there is a high heterogeneity in

lengths of the studied phases. Some facilities reach their final state within 4000 days; the mean

duration of reaching final phase is, however, more than 8000 days. These patterns do not

depend on the initial conditions under consideration (except for the initial infection points,

where the spread is faster). Moreover, there is no clear association between size of a facility

and final prevalence or time to reach it. However, lower final prevalence generally corresponds

to a longer transition phase. There is a strong association between the combined length of ini-

tial/transition phases for healthcare facilities and their corresponding community-nodes. As

expected, the final prevalence for individual community-nodes is generally much lower than

the final prevalence of the corresponding facility (Fig 9).

Influence of SIS parameters on the final prevalence

We further investigate the effects of varying transmission rates and recovery rates in the SIS

model on the proportion of susceptible and infectious individuals in the healthcare facilities.

Fig 10 shows that both parameters, the transmission rate β and the recovery rate γ, impact the

final MRSA network-wide prevalence in line with what would be expected. Larger β indicates

faster spread of the pathogen while larger γ values result in lower prevalence in the whole net-

work at steady state. The system wide effect is smaller for relative changes in β than in γ.

The length of the initial infection phase seems to be highly dependent on the parameter β.

This effect is visible in all the presented simulations. When we look closer at the effect of vary-

ing recovery rates γ (Fig 10), we find a similar behaviour, but the changes are milder.

Impact of indirect transfers

In order to assess the role of indirect transfers in the pathogen spread, we vary the recovery

rates in the community-nodes (γc). Recovery rates in community-nodes differ from the

Fig 8. Comparison of average system-wide phase durations and individual phase ends expressed in days in

simulations when each healthcare facility was selected as the initial infection point. (a) Phase durations for

hospitals and corresponding community nodes. Phase 1 denotes the beginning of the spread (prevalence lower than

10% of the final prevalence); phase 2 denotes the transition state (prevalence< 99.9% final prevalence). The phase

durations correspond to a system-wide prevalence, not to individual facility prevalences. (b) Individual phase ends in

healthcare facilities and in corresponding community-nodes. Presented results are averaged-out amid all possible

initial infection points. Pathogen spread was initiated by a single infectious patient originating from each facility.

https://doi.org/10.1371/journal.pcbi.1008442.g008
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recovery rates in corresponding hospitals (γh), as indicated in Table 1 (set type: indirect trans-

fer impact).

In Fig 11, we show how the MRSA network-wide prevalence (percentage of infectious indi-

viduals) is affected by varying the γc parameter in the community-nodes. Starting with� 77%

and� 68% prevalence levels in the communities and healthcare facilities respectively, preva-

lence levels decrease monotonically with increasing γc. For simulations with γc> 128/365

day−1� 0.35 day−1, MRSA network prevalence in hospitals stabilizes at the level of about 4.2%.

For community-nodes it systematically decreases, falling below 0.1% for γc greater than 16/365

day−1� 4.38 × 10−2 day−1.

Fig 12 shows how the final prevalence in the individual healthcare facilities and commu-

nity-nodes varies with changing γc parameter. There is a small fraction of facilities, where the

prevalence is very high, independent of the community recovery rate (γc). We observe a similar

effect for communities, but for sufficiently high γc, all communities have a very low

prevalence.

Time needed to reach the final prevalence state is another important feature affected by the

inclusion of indirect transfers. In Fig 13a, we looked at the time needed to reach the end of

phase 1 (prevalence lower than 10% of the final prevalence) and phase 2 (i.e.

prevalence < 99.9% final prevalence). Interestingly, the time to reach the end of phase 1 shows

a monotonous decrease for small γc, while it is not the case for the end of phase 2.

We further computed correlation coefficients between the final prevalence in the hospitals

and community nodes (corrA), the final prevalence in the hospitals and the average length of

stay in hospitals (corrB) and final prevalence in communities and the average length of stay in

hospitals (corrC), for different values of γc. Fig 13b shows that all mentioned correlation coeffi-

cients are strongly positive for all the considered γc values. For small γc, the strongest correla-

tion exists between the final prevalence in the hospitals and corresponding community-nodes.

However, it slightly decreases with increasing γc, while at the same time, correlations between

Fig 9. Comparison of the final percentage of infectious individuals in given hospitals/community-nodes.

Healthcare facilities are ordered by the average size of hospitals, the smallest first. Transmission was started by a single

infectious patient originating from a given facility, and the results are averaged out through all initial facilities.

However, differences in the final prevalence between initial originating facilities are negligible.

https://doi.org/10.1371/journal.pcbi.1008442.g009
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Fig 10. Effect of the change of SIS parameters on MRSA network-wide prevalence. (a) Effect of the change of the transmission rate on the percentage

of susceptible (blue) and infectious (red) individuals in the healthcare facilities network. (b) Effect of the change of the recovery rate on the percentage

of susceptible (blue) and infectious (red) individuals in the healthcare facility network. Initial fraction of the colonized individuals is 0.1% uniformly

distributed in the whole population. Sets of parameters being perturbations of the SIS reference values reported in Table 1 (set type: MRSA) as indicated

in legends.

https://doi.org/10.1371/journal.pcbi.1008442.g010

Fig 11. Dependence of MRSA network-wide prevalence in healthcare facilities and corresponding community-nodes (reported for the

last day) on different values of γc parameter in the community-nodes. Parameter γh = 1/365 is kept constant for all the hospitals. Initial

fraction of the infectious individuals is 0.1% uniformly distributed in the whole population. (a) Data presented on log-log scale. (b) Data

presented on semilog(x) scale.

https://doi.org/10.1371/journal.pcbi.1008442.g011
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final prevalence in the hospitals (or in communities) and the average length of stay in hospitals

increase. For a sufficiently large community recovery rate (γc> 0.1 day−1), when pathogen

transfer via community nodes is minor or negligible, all the correlations stabilise at certain lev-

els and become independent of γc. The investigation of correlations between the final preva-

lence in the hospitals (or the community-nodes) and in- or out-degree of hospital nodes (or

out-degree of community-nodes) brought no statistically significant results.

Fig 12. Final MRSA prevalence in the individual healthcare facilities and community-nodes. Final prevalence in

the individual healthcare facilities and community-nodes depending on the value of γc parameter (vertical axis) for: (a)

all considered hospitals, (b) corresponding community nodes. Initial condition for all simulations is the same: 0.1%

uniformly-distributed colonized patients. Facilities are sorted by increasing average size.

https://doi.org/10.1371/journal.pcbi.1008442.g012

Fig 13. System-wide phase ends in healthcare facilities and correlation coefficients. (a) System-wide phase ends in

healthcare facilities for different γc. (b) Dependence of the correlation coefficients on γc value (semi-log scale), corrA is

the correlation coefficient between final hospital prevalences and corresponding communities prevalences; corrB—

correlation coefficient between final hospital prevalences and average length of stay in hospitals; corrC—correlation

coefficient between final community prevalences and average length of stay in corresponding hospitals; corrD—final

prevalence in hospitals and hospital in-degrees; corrE—final prevalence in hospitals and hospital out-degrees; corrF—

final prevalence in community nodes and community out-degrees. Initial condition for all simulations is the same

0.1% uniformly-distributed colonized patients.

https://doi.org/10.1371/journal.pcbi.1008442.g013
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Influence of the length of stay on prevalence

We additionally looked at the distribution of average length of stays for the considered hospi-

tals (see Fig 14a). In most cases, it was between 7 and 9 days. Moreover, Fig 14b shows the cor-

relation between the average length of stay and the prevalence for all the considered hospitals.

The prevalence for each hospital was calculated based on the simulations presented in Sec.

Impact of the initial infection point by taking the average from the simulations where the ori-

gin of the colonization was changed (164 simulations in total). The obtained relationship is

non-linear, but the deviation from linearity is observed for few facilities with longest average

length of stay.

Conclusion and discussion

In this work, we showed how to derive a healthcare network from an anonymized admission/

discharge data based on dataset provided by AOK Lower Saxony, Federal Republic of Ger-

many. For every healthcare facility in the regional healthcare network, we added a correspond-

ing community-node containing patients waiting for re-admission to the same or a different

healthcare facility. We further simulated the transmission dynamics of MRSA as an example

for multidrug resistant bacteria in the proposed network model of patient traffic, taking into

account indirect patient transfers. Due to the characteristics of pathogens for which transmis-

sion occurs mostly in hospitals, patient exchange between facilities is a main driver of their

spread. Our analysis of the AOK Lower Saxony anonymized dataset for the years 2008–2015

shows that patient transfers are well balanced between the facilities. Thus, we can use a deter-

ministic model, and in particular a Markov chain, to describe the patient movements within

the network. Nevertheless, the derived probability matrix defining the Markov process is not

symmetric, indicating that the directed graphs should be used instead of the indirected ones.

Although we propose a simplified deterministic transfer model, the stationary probability dis-

tribution (eigenvector corresponding to eigenvalue equal to 1) are close to values estimated

directly from data, underlining the correctness of the proposed approach.

We found that only 6% of transfers in our underlying dataset are direct transfers; the

remaining 94% include some time in the community before readmission. From these transfers,

we deduced a Markov process transfer probability matrix, which in combination with a SIS

Fig 14. Distribution of length of stay and the dependence between the average length of stay and average

prevalence. (a) Distribution of length of stay (in days) for all the considered hospitals (164 units). (b) Average length of

stay vs. average prevalence calculated for each hospital.

https://doi.org/10.1371/journal.pcbi.1008442.g014
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intra-hospital model determines the transmission dynamics of MRSA within the healthcare

network. We found that a typical spread pattern in such a network consists of three phases. In

the first phase (initial), the percentage of infectious patients is close to 0 and the length of this

phase is strongly associated with the transmission rate β. In the second phase (transient), the

prevalence rapidly increases, and then it reaches a stable level, which is the final third phase

(stable). Length of these phases and final prevalence depends on β and on the recovery rate γ.

In addition, we observed that the stable-state colonization rate of the individual facilities is not

uniform (despite uniform β and γ). Mean length of stay is one of the major determinants of

prevalence at steady state (understood as the state after sufficiently long time, when the

changes are not pronounced anymore) with the longer stays being associated with higher prev-

alence. The node position in the network may also play an important role; however, our analy-

sis of node degrees shows no statistically significant correlation between in-degrees (or out-

degrees) and the prevalence in hospital nodes or corresponding community nodes. Addition-

ally, we observe that the final prevalence in the healthcare facilities is independent of the facil-

ity, from which the pathogen spread was initiated in; however, the initial dynamics may differ

slightly.

In the main part of our analysis, we found that taking indirect transfers into account has a

relevant effect on the final prevalence in the healthcare system. We show that spread of the

pathogen by direct transfers only leads to 4.2% final system wide prevalence, while including

indirect transfers leads to a prevalence increase to almost 18%. While the relationship can be

different for other pathogens, this indicates that indirect transfers are as important or even

more important as direct transfers and cannot be ignored. Limiting the simulation to the

healthcare system, and ignoring the indirect transfers and the community, may result in mis-

leading results. Not only the role of transfers is misrepresented, but there are also differences

in the transmission dynamics when indirect transfers are omitted. For high γc (corresponding

to transmission of MRSA via the direct transfers only) the system reaches the stable state in

2–3 years, while with indirect transfers it needs about 20 years to reach almost 18% prevalence.

Moreover, using the proposed model, we also found a non-linear concave functional

dependence of the prevalence in the hospitals on the average length of stay in these facilities.

This can be a useful tool for the estimation of prevalence in given hospitals, knowing the aver-

age length of patient stays of the considered facility. This dependence is based strongly on the

network structure, and in the future we will address this issue by studying different hospital

networks.

One example of emerging multi-resistant pathogens, which are more complex to model

than MRSA, are multi-resistant gram-negative bacteria, especially Enterobacteriacaeae. In

[22], the prospective surveillance data from 13 European intensive care units were used to esti-

mate transmission rates of Escherichia coli and E. coli Enterobacteriaceae. This group of patho-

gens shares resistance genes, but has very different transmission characteristics, transmission

ways and clearance rates, making the correct choice of time frames for indirect transfers more

difficult [22].

Infection control by adjustment of the network structure (as e.g. proposed by Donker et al.

in [9]), provides another level of complexity which can be considered in combination with

classic infection control measures focusing on individual healthcare facilities. In [4], Lee et al.

have shown that the distribution of infection control measures based on network characteris-

tics can improve the effectiveness of infection control measures and save resources at the same

time. However, our analysis showed that the decrease of the transferability of the pathogen via

the community does not significantly influence the correlation between the final MRSA net-

work-wide prevalence (in the facilities and corresponding communities) and average lengths

of stays in hospitals.
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To conclude, we showed that indirect transfers are important in the spread of pathogens in

a healthcare network. Dependent on the type of pathogen studied and its clearance rate, net-

work flows representing indirect transfers within a pre-defined time frame need to be taken

into account to understand the spread of pathogen due to transfers in a healthcare network,

and the effectiveness of potential infection control measures. The study presented in this paper

was performed for a single federal state in Germany. Provided that there are available data, the

same may be done for additional regions or a group of countries. One further challenge will be

to determine patient transfers between administrative regions. Our model can be further

expanded by taking into account infection control measures. This requires more detailed

modelling at the intra-hospital level. Screening, isolation of colonized patients and introduc-

tion of effective treatment may be simulated for example by decreasing β. Also, additional

stratification of risk may be added by similar means. The analysis of the influence of hospital

heterogeneity, expressed e.g. by different transmission rates, should be also addressed in the

future, provided access to relevant epidemiological data.
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jam E. Kretzschmar, Rafael T. Mikolajczyk.

Data curation: Konrad Sakowski.

Formal analysis: Monika J. Piotrowska, Konrad Sakowski.

Investigation: Monika J. Piotrowska, Konrad Sakowski.

Methodology: Monika J. Piotrowska, Konrad Sakowski, André Karch, Johannes Horn, Mir-
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11. Nekkab N, Astagneau P, Temime L, Crépey P. Spread of hospital-acquired infections: A comparison of

healthcare networks. PLOS Computational Biology. 2017; 13(8):e1005666. https://doi.org/10.1371/

journal.pcbi.1005666

12. Donker T, Smieszek T, Henderson KL, Walker TM, Hope R, Johnson AP, et al. Using hospital network-

based surveillance for antimicrobial resistance as a more robust alternative to self-reporting. PLOS

ONE. 2019; 14(7):e0219994. https://doi.org/10.1371/journal.pone.0219994 PMID: 31344075

13. Piotrowska MJ, Sakowski K. Analysis of the AOK Lower Saxony hospitalisation records data (years

2008—2015). arXiv. 2019;1903.04701v1.

14. Lonc A, Piotrowska MJ, Sakowski K. Analysis of the AOK Plus data and derived hospital network. Math-

ematica Applicanda. 2019; 47(1):127–139. https://doi.org/10.14708/ma.v47i1.6497

15. Martcheva M. An Introduction to Mathematical Epidemiology. Springer US; 2015.

16. Verhulst P. Notice sur la loi que population suit dans son accroissement. Corr Math et Phys. 1838;

10:113–121.

PLOS COMPUTATIONAL BIOLOGY Modelling pathogen spread in a healthcare network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008442 November 30, 2020 21 / 22

https://doi.org/10.1073/pnas.1308062111
https://doi.org/10.1017/ice.2015.230
https://doi.org/10.1017/ice.2015.230
https://doi.org/10.1007/s00134-011-2341-y
https://doi.org/10.2105/AJPH.2010.202754
http://www.ncbi.nlm.nih.gov/pubmed/21330578
https://doi.org/10.1017/ice.2015.130
https://doi.org/10.1038/s41598-017-02245-7
http://www.ncbi.nlm.nih.gov/pubmed/28592870
https://doi.org/10.1093/cid/ciy084
http://www.ncbi.nlm.nih.gov/pubmed/29415264
https://doi.org/10.1371/journal.pcbi.1000715
https://doi.org/10.1371/journal.pone.0035002
https://doi.org/10.1371/journal.pone.0035002
https://doi.org/10.1371/journal.pcbi.1005666
https://doi.org/10.1371/journal.pcbi.1005666
https://doi.org/10.1371/journal.pone.0219994
http://www.ncbi.nlm.nih.gov/pubmed/31344075
https://doi.org/10.14708/ma.v47i1.6497
https://doi.org/10.1371/journal.pcbi.1008442


17. Scanvic A, Denic L, Gaillon S, Giry P, Andremont A, Lucet JC. Duration of Colonization by Methicillin-

Resistant Staphylococcus aureus after Hospital Discharge and Risk Factors for Prolonged Carriage.

Clinical Infectious Diseases. 2001; 32(10):1393–1398. https://doi.org/10.1086/320151

18. Donker T, Wallinga J, Grundmann H. Dispersal of antibiotic-resistant high-risk clones by hospital net-

works: changing the patient direction can make all the difference. Journal of Hospital Infection. 2014; 86

(1):34–41. https://doi.org/10.1016/j.jhin.2013.06.021

19. Donker T, Smieszek T, Henderson KL, Johnson AP, Walker AS, Robotham JV. Measuring distance

through dense weighted networks: The case of hospital-associated pathogens. PLOS Computational

Biology. 2017; 13(8):e1005622. https://doi.org/10.1371/journal.pcbi.1005622

20. Otter JA, French GL. Community-associated meticillin-resistant Staphylococcus aureus: the case for a

genotypic definition. Journal of Hospital Infection. 2012; 81(3):143–148. https://doi.org/10.1016/j.jhin.

2012.04.009

21. EMerGE-NeT Package;. https://www.mimuw.edu.pl/~monika/emergenet.

22. Gurieva T, Dautzenberg MJD, Gniadkowski M, Derde LPG, Bonten MJM, Bootsma MCJ. The Trans-

missibility of Antibiotic-Resistant Enterobacteriaceae in Intensive Care Units. Clinical Infectious Dis-

eases. 2017; 66(4):489–493. https://doi.org/10.1093/cid/cix825

PLOS COMPUTATIONAL BIOLOGY Modelling pathogen spread in a healthcare network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008442 November 30, 2020 22 / 22

https://doi.org/10.1086/320151
https://doi.org/10.1016/j.jhin.2013.06.021
https://doi.org/10.1371/journal.pcbi.1005622
https://doi.org/10.1016/j.jhin.2012.04.009
https://doi.org/10.1016/j.jhin.2012.04.009
https://www.mimuw.edu.pl/~monika/emergenet
https://doi.org/10.1093/cid/cix825
https://doi.org/10.1371/journal.pcbi.1008442

