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Abstract

Cancer cell lines are widely used for research purposes in laboratories all over the world. Computer-assisted classification of
cancer cells can alleviate the burden of manual labeling and help cancer research. In this paper, we present a novel
computerized method for cancer cell line image classification. The aim is to automatically classify 14 different classes of cell
lines including 7 classes of breast and 7 classes of liver cancer cells. Microscopic images containing irregular carcinoma cell
patterns are represented by subwindows which correspond to foreground pixels. For each subwindow, a covariance
descriptor utilizing the dual-tree complex wavelet transform (DT- WT) coefficients and several morphological attributes are
computed. Directionally selective DT- WT feature parameters are preferred primarily because of their ability to characterize
edges at multiple orientations which is the characteristic feature of carcinoma cell line images. A Support Vector Machine
(SVM) classifier with radial basis function (RBF) kernel is employed for final classification. Over a dataset of 840 images, we
achieve an accuracy above 98%, which outperforms the classical covariance-based methods. The proposed system can be
used as a reliable decision maker for laboratory studies. Our tool provides an automated, time- and cost-efficient analysis of
cancer cell morphology to classify different cancer cell lines using image-processing techniques, which can be used as an
alternative to the costly short tandem repeat (STR) analysis. The data set used in this manuscript is available as
supplementary material through http://signal.ee.bilkent.edu.tr/cancerCellLineClassificationSampleImages.html.
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Introduction

Automatic classification of biomedical images is an emerging

field, despite the fact that there is a long history of image

recognition techniques [1]. Automated classification of carcinoma

cells through morphological analysis will greatly improve and

speed up cancer research conducted using established cancer cell

lines as in vitro models. Distinct morphologies of different types

and even sub-types of cancer cells reflect, at least in part, the

underlying biochemical differences, i.e., gene expression profiles.

Moreover, the morphology of cancer cells can infer invasivenes of

tumor cell and hence the metastatic capability. The change in

morphologies upon treatment with agents that induce cellular

responses such as cell death or cell growth arrest [2]. Table 1

shows a summary of the different morphologies for the cancer cell

lines in the dataset. In addition, an automated morphological

classification of cancer cells will enable the correct detection and

labelling of different cell lines. In molecular biology studies,

experimenters deal with a large number of specimens whose

identity have to be checked recurringly during different stages of

the experiment. Therefore, predicting labels of cancer cell lines in

a fast and accurate manner via a pattern classification approach

will greatly enhance biologists’ ability to identify different types of

cell lines without the need to scrutinize each and every

microscopic image one by one. Although cell lines are being used

widely as in vitro models in cancer research and drug develop-

ment, mislabeling cell lines or failure to recognize any contam-

ination may lead to misleading results. Short tandem repeat (STR)

analysis is being used as a standard for the authentication of

human cell lines. However, this process takes a long time and has

to be carried out by an expert. Automated analysis, on the other

hand, will provide the scientists a fast and easy-to-use tool that they

can use in their own laboratories to verify their cell lines.

Modelling of cell morphology has been studied by several

groups, for example for fission yeast in [3] and for e. coli bacteria

in [4]. In the fission yeast case, differential expression of protein

affects the cell size and, therefore, cell fate, while in the e. coli case,

the topological organization is analyzed with respect to the

underlying signaling network. To the best of our knowledge there

have been no studies that have used morphology of different

human cancer cell lines for classification.

Feature parameters are computed using the dual-tree complex

wavelet transform (DT- WT). In addition, directional difference

scores and covariance descriptors are deployed in support vector

machines (SVM) for analysis and classification of carcinoma cell

line images. Detailed descriptions of these methods can be found

in the feature extraction and classification sections; below we

perform a literature search on how these techniques are applied in

the medical domain. DT- WT is a recently developed image

decomposition method that possesses orientation selectivity and

shift invariance properties lacking in the classical discrete wavelet

PLOS ONE | www.plosone.org 1 January 2013 | Volume 8 | Issue 1 | e52807



transform. In the biomedical image analysis literature, DT- WT

is used to predict the histological diagnosis of colorectal lesions in

colonoscopy images by employing a probabilistic framework

where a joint statistical model for complex wavelet coefficient

magnitudes is proposed [5]. In [6], authors model the marginal

distributions of DT- WT coefficient magnitudes by Rayleigh and

Weibull probability density functions to classify the zoom-

endoscopy images for colorectal cancer diagnosis. In [7], MR

images of human brain and wrist are classified using textural

features extracted via DT- WT decomposition. Directional

difference scores are first introduced in this article and applied

to our classification problem. Normalized versions of covariance

descriptor, which is a matrix-form feature describing an image

region are used. In the medical domain, covariance descriptors are

utilized for classification of colonic polyps in CT colonography

images [8]. Our study is one of the first studies to apply the

covariance descriptors to medical image analysis domain. SVM is

a well-known machine learning algorithm that learns the decision

boundaries between classes using separating hyperplanes. SVM is

used in [9] for automated prostate cancer grading on histology

images. In [10], a segmentation framework for cell microscopic

images is proposed that adopts segmentation-by-classification

approach and uses SVM for pixel classification. In [11],

computer-aided classification of renal cell carcinoma subtypes is

performed by using SVM. A fully automated system is presented

for human cell phenotype monitoring in [12] and subcellular

phenotypes on human cell arrays are automatically classified via

SVM.

In this study, discrimination of 14 classes of biomedical

images is achieved, which are all images of cancer cell lines.

The dataset at hand consists of two major types of cancer cell

lines, namely breast cancer and liver cancer (hepatocellular

carcinoma) with 7 sub-classes, respectively. The dataset consists

of 840 images, i.e., 60 per sub-class. Our approach aims to

carry out the automated analysis by extracting a feature vector

from the images. These feature parameters reflect the large

morphological diversity of the images. Notice, however, that our

software learns the specific covariances of these features from

the training set, so the model for each image class is not rigid

and therefore allows for larger variation in the image data,

while maintaining its high effectivity.

Table 1. Morphology of cancer cell lines used in this study.

Morphology Cancer Type

Cell Line Shape Shape Growth properties Source Classification Disease

BT-20 epithelioid stellate adherent mammary gland
breast

Basal A Adenocarcinoma

CAMA-1 epithelioid grape-like adherent mammary gland
breast

Luminal Adenocarcinoma

MDA-MB-157 epithelioid stellate adherent mammary gland
breast

Basal B Medullary carcinoma

MDA-MB-361 epithelioid grape-like adherent mammary gland
breast

Luminal Metastatic adenocarcinoma

MDA-MB-453 epithelioid grape-like adherent mammary gland
breast

Luminal Metastatic carcinoma

MDA-MB-468 epithelioid grape-like adherent mammary gland
breast

Basal A Metastatic adenocarcinoma

T47D epithelioid mass adherent mammary gland
breast

Luminal Invasive ductal carcinoma

FOCUS fibroblastoid polygonal to
spindle-shaped

adherent liver poorly differentiated Hepatocellular carcinoma

Hep40 epithelioid polygonal adherent liver well differentiated Hepatocellular carcinoma

HepG2 epithelioid polygonal, grow as
clusters

adherent liver well differntiated Hepatocellular carcinoma

Huh7 epithelioid polygonal adherent liver well differentiated Hepatocellular carcinoma

Mahlavu fibroblastoid polygonal to adherent liver poorly Hepatocellular

spindle-shaped differentiated carcinoma

PLC epithelioid polygonal adherent liver well differntiated Hepatocellular carcinoma

SkHep1 fibroblastoid polygonal to
spindle-shaped

adherent liver poorly differentiated Hepatocellular carcinoma

doi:10.1371/journal.pone.0052807.t001

Table 2. Names of cancer cell lines used in this study.

Breast cancercell line Liver cancer cell line

BT-20 FOCUS

CAMA-1 Hep40

MDA-MB-157 HepG2

MDA-MB-361 Huh7

MDA-MB-453 Mahlavu

MDA-MB-468 PLC

T47D SkHep1

doi:10.1371/journal.pone.0052807.t002
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This paper is organized as follows: We first present the

experimental results and and then offer a brief discussion. In the

Materials section, the used cell cultures are described. In the

feature extraction section steps are described comprising image

decomposition method by the dual-tree complex wavelet trans-

form (DT- WT), directional difference score computation and

covariance matrix construction. In the classification section, SVM

based covariance matrix classification algorithm is explained along

with the foreground-background segmentation by EM algorithm

and random subwindow selection.

Results

The dataset used in this study consists of 280 microscopic

human carcinoma cell line images with each of the 14 classes

having 20 images. Images in the dataset were acquired at 106,

206 and 406 magnification. The size of each image was

3096|4140 pixels. 7 classes belonged to breast cancer cell lines

and the other classes belonged to liver cancer. Each cell type has a

specific phenotype in terms of nuclei (spherical vs. ovoid), nucleoli

(prominent vs. hardly noticeable), size (large vs. small) and shape

(round vs. cell pods) [1]. The names of the cancer cell lines used in

our study are shown in Table 2 and example images of all 14

classes are shown in Figure 1. Aggressive cancer cells with

metastatic properties switch from an epithelial-like (epithelioid)

morphology to a spindle-shaped fibroblast-like (fibroblastoid)

morphology during epithelial-mesenchymal transition (EMT),

which is an indication of the invasiveness and metastatic capability

of cancer cells. While epithelioid cells have polygonal shape with

regular dimensions and sharp boundaries, fibroblastoid cells have

elongated shapes and are bipolar or multipolar.

We adopt a 20-fold cross-validation strategy for the experi-

ments. The dataset is divided into 20 disjoint subsets and each

subset consisting of 14 images is used exactly once as the test set.

For k~1:::20, the kth subset is formed by taking the kth indexed

image of each class. We run 20 experiments, choosing each image

as the test image only once for each class, and obtain the average

image classification accuracy over 20 runs. The number of selected

random subwindows is taken to be s~100. We perform the above

experiment for both covariance and normalised covariance

matrices, and for four different mapping functions in (10)-(13).

SVM RBF kernel parameters are chosen as c~0:5 and C~1000.

Experimental results are shown in Tables 3 for 106, Table 4 for

206 and Table 5 for 406. These tables show that normalised

covariance matrix-based method outperforms the covariance

method for all mapping functions, achieving an accuracy above

98%. Complex wavelet and directional difference features based

classification methods (10)-(12) have higher accuracies than the

classical covariance method in (13). Example images that were

incorrectly classified are shown in Figure 2.

For comparison, similar experiments were carried out with

scale-invariant feature transform (SIFT) [13] features. Table 6

shows the performance of those features. While the accuracy for

discriminating between two cancer cell lines is 100%, the SVM

classifier (c~1:3:10{3 and C~1:3) performs more poorly with

each added cancer cell line. Furthermore, we investigated the

effect of only using the diagonal of the normalised covariance

matrix from Equation 7, i.e., the variance values of the features, as

input for the SVM. Results can be seen in Table 7. The accuracy

rates drop by approximately 10%. Therefore, using the covari-

ances of the features is vital for a good performance of the system.

It is clearly demonstrated via our experiments that image

classification accuracy can be enhanced by exploiting the

directional information through the use of DT- WT features

and directional scores obtained by median, max and mean

functions.

Discussion

The proposed automated system for human breast and liver

cancer cell line images can aid the biologist as a second reader and

avoid the need for costly and time-consuming biochemical tests.

The dual-tree complex wavelet transform and region covariance

based computational framework is successfully applied to classify

the cancer cell line images. We adopt a covariance-based

approach by exploiting pixel-level attributes to construct local

region descriptors encoding covariances of several attributes inside

a region of interest. Pixel attributes are extracted using directional

difference scores and the DT- WT. Since background regions

occur frequently in a cancer cell line image, we randomly sample

subwindows from the foreground image regions after foreground-

background segmentation and each microscopic image is repre-

sented by correlation matrices of certain number of subwindows

sampled randomly from the whole image. Finally, an SVM

classifier with RBF kernel is trained to learn the class boundaries.

Figure 2 juxtaposes example images of cell line A that gets

misclassified as cell line B, with examples of both cell lines A

and B. All images were recorded at 206. The three cell lines

shown in the figure that get misclassified are MDA-MB-468,

Mahlavu and SKHep1. Some MDA-MB-468 images get

misclassified as MDA-MB-361. Both are breast-cancer cell lines.

From Figure 2, one understands that both images have layers,

i.e., they have a 3-D structure, indicated by the white areas

around the cell. This may be the reason why they get confused

with one another. The liver cancer cell lines Mahlavu and

SkHep1 are both misclassified as FOCUS, which is also a liver

cancer cell-line. In the Mahlavu case, the image that gets

misclassified shows several structures of significant length but

short width, informally called ‘‘pods’’. The FOCUS cell line has

similar properties but, Mahlavu generally doesn’t. Also, the

misclassified image in the figure shows less informative

morphological properties, other than most Mahlavu images. In

the case of SkHep1, the example image shows a sparser

structure than most SkHep1 images. In the second column of

the figure there are two different example images from the

FOCUS cell line in order to demonstrate its varying pod

morphology bearing poor differntiation. In addition, this

preliminary observation indicates that when the cell lines are

poorly differentiated (as in FOCUS, Mahlavu and SkHep1),

their morphology may vary, hence they are more prone to be

misclassified [14]. This observation can be further investigated

in the future with a larger dataset specific to these kind of

undifferntiated cell lines.

We demonstrate that automatic classification of microscopic

carcinoma cell line images can be reliably performed using DT-

WT and correlation descriptors. Covariance descriptors are

computed for features extracted from 2-D DT- WT subbands

and directional difference scores. Promising classification results

were obtained by our experiments, which reveal the ability of the

Figure 1. Sample images from different cancer cell line classes. a) BT-20, b) Focus, c) HepG2, d) MDA-MB-157, e) MV, f) PLC, g) SkHep1, h)
T47D.
doi:10.1371/journal.pone.0052807.g001

Image Classification of Human Carcinoma Cells

PLOS ONE | www.plosone.org 4 January 2013 | Volume 8 | Issue 1 | e52807



proposed features to characterize breast and liver carcinoma cell

line textures.

Materials and Methods

1 Cell Culture
The six hepatocellular carcinoma, one hepatoblastoma and

seven breast cancer cell lines were obtained from the following

sources: FOCUS ([15]), Hep40 ([16]), Huh7 (JCRB JCRB0403),

Mahlavu ([17]), PLC (ATCC CRL-8024), SkHep1 (ATCC HTB-

52), HepG2 (ATCC HB-8065), BT-20 (ATCC HTB-19), CAMA-

1 (ATCC HTB-21), MDA-MB-157 (ATCC HTB-24), MDA-MB-

361 (ATCC HTB-27), MDA-MB-453 (ATCC HTB-131), MDA-

MB-468 (ATCC HTB-132), T47D (ATCC HTB-133). The cell

lines were seeded into dishes with 20% confluency and grown at

37oC under 5% CO2 in standard Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% FBS, 1% Non-

Essential Aminoacid and 1% penicillin/streptomycin (GIBCO

Invitrogen) up to 70% confluency. The authentication of the cell

lines was regularly checked by STR profiling. Pictures were taken

with Olympus CKX41 inverted microscope using Olympus DP72

camera with 20X objective.

2 Feature Extraction
2.1 Dual-Tree complex wavelet transform. The dual-tree

complex wavelet transform (DT- WT) has been recently used in

various signal and image processing applications [18], [19], [20]

and [21]. It has desirable properties such as shift invariance,

directional selectivity and lack of aliasing. In the dual-tree WT,

two maximally decimated discrete wavelet transforms are executed

in parallel, where the wavelet functions of two different trees form

an approximate Hilbert transform pair [22]. Filterbanks for DT-

WT are shown in Figure 3. Low-pass analysis filters in real and

imaginary trees must be offset by half-sample in order to have one

wavelet basis as the approximate Hilbert transform of the other

wavelet basis [23]. Analyticity allows one-dimensional DT- WT

to be approximately shift-invariant and free of aliasing artifacts

often encountered in DWT-based processing. Two-dimensional

DT- WT is also directionally selective in six different orientations,

namely, f+15,+45,+75g. We acknowledge the fact that Gabor

wavelets can also give derivative into different directions, but as

pointed out in [24], ‘‘a typical Gabor image analysis is either

expensive to compute, is noninvertible, or both. With the 2-D

dual-tree CWT, many ideas and techniques from Gabor analysis

can be leveraged into wavelet-based image processing’’.

Microscopic cancer cell line images contain significant amount

of oriented singularities. Recently, a Bayesian classification

method that uses the sparsity in a transform domain is developed

to classify cancer cell lines [25]. Attributes like orientation

selectivity and shift invariance render DT- WT a good choice

for the processing of microscopic images with lots of edge- or

ridge-like singularities. We incorporate the complex wavelet

transform into recently proposed region covariance descriptors

[26] for feature extraction from microscopic images. In the region

covariance framework each pixel is mapped to a set of pixel

properties which’s covariances are measured and used as a region

descriptor. We use DT- WT complex coefficient magnitudes in

detail subbands as pixel features and compute covariance

descriptors. Augmenting covariance matrices with directional

information through the use of 2-D DT- WT helps to improve

the discriminative power of descriptors.

2-D DT- WT of an image is obtained by four real separable

transforms [27]. Real-part and imaginary-part analysis filters are

applied successively to rows and columns of the image. By addition

and subtraction of corresponding detail subbands, we obtain a

total of 16 subbands consisting of 6 real detail subbands, 6

imaginary detail subbands and 4 approximation subbands. Two-

dimensional dual-tree decomposition is an oversampled transform

with a redundancy factor of 4 (2d for d-dimensional signals). In our

work, we perform two-level 2-D DT- WT decomposition of each

biomedical image of size m|n and use only the 2nd level detail

subband coefficients to better exploit the analyticity of DT-CWT.

Each subband at the 2nd level is of size
m

4
|

n

4
. The original image

is lowpass filtered with ½1
4

,
1

2
,
1

4
� filters and downsampled by 4 in

both directions to obtain a single intensity image Ia(x,y) which

represents the original image and will be used as the image to be

classified. Let W R
h (x,y) and W Im

h (x,y) denote, respectively, the

real and imaginary part of the 2nd level complex wavelet

Table 3. Average classification accuracies (in %) of 106 carcinoma cell line images over 20 runs using SVM with RBF kernel.

Feature mapping function Covariance -based classification Normalised Covariance -basedclassification

w1(I ,x,y) 96.8 97.5

w2(I ,x,y) 96.8 98.6

w3(I ,x,y) 96.4 97.1

w4(I ,x,y) 77.5 86.1

doi:10.1371/journal.pone.0052807.t003

Table 4. Average classification accuracies (in %) of 206 carcinoma cell line images over 20 runs using SVM with RBF kernel.

Feature mapping function Covariance -based classification Normalised Covariance -basedclassification

w1(I ,x,y) 97.5 99.3

w2(I ,x,y) 96.8 98.6

w3(I ,x,y) 97.9 99.3

w4(I ,x,y) 77.9 85.7

doi:10.1371/journal.pone.0052807.t004
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coefficient at the position (x,y) corresponding to directional detail

subbands at orientation h, where h [f+15,+45,+75g. The

magnitude of the complex wavelet coefficent is then given by

Mh(x,y)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W R

h (x,y)2zW Im
h (x,y)2

q
ð1Þ

Hence, for each pixel in the average image Ia(x,y), six complex

wavelet coefficient magnitudes Mh(x,y) representing six different

orientations of DT- WT are extracted. These magnitudes will be

utilized as features in the covariance matrix computation for

randomly sampled regions of the image Ia(x,y). The computa-

tional complexity of (DT- WT) is O fM:Ng, where M:N refers

to the number of pixels in the image.

2.2 Directional differences. In order to account for the

large morphological variation of the images in our dataset, we

evaluated differences between pixels in various directions.

Consider a point p1 on a two-dimensional function I(x,y). Now

consider a second point p2. The Euclidean distance between p1

and p2 is d and p2 lies on line that has an orientation of angle a
with respect to the x-coordinate, i.e., p2 lies on a circle, which’s

center point is p1 and has a radius d . The difference between p1

and p2 can be written as

T(d,a)~DI(x,y){I(xzd: cos a,yzd: sin a)D: ð2Þ

Now consider we want to compute a couple of difference values

for equidistant concentric circles where the largest circle has radius

R and the smallest has radius R=A, where A is an integer with

values ranging from ½1,R�. When the parameters R and A are

fixed, we can rewrite the above equation as

T(i,a)~DI(x,y){I(xzi
R

A
: cos a,yzi

R

A
: sin a)D, ð3Þ

where i[1,2,:::,A. We can compute a score for each a value by

computing a function with respect to i, as

sa~ T 1,að Þð Þ: ð4Þ

For example, can be the median function. In that case sa is

simply the median of all the differences between the center pixel

and the points at distances i
R

A
at the fixed orientation a. We use

these scores as features in covariance matrix computation. Three

different functions, namely median, max and mean functions, are

employed for in this study. For each image Ia(x,y) obtained

according to the dual-tree complex wavelet section, 8 output

images of the same size are generated as the result of the function

, corresponding to 8 different orientations when the radius d is

chosen as 5 in the experiments. Hence, in addition to DT- WT

features, each pixel (x,y) of the image Ia has 8 attributes, which

denote the scores sa for 8 different a values.

The computational complexity of the directional difference

operation is O fn:a2g, where n and a refer to the number of digits

of the pixelsand the number of considered angles, respectively.

2.3 Covariance matrices for cell line

description. Successfully employed in texture classification

Table 5. Average classification accuracies (in %) of 406 carcinoma cell line images over 20 runs using SVM with RBF kernel.

Feature mapping function Covariance -based classification Normalised Covariance -basedclassification

w1(I ,x,y) 89.3 95.7

w2(I ,x,y) 90.0 96.4

w3(I ,x,y) 92.5 96.8

w4(I ,x,y) 63.2 85.0

doi:10.1371/journal.pone.0052807.t005

Figure 2. Examples of misclassified images (206). Misclassified images are shown in the first column. Examples from their true cell line are
given in the second column. Images in the third column show examples of the cell line that the images got misclassified into.
doi:10.1371/journal.pone.0052807.g002
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[28], pedestrian detection [29] and flame detection [30],

covariance descriptors enable the combination of different features

over an image region of interest. Given an intensity image I of size

m|n, we define a mapping w from image domain to feature

domain as

F(x,y)~w(I ,x,y) ð5Þ

where each pixel (x,y) is mapped to a set of features and F is the

m|n|d dimensional feature function. For a given subwindow R

consisting of n pixels, let (fk)k~1:::n be the d-dimensional feature

vectors extracted from R. Then, the covariance matrix of region R

can be computed as

C~
1

n{1

Xn

k~1

(fk{m)(fk{m)T ð6Þ

where m is the mean of the feature vectors inside the region R. The

covariance matrix is symmetric positive-definite and of size dxd.

There exists a very efficient multiplier-less implementation of

covariance descriptors, called co-difference matrices, which have

been shown to yield comparable performances to the original ones

[31].

In this study, normalized covariance matrices are used as in

[32].

ĈC(i,j)~

ffiffiffiffiffiffiffiffiffiffiffi
C(i,j)

p
, if i ~ j

C(i,j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C(i,j)C(j,j)

p , otherwise:

8>><
>>:

9>>=
>>;

ð7Þ

With

Mh(x,y)~½Mh1
(x,y):::Mh6

(x,y)� ð8Þ

and

sk
a(x,y)~½sk

a1
(x,y):::sk

a8
(x,y)� ð9Þ

where h1:::h6 correspond to the six orientations of DT-CWT detail

subbands f+15,+45,+75g, Mh(x,y) is as defined in Equation

(1), a1:::a8 correspond to the eight orientations of directional

difference score estimation and k~1,2,3 denote, respectively, the

median, max and mean functions in the directional differences

section, feature mapping functions employed in this study are

w1(I ,x,y) ~ ½Ia(x,y)DIxDDIyDDIxxDDIyyDMh(x,y)s1
a(x,y)�T , ð10Þ

w2(I ,x,y) ~ ½Ia(x,y)DIxDDIyDDIxxDDIyyDMh(x,y)s2
a(x,y)�T , ð11Þ

w3(I ,x,y)~½Ia(x,y)DIxDDIyDDIxxDDIyyDMh(x,y)s3
a(x,y)�T , ð12Þ

w4(I ,x,y)~½Ia(x,y) DIxD DIyD DIxxD DIyyD�T ð13Þ

where DIxD and DIxxD denote the first- and second-order derivatives

at (x,y) of the image Ia.

The computational complexity of covariance matrix computa-

tion is O fd2g, where d refers to the number of features in the

subimage.

3 Classification Using a Multiclass SVM
The images in our dataset show a large amount of background

pixels. Clearly, the background is not discriminative. Therefore,

we address the issue of segmenting the images into foreground and

background before classification. For our dataset, a simple

thresholding scheme is not sufficient for segmentation, since

foreground pixels have a large variance and may therefore have

values higher and lower than the background pixels. We modeled

the image as a mixture of two Gaussians, representing the

foreground and background pixels, respectively. Using this model,

an Expectation-Maximization (EM) algorithm was applied for

segmentation. The result is noisy, so a morphological closing

operation was applied, followed by median filtering. We obtained

the sizes of the closing and median filter kernels by comparing the

scores of the segmentation results of various kernel sizes. The used

score was first described in [33] and evaluated in [34]. Examples

can be seen in Figure 4.

Since it is necessary to focus on foreground-like regions in

carcinoma cell line images, s analysis square windows are

randomly selected, as in [35], from each image with the two

constraints: the percentage of the foreground pixels in the selected

region of an image must be above 50 and the variance of the

selected region must exceed an image-dependent threshold, which

is the variance of the whole image.

For each subwindow, a covariance matrix is computed using

Equation (6) for each of the feature mapping functions in (10)-(13).

The image signature is composed of s covariance matrices of the

Table 6. Classification accuracies for SIFT features.

Number of cell lines Classification accuracy in %

2 100.00

3 80.00

4 66.25

5 60.00

6 51.67

7 56.43

8 47.50

9 42.22

10 38.50

11 35.91

12 35.00

13 34.23

14 36.07

doi:10.1371/journal.pone.0052807.t006

Table 7. Classification accuracies for variance values only.

Magnification Classification accuracy in %

106 84.60

206 84.60

406 80.00

doi:10.1371/journal.pone.0052807.t007
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same size. Each class is represented by s|#(images in each class)

covariance matrices. Covariance matrices are symmetric positive-

definite and do not lie in the Euclidean space; so, they are

vectorized resulting in d(dz1)=2-dimensional vectors for dxd
matrices. A multiclass SVM classifier is trained with RBF kernel in

the d(dz1)=2-dimensional vector space using the training points.

SVM algorithm is implemented using LIBSVM library [36]. For

each test subwindow, the corresonding covariance descriptor is

vectorized and fed into the trained SVM model for prediction.

Therefore, there exist s labels for each microscopic image

corresponding to s subwindows, and the image in question is

assigned the label that gets the majority of votes among s labels.

The above process is re-executed using normalised covariance

matrices instead of unnormalised covariance matrices. In order to

compare the discriminative power of our features with more

traditional one, we carried out similar experiments with SIFT [13]

features for the 206 images. In SIFT, feature points are extremas

in scale-space, i.e., a difference-of-gaussians (DoG) pyramid. The

method is invariant to scale, orientation and location of the

features, which makes it a commonly-used method in the field of

computer vision. In our experiments, SIFT features are computed

on the foreground that is found according to the description

above. The resultant feature vectors for the images were then fed

into an SVM. Table 6 shows the performance of those features.

While the accuracy for discriminating between two cancer cell

lines is 100%, the SVM classifier performs more poorly with each

added cancer cell line.

The computational complexity of SVM classification in the test

phase is O f(d:(dz1)=2):Sg [37], where d and S refer to the

number of features and the number of support vectors, respec-

tively.

Availability and Future Directions

The software can be tested at http://signal.ee.bilkent.edu.tr/

cancerCellLineClassificationEngine.html. The datasets used in this

study can also be downloaded from there and can be used by

fellow researchers in future studies. Images to be uploaded should

be recorded using either 106, 206 or 406 magnification and

should be in JPG format. The authors are currently working on

making the described procedure more computationally efficient by

using a single-tree approximation to the dual-tree complex wavelet

transform used in this study.

Supporting Information

Data S1 The supporting information consists of a RAR
file named ‘Data S1.rar’. This file includes several MATLAB

files that can be used to evaluate the identity of test images

provided by the user. Note that an online version of this program

is available at http://signal.ee.bilkent.edu.tr/

cancerCellLineClassificationEngine.html and a dataset of images

is available at http://signal.ee.bilkent.edu.tr/

cancerCellLineClassificationSampleImages.html.

(RAR)
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