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Hybrid photon–phonon blockade
Shilan Abo1, Grzegorz Chimczak1, Anna Kowalewska‑Kudłaszyk1, Jan Peřina Jr.2, 
Ravindra Chhajlany1 & Adam Miranowicz1*

We describe a novel type of blockade in a hybrid mode generated by linear coupling of photonic and 
phononic modes. We refer to this effect as hybrid photon–phonon blockade and show how it can 
be generated and detected in a driven nonlinear optomechanical superconducting system. Thus, 
we study boson‑number correlations in the photon, phonon, and hybrid modes in linearly coupled 
microwave and mechanical resonators with a superconducting qubit inserted in one of them. We find 
such system parameters for which we observe eight types of different combinations of either blockade 
or tunnelling effects (defined via the sub‑ and super‑Poissonian statistics, respectively) for photons, 
phonons, and hybrid bosons. In particular, we find that the hybrid photon–phonon blockade can be 
generated by mixing the photonic and phononic modes which do not exhibit blockade.

Photon blockade (PB)1, also referred to as optical state truncation (see reviews in Refs.2,3), or nonlinear quantum 
scissors (for a review see Ref.4) is an optical analogue of Coulomb’s blockade. Specifically, it refers to the effect 
in which a single photon, generated in a driven nonlinear system, can block the generation of more photons. 
The light generated by an ideal (or ‘true’) PB exhibits both sub-Poissonian photon-number statistics and photon 
antibunching. But even if one of these properties is satisfied, the term PB is often used.

PB has been demonstrated experimentally in various driven nonlinear systems with  single5–11 and  two12,13 
resonators, in a bimodal  cavity14, or even in cavity-free  systems15. Experimental platforms where PB was observed 
include: cavity quantum electrodynamics (QED) with Fabry-Perot  cavities5, photonic  crystals6, and whispering-
gallery-mode  cavities16, as well as circuit  QED7,8. Note that the possibility of producing a single-photon state in a 
driven cavity with a nonlinear Kerr medium was predicted already in Refs.17–19, but only the publication of Ref.1, 
where the term ‘photon blockade’ was coined, has triggered much interest in studying this effect both theoretically 
and experimentally. Arguably, many studies reported already in the 1970s and 1980s on photon antibunching and 
sub-Poissonian light (see, e.g., reviews in Refs.20–22 and references therein) are actually about PB-related effects, 
although such a relation (to the optical analogue of Coulomb’s blockade) was not mentioned explicitly there.

In addition to the original idea of using PB as a single-photon turnstile device with  single1,16,23 or  multiple24 
outputs, PB can have much wider applications in quantum nonlinear optics at the single-photon level, including 
single-photon induced nonlinear effects, quantum noise reduction via antibunching of photons, simulations 
of nonreciprocal nonlinear processes, or studying chirality at exceptional points for quantum metrology, etc.

A number of generalisations of the standard single-PB effect were proposed, which include: (1) two- and 
multi-photon versions of PB, as first predicted in Refs.25,26 and demonstrated experimentally in Refs.11,27; (2) 
unconventional PB as predicted in Ref.28 and experimentally demonstrated in Refs.12,13; (3) conventional and 
unconventional nonreciprocal PB effects as predicted in Refs.29,30 and (at least partially) confirmed experimentally 
in Ref.31; (4) state-dependent  PB32, (5) exceptional  PB33, and (6) linear quantum scissors based on conditional 
measurements for: single-PB34–36, which was experimentally demonstrated in Ref.37, as well as two-PB38, and 
multi-PB39,40 using multiport Mach–Zehnder  interferometers41. This probabilistic approach to PB enables also 
nondeterministic quantum teleportation and more selective optical-state truncations, e.g, hole burning in the 
Hilbert  space42. Concerning example (2), note that PB in two driven Kerr resonators was first studied in Refs.43,44, 
but only for relatively strong Kerr nonlinearities. Surprisingly, PB remains in such two-resonator systems even 
for extremely weak Kerr nonlinearities, as first predicted in Ref.28 and explained via destructive quantum inter-
ference in Ref.45. This effect is now referred to as unconventional  PB46.

Here we study phonon  blockade47, which is a mechanical analogue of the mentioned blockade effects, i.e., 
the blockade of quantum vibrational excitations of a mechanical resonator. This effect has not been demon-
strated experimentally yet. However, a number of experimentally feasible methods have been proposed for 
measuring it, including a magnetomotive  technique47, an indirect measurement of phonon correlations via 
optical  interferometry48, or by coupling a mechanical resonator to a qubit, which is used not only for induc-
ing the resonator nonlinearity, but also to detect the blockade effect itself, i.e., by measuring qubit’s  states49. 
Among possible applications of phonon blockade, we mention: testing nonclassicality of meso- or macroscopic 
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mechanical  systems47 and studying single-phonon optomechanics, in addition to offering a source of single- or 
multiple  phonons50,51.

PB can be changed into light  transmission52, e.g., by photon-induced tunnelling (PIT)6. This is another 
nonclassical photon-number correlation phenomenon, in which the probability of observing more photons in a 
higher manifold of the system increases with the generation of the first photon near the resonance frequency of 
the system. Multi-PIT effects were also  predicted29, including those generated by  squeezing53.

For simplicity, we use here the abbreviation PB, when referring to the blockade of not only photons, but also 
of phonons or hybrid photon–phonon bosons. The precise meaning can be found from its context, e.g., when we 
refer to a specific mode, including the optical (a), mechanical (b), or hybrid (c) modes. Analogously, PIT denotes 
a given particle-induced tunnelling among the three types of excitations.

Nanomechanical resonators can coherently interact with electromagnetic  radiation54, and quantum correla-
tions between single photons and single phonons were studied for a single entangled photon–phonon  pair55 or via 
photon and phonon blockade effects in optomechanical  systems56. A mechanical switch between PB and PIT has 
been studied  recently57. PB and PIT effects in systems comprising mechanical and optical resonators, which are 
characterised by the same or similar bare frequencies, to our knowledge, have not been studied experimentally 
yet, although they seem to be experimentally feasible and, thus, they are at focus of this paper.

Crucial signatures of PB and PIT can be observed by measuring the second-order correlation function, 
g (2)(0) . Specifically for photons, (1) the condition of g (2)(0) < 1 defines the sub-Poissonian photon-number 
statistics (also referred to as zero-delay-time photon antibunching), which indicates the possibility of observing 
PB, while (2) the condition g (2)(0) > 1 , defines the super-Poissonian statistics (also referred to as zero-delay-
time photon bunching), which is a signature of PIT in a given system. To observe the ‘true’ effects of PB and 
PIT, also other criteria should be satisfied, such as nonzero-delay-time photon antibunching and higher-order 
sub-Poissonian photon-number statistics. Indeed, an ideal conventional PB, which can be served as a single-
photon source, usually should also be verified by studying higher-order correlation functions, g (n)(0) for n > 2 . 
For example, in case of single-PB (1PB) conditions g (2)(0) < 1 and g (n)(0) < 1 for n > 2 should be fulfilled.

PB can be verified also in other ways via demonstrating, e.g., a staircase-like dependence of the mean photon 
number (or measured power transmitted through a nonlinear resonator) on the energy spectrum of the photons 
incident on the  resonator8,52. Such a dependence is the photon analogue of the Coulomb staircase. All of the above 
criteria are just necessary but not sufficient conditions for demonstrating PB. A sufficient condition could be, e.g., 
showing a high fidelity of a given generated light (with a nonzero mean photon number) to an ideally truncated 
two-dimensional state, which is the closest to the generated one. This approach was applied in, e.g.,26,35,36. The 
latter two types of PB tests are, however, are not applied in this paper.

Conventional single-PB prevents the absorption of a second photon with a specific frequency due to the non-
linearity of a given system. Such a nonlinearity can be described by a Kerr-type interaction and/or can induced by 
an atom (real or artificial) coupled to a resonator. An artificial atom can be realised by, e.g., a quantum  dot23,58,59 
in cavity  QED10 or a superconducting qubit or qudit in circuit  QED52.

Unconventional PB, which is induced by destructive interference, operates better for very low (or even 
extremely low) mean photon  numbers12,13. This can be disadvantageous by considerably decreasing the prob-
ability of generating a single photon. But, at the same time, it can be an advantage, because a very small mean 
photon number usually reduces the chance of generating multi-photon states and inducing higher-order coher-
ence. This is not always the case, and even if the probability of observing two photons is suppressed, higher-order 
coherence might be enhanced, leading to the generation of multi-photon  states46.

In this paper, we consider an optomechanical system, which generates photonic and phononic modes. Then 
we apply a balanced linear coupling transformation to the these modes to create hybrid modes (also referred to 
as supermodes). We study the interplay between photons and phonons resulting in their nonclassical number 
correlation effects. Thus, we find such system parameters to observe either PB or PIT in the four modes. In par-
ticular, we predict PB in one of the hybrid modes, but not in the individual (photon and phonon) modes, i.e., 
this PB is created from the two modes, which do not exhibit PB. We refer to this effect as hybrid photon–phonon 
blockade, which is the main result reported here.

Specifically, we define hybrid photon–phonon blockade as the blockade of hybrid-mode bosons (polaritons) 
obtained by coupling photons of an optical or microwave mode with phonons of a mechanical mode by a bal-
anced linear coupler. The idea and criteria for testing this type of blockade are analogous to those for other 
known blockade effects (e.g., of photons, phonons, or magnons), but it is predicted for another type of bosons. 
We show that this hybrid blockade can occur by coupling the modes, which exhibit neither photon blockade 
nor phonon blockade.

To show this effect we analyse the system of two linearly-coupled resonators: a superconducting microwave 
resonator (SMR), which might be a transmission line resonator, and a micromechanical resonator, referred to 
as a quantum drum (QD), which is capacitively coupled to the SMR. To generate any kind of PB (including 
unconventional PB), one needs to incorporate a nonlinearity into a given  system17,60,61. This can be done by 
coupling one of the resonators (e.g., the SMR) to a qubit (e.g., an artificial superconducting two-level atom). 
We also assume that the system is driven either at the QD or the SMR as described in detail in the next section.

The paper is organised as follows: first, the hybrid optomechanical system and its Hamiltonians are intro-
duced. We also define the hybrid photon–phonon modes, which can be generated by the balanced linear coupling 
of photonic and phononic modes. Then, we study the correlation effects in the photonic, phononic, and one of 
the hybrid modes in the system driven at either the optical or mechanical resonator, respectively, for experi-
mentally feasible parameters specified in “Methods”. We then predict and analytically explain the generation 
of unconventional hybrid-mode blockade via a non-Hermitian Hamiltonian method. We systematically study 
different weaker and stronger criteria for observing blockade and tunnelling effects in our system. We also find 
all the eight combinations of the conventional blockade and tunnelling effects in the three modes. In particular, 
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we find a surprising effect that the hybrid-mode photon–phonon blockade can be generated by mixing the 
photonic and phononic modes exhibiting tunnelling effects. In addition to this study of the second-order cor-
relation effects, we discuss also higher-order effects and their classification in “Methods”. Moreover, we discuss 
two types of schemes for measuring photon–phonon correlations in hybrid modes. Finally, we summarise our 
results and indicate their potential applications.

The system and Hamiltonians
Figure 1 shows the schematics of the studied hybrid system, which consists of a superconducting two-level 
artificial atom (a qubit) embedded in a waveguide and coupled to an SMR, which might be a transmission-line 
resonator. This qubit induces anharmonicity in the SMR, which is crucial for observing PB. Our setup includes 
also a microwave-frequency mechanical resonator (a QD), which is capacitively coupled to the SMR. The non-
linearity of the QD is induced indirectly by the linear coupling of the QD to the effectively nonlinear SMR.

The free Hamiltonian of the SMR is Ha = �ωSMRa
†a , where ωSMR is its resonance frequency (assumed here of 

the order of tens of GHz) and a (a†) is the photon annihilation (creation) operator. We can reasonably assume 
the SMR quality factor as QSMR ≈ 104 . The free Hamiltonian of the QD is Hb = �ωmb

†b , where ωm is its reso-
nance frequency and b (b†) is the phonon annihilation (creation) operator. In our numerical simulations, we 
set ωm/2π = 7.8 GHz and the QD quality factor as Qm ≈ 260 . Moreover a two-level quantum system has the 
ground state |g� and the excited state |e� with transition frequency ωq (set here of the order of ωm and ωSMR ). The 
free qubit Hamiltonian is described as Hq = �ωqσ+σ− , where σ+ = |e��g| ( σ− = |g��e| ) is the atomic raising 
(lowering) operator. Thus, the total free Hamiltonian of the system is H0 = Ha +Hb +Hq . The complete Ham-
iltonian (without driving) of our coupled system can be given by ( � = 1)

which includes the three coupling terms: (1) the Jaynes–Cummings term describing the interaction between the 
SMR and qubit under the rotating-wave approximation (RWA); (2) the radiation-pressure term with coupling 
strength gr ; and (3) the Hopfield-type nonlinear coupling term with strength gl . The gl coupling can be realized 
via a capacitor, as shown in Fig. 1 and explained in a more detail in Ref.48 for a similar system. Note that the gl 
term describes canonical position–position (momentum–position) interactions, where gl is real (imaginary) for 
H ′
+ ( H ′

− ). These interactions can be interchanged by adding the π/2 phase to a, a† , i.e., a → ia and a† → −ia† . 
This extra phase does not change number correlations in the modes a and b. In typical ranges of parameters of 
analogous superconducting  circuits62, the gl term is dominant, so the radiation-pressure term can be  neglected63. 
Moreover, although the counter-rotating terms ab± b†a† , which appear in the gl-interaction, play an important 
role in the ultrastrong and deep-strong coupling  regimes64, but they can be safely omitted under the RWA, which 
is valid in the weak and strong coupling regimes. Indeed, the latter regimes are solely studied in this paper, as 
discussed below. Then the Hopfield nonlinear gl-interaction becomes effectively linearised. Thus, Hamiltonian (1) 
reduces to

(1)H ′
± = H0 + g(a†σ− + aσ+)+ gr(b+ b†)a†a+ gl(a± a†)(b+ b†),

Figure 1.  Schematics of the discussed circuit-QED-based realisation of the considered hybrid optomechanical 
system. It consists of a superconducting qubit embedded in a superconducting microwave resonator (SMR), 
e.g., a transmission-line resonator, to induce its nonlinearity. A quantum micromechanical resonator, which is 
referred to as a quantum drum (QD), is coupled to the SMR with a tunable capacitor Cg . We assume that the 
system is driven either at the SMR or QD. Dashed semicircular curves visualise that the QD is oscillating. The 
driving and motion detection of the QD can be realised by controlling the static magnetic field B, potential Vg , 
and alternating current I(t), as described in Ref.47 for detecting phonon blockade.
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where the linear-coupling strength is denoted by f, which replaces the symbol gl . Analogously to gl , f is real 
(imaginary) for H+ ( H− ). In the following, for simplicity, we focus on studying the canonical position–position 
interactions between the modes a and b, as described by H+ . The eigenstates of Hamiltonian H± can be referred 
to as atomic-optomechanical polaritons or atom-cavity-mechanics  polaritons65. It is clear that Hamiltonians H± 
conserve the polariton number,

which is the total number of excitations. Thus, H± can be diagonalised in each subspace (or manifold) H(n) with 
exactly n polaritons.

The RWA is fully justified assuming both (1) the weak- or strong-couplings and (2) small detunings between 
the SMR and QD, and the SMR and qubit (see, e.g., Ref.66). We stress that these conditions are fully satis-
fied for the parameters applied in all our numerical calculations in this paper. Thus, the Jaynes–Cummings 
and frequency-converter (or linear-coupler) models can be applied. However, the RWA cannot be applied in 
the ultrastrong and deep-strong coupling regimes, as defined by g > 0.1ωi and g > ωi ,  respectively64, where 
i = SMR,m, q . In these regimes, the quantum Rabi and Hopfield models cannot be reduced to the Jaynes–Cum-
mings and frequency-converter models, respectively. However, we study the system for the parameters specified 
in Eqs. (28)–(30), for which the ratios of the coupling strengths and frequencies, f /ωi and g/ωi , are < 0.002 . So, 
the system is in the strong-coupling regime, and far away from the border line with the USC regime. Moreover, 
the chosen detunings are |ωSMR − ωm|/ωSMR ≤ 2.6× 10−3 and |ωSMR − ωq|/ωSMR < 8× 10−4 . Thus, it is clearly 
seen that we can safely apply the RWA. Anyway, as a double test, we have calculated time-dependent second-
order correlation functions for the Hamiltonian H ′

± and H± for the parameters set in Eqs. (28)–(30) for various 
evolution times assuming classical drives (as specified below) and no dissipation. And we have found that the 
differences between the correlation functions calculated for the models with and without the RWA are negligible 
on the scale of figures. The inclusion of dissipation in the system makes such differences even smaller.

We assume that an optical pump field of frequency ωp is applied either to the SMR mode a, as described by

or to the QD mode b, as given by

to drive (excite) the system (with coupling strength ηa or ηb ) from its ground state and to induce the emission of 
photons and phonons. Thus, the total Hamiltonian becomes

Direct driving of the QD can be implemented by a weak-oscillating current, as considered in Refs.47,48, where 
the drive strength ηb is proportional to the current amplitude I(t) and the magnetic field B shown in Fig. 1. The 
SMR can be driven in circuit-QED systems in various  ways62.

Note that by driving directly the SMR (or alternatively the QD), one also indirectly drives the QD (SMR) 
through the capacitive coupling Cg , as shown in the scheme in Fig. 1. So, by referring to the SMR- or QD-driven 
systems, we indicate only the resonator, which is directly pumped, although finally both resonators are driven.

The inclusion of an additional nonlinearity in the QD and/or applying drives to the qubit(s) and both resona-
tors is not essential for the prediction of hybrid blockade, but this could enable achieving stronger photon–pho-
non antibunching and more sub-Poissonian statistics.

Considering the case, where the pump field drives only the SMR, to remove the time dependence of the 
Hamiltonian H(n)(t) and to obtain its steady-state solution, we transform the system Hamiltonian into a refer-
ence frame rotating at frequency ωp.

We apply the unitary transformation UR(t) = exp
(

−iNpolaritonωpt
)

 to H(n) according to the general formula

Thus, H(a)(t) reduces the time-independent SMR-driven Hamiltonian:

where �i = ωi − ωp for i = a, b, q . So, in particular, �b ≡ �m (�a ≡ �SMR ) is the mechanical (microwave) 
resonator frequency detuning with respect to the pump frequency. Analogously, in the same rotating frame, 
H(b)(t) reduces to the QD-driven Hamiltonian:

(2)H± =H0 + g(a†σ− + aσ+)+ f (ab† ± a†b),

(3)Npolariton = a†a+ b†b+ σ+σ−,

(4)H
(a)
drv(t) = ηa(e

iωpta+ e−iωpta†),

(5)H
(b)
drv(t) = ηb(e

iωptb+ e−iωptb†),

(6)H(n)(t) = H+ +H
(n)
drv(t) (n = a, b).

(7)H
(n)
rot = U†

RH
(n)UR − iU†

R

∂

∂t
UR .

(8)
H ′ ≡ H

(a)
rot = �SMRa

†a+�mb
†b+�qσ+σ−

+ g(a†σ− + aσ+)+ f (a†b+ ab†)+ ηa(a+ a†),

(9)
H ′′ ≡ H

(b)
rot = �SMRa

†a+�mb
†b+�qσ+σ−

+ g(a†σ− + aσ+)+ f (a†b+ ab†)+ ηb(b+ b†).
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We recall that Eqs. (8) and (9) are directly derived from Eq. (6) for H+ given in Eq. (2). Moreover, H+ is derived 
from Eq. (1) assuming the RWA, which is justified for small detunings in the weak- and strong-coupling regimes, 
which are the only numerically studied regimes in this paper, as emphasised above. Indeed, the studied ranges of 
parameters guarantee the system evolution is far from the USC regime. Note that the Hamiltonian H ′

+ in (1) for 
gr = 0 with an additional drive term H(n)

drv(t) can be transformed, according to Eq. (7), to H(n)
rot  given in Eqs. (8) 

and (9) but with the additional term f [ab exp(2iωpt)+ h.c.] . In all our numerical calculations we set ωp of the 
order of GHz. Thus, the effect of this rapidly oscillating term is negligible compared to all the other terms in the 
Hamiltonians. Moreover, we have also assumed that the optomechanical term gr is negligible. In general, this 
assumption is not necessary, because the gr term can be reduced (in the red-detuned regime) to an interaction 
term describing a linear coupler (or a beam splitter), which can be combined with the f term. Anyway, for sim-
plicity concerning both theory and potential experiments, we set gr = 0 . We have also assumed that the system 
is driven at either the mechanical or optical mode to obtain effectively time-independent Hamiltonians in a 
rotating frame. This simplification would not be directly possible by considering the system driven simultane-
ously at both modes with different frequencies.

Figure 2 shows the structure of the energy spectrum for the hybrid system Hamiltonian (2). To study the 
sub-Poissonian light generation in hybrid modes, we apply to the SMR and QD modes a balanced linear coupling 
transformation, which is formally equivalent to a balanced (50/50) beam splitter (BS). This transformation creates 
the hybrid (or cross) photon–phonon modes:

for the system described by H+ and related Hamiltonians. Note that if this BS transformation is modified as 
a → −ia and a† → ia† [which compensate the extra π/2 phase introduced below Eq. (1)] then all our predic-
tions of number correlations shown in various figures for the hybrid mode c (in addition to those for the modes 
a, b, and d) are the same as those for the model described by H−.

Thus, the Hamiltonian H ′ after the BS transformation reads

which describes the qubit interacting with two hybrid modes c and d, where �c,d = (ωSMR + ωm)/2− ωp ± f  
and δ = (ωSMR − ωm)/2 . It is seen that the two modes c and d have no direct coupling if ωm = ωSMR.

(10)c =
a+ b
√
2

, d =
a− b
√
2

,

(11)
H ′
BS =�cc

†c +�dd
†d +�qσ+σ− + δ(c†d + d†c)

+
1
√
2

[

ηa(c + c†)+ ηa(d + d†)+ g(c†σ− + cσ+)+ g(d†σ− + dσ+)
]

,

Figure 2.  Energy levels ωn versus the QD frequency ωm in units of the SMR frequency ωSMR for the 
Hamiltonian Eq. (2) with the parameters given in Eq. (28) and g = 7.5γ . The three manifolds of the lowest 
energy levels in panel (a) are zoomed in panels (b–d) near the resonance ωm = ωSMR to reveal the anti-crossing 
of energy levels. Here, ω(n)

i  (with n = 1, 2, 3 ) denotes the frequencies of the nth manifold.
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The dynamics of an open system in the presence of losses under the Markov approximation can be described 
within the Lindblad approach for a system reduced density matrix ρ satisfying the standard master equation,

which is given in terms of the Lindblad superoperator D [O]ρ = 1
2 (2OρO

† − ρO†O − O†Oρ) , where κa , κb, 
and γ are the decay rates for the SMR, QD, and qubit, respectively.

All our numerical calculations and their analyses are given for the system parameters, which satisfy the 
conditions for the weak or strong-coupling regimes and for small detunings between the SMR, QD, and qubit. 
Thus, we can safely apply the standard master equation given in Eq. (12). Of course, if one considers Eq. (1) for 
the system in the USC or deep-coupling regimes, then the master equation in Eq. (12), should be replaced by a 
generalised one, e.g., of Refs.64,67–69.

We also note that the application even of a single classical drive to the Jaynes–Cummings model in the 
strong-coupling regime effectively creates counter-rotating terms, which can induce a variety of USC effects, as 
shown explicitly in Ref.70. Thus, to confirm the validity of our results, we have applied the generalised formalism 
described in Ref.67, which is valid for arbitrary light-matter coupling regimes, including the weak-, strong-, and 
USC regimes. In particular, we calculated the correlation functions g (n)(0) defined in terms of the positive- ( X+

n  ) 
and negative- [ X−

n = (X+
n )

† ] frequency components of the canonical position operators: Xa = a+ a† for pho-
tons, Xb = b+ b† for phonons, and Xc = c + c† for hybrid-mode bosons in the qubit-SMR-QD dressed basis. 
We calculated the steady states of the system by solving numerically the generalised master equation of Ref.67 
for the Hamiltonians H ′ and H ′′ . As expected from general considerations, our numerical calculations for the 
parameters set in Eqs. (28)–(30) using the standard and generalised formalisms based on H ′ (as well as H ′′ ) give 
effectively the same results.

In our simulations, we assume that the system is prepared in the ground state |n = 0, g�|m = 0� (i.e., with no 
photons in the SMR, no phonons in the QD, and the qubit is in the ground state), such that a given pump laser 
can drive the SMR photons in the microwave frequency range. Note that the choice of initial states affects the 
short-time evolution of our system, but has no effect on the steady-state solutions in the time limit, assuming 
the single-photon and single-phonon damping channels, as described in Eq. (12). However, as shown in Ref.32, 
initial states of a system can indeed affect steady states of the system, thus can also change PB, in case of quantum 
engineered dissipation channels allowing for, e.g., two-photon dissipation only.

In the following sections, we show that it is possible to observe both PB and PIT in the hybrid mode in the 
weak, mediate, and strong coupling regimes compared to the decay rates of the SMR, QD, and qubit. In par-
ticular, we show that the system can generate the hybrid photon–phonon modes with strongly sub-Poissonian 
(or super-Poissonian) statistics by mixing the SMR and QD modes with strongly super-Poissonian (or sub-
Poissonian) statistics.

Hybrid‑mode blockade in the SMR‑driven system
Here we analyse in detail various blockade and PIT effects in the SMR-driven dissipative system described by 
the Hamiltonian H ′ and the master equation (12) for the parameters specified in Eq. (28).

Photon/phonon-number statistics of the modes generated by our hybrid system can be described quanti-
tatively by calculating the zero-delay-time kth-order correlation function ( kth-order intensity autocorrelation 
function),

where z = a, b, c, d and k = 2, 3, . . . . In the special case of k = 2 , which is of particular interest in testing single-
PB and single-PIT, the three different types of the boson-number statistics can be considered: the Poissonian 
[if g (2)(0) = 1 ], super-Poissonian [if g (2)(0) > 1 ], and sub-Poissonian (otherwise). Analogously, one can define 
higher-order Poissonian, sub-Poissonian, and super-Poissonian statistics for k > 2 . Such higher-order criteria 
are not only crucial in analysing multi-PB and multi-PIT  effects11,29,53, but they are also important in testing 
whether a specific PB effect is a ‘true’ PB, which can be used for generating single photons or phonons. These 
higher-order statistics are studied in “Methods”.

Figure 3(a) shows g (2)(0) as a function of the qubit-SMR coupling for the SMR-driven system with the 
parameters specified in Eq. (28). The regions, when the sub-Poissonian statistics in the hybrid mode c is accom-
panied by the super-Poissonian statistics in the modes a and b,  are indicated by the yellow background in this 
and other figures. This area in yellow colour is referred to as Case 7 in Table 1, in which we observe strongly 
super-Poissonian photons (phonons) in the SMR (QD); whereas a single excitation is observed in the hybrid 
mode. The system parameters, which lead to Case 7, are found by numerical simulations and are discussed below.

Note that Fig. 3a shows these effects in the strong coupling  regime64, i.e., when the qubit-SMR coupling con-
stant g is larger than the system damping rates: g/κmax > 1 , where κmax = max{κa, κb, γ } . On the other hand, 
Fig. 3b shows the same yellow region in the weak-coupling regime, i.e., when g/κmax < 1 , but this figure was 
calculated for the QD-driven system, which is discussed in the next section.

By considering the values of Eq. (28), the SMR decay rate is κa = 1.5γ , given that the mode a is always in the 
strong qubit-SMR coupling regime in the region of our interest. This results in Rabi-type oscillations of g (2)(0) 
that occur in the SMR mode a and the hybrid mode c. In Fig. 3a, both weak and strong coupling regimes are 
shown corresponding to g smaller or larger than the maximum decay rate of the whole system.

(12)
∂ρ

∂t
= −i[H , ρ] + κaD [a]ρ + κbD [b]ρ + γD [σ ]ρ,

(13)g (k)z (0) = lim
t→∞

�z†k(t)zk(t)�
�z†(t)z(t)�k

,
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Given the set of parameters in Eq. (28), we are in the good-cavity  regime71, because κa < {κb, g , f } . In the 
range g/2π ∈ (4.5, 42) MHz, the hybrid mode c has the sub-Poissonian statistics, while the SMR mode has the 
super-Poissonian statistics in all the shown cases and a very weak sub-Poissonian statistics occur for phonons 
in the QD mode b, but still corresponding to Case 4 in Table 1. This behaviour changes to the super-Poissonian 
statistics in the mode b, which corresponds to Case 7, as shown in Fig. 3a. There is a transition for the mode c 
from the sub-Poissonian to super-Poissonian statistics, which corresponds to switching from Case 7 to Case 8 
in the strong-coupling regime, where the other two modes are both super-Poissonian. Observing g (2)(0) > 1 
witnesses PIT and the quantum nature of this effect is explored further below.

In order to better probe and understand the dynamics of the system in specific parameter regimes, we analyse 
also the delay-time second-order photon correlation function, defined as

where nz(t) = z†(t)z(t) is the boson number in the modes z = a, b, c, d , and the operator products are written in 
normal order (::) and in time order T . With g (2)z (τ ) another quantum optical number-correlation phenomenon 
can be investigated. Specifically, in case of photons, it is referred to as photon antibunching if g (2)(0) < g(2)(τ ) , 
photon unbunching if g (2)(0) ≈ g (2)(τ ) , and photon bunching if g (2)(0) > g(2)(τ ) , which is usually defined for 
short or very short delay times τ72. It is worth noting that photon antibunching was first experimentally observed 
in the 1970s by Kimble, Dagenais, and  Mandel73. This was historically the first experimental demonstration of the 
quantum nature of an electromagnetic field, which cannot be explained classically, unlike photoelectric bunching.

Analogously, one can also investigate the antibunching and bunching of phonons and/or hybrid-mode bosons. 
Note that the term photon antibunching is often interchangeably used with the sub-Poissonian photon-number 

(14)g (2)z (τ ) = lim
t→∞

�T : nz(t + τ)nz(t) :�
�nz(t)�2

= lim
t→∞

�z†(t)z†(t + τ)z(t + τ)z(t)�
�z†(t)z(t)�2

,

Figure 3.  Second-order correlation functions g (2)i (0) (in the common logarithmic scale) versus the ratio of 
qubit-SMR coupling strength and the largest decay rate. Different predictions of the sub- and super-Poissonian 
boson number statistics, which can be interpreted, respectively, as the PB and PIT effects, of the photonic (a), 
phononic (b), and hybrid (c) modes assuming: (a) the SMR-driven system with parameters specified in Eq. (28) 
and (b) the QD-driven system with Eq. (29). All the shown Cases (i.e., 4, 6, 7, and 8) correspond to those listed 
in Table 1. The broken line at g = max κj is the border line between the strong- and weak-coupling regimes.

Table 1.  Different predictions of the super- and sub-Poissonian particle (i.e., photon, phonon or hybrid 
photon–phonon)-number statistics (PNS) corresponding, respectively, to PIT and PB, for the photon mode a, 
phonon mode b, and hybrid photon–phonon mode c, where 
fabc =

(

sgn[g (2)a (0)− 1], sgn[g (2)b (0)− 1], sgn[g (2)c (0)− 1]
)

 and the last column indicates each prediction of the 
mode a, b, and c in the specific colour that is used in our plots. All these cases can be seen in Fig. 10.

Case fabc PNS in mode a PNS in mode b PNS in mode c colour

1 (−,−,−) Sub-Poissonian Sub-Poissonian Sub-Poissonian Aquamarine

2 (−,−,+) Sub-Poissonian Sub-Poissonian Super-Poissonian Lime

3 (−,+,−) Sub-Poissonian Super-Poissonian Sub-Poissonian Light cyan

4 (+,−,−) Super-Poissonian Sub-Poissonian Sub-Poissonian Mint cream

5 (−,+,+) Sub-Poissonian Super-Poissonian Super-Poissonian Plum

6 (+,−,+) Super-Poissonian Sub-Poissonian Super-Poissonian Pink

7 (+,+,−) Super-Poissonian Super-Poissonian Sub-Poissonian Yellow

8 (+,+,+) Super-Poissonian Super-Poissonian Super-Poissonian Cyan



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17655  | https://doi.org/10.1038/s41598-022-21267-4

www.nature.com/scientificreports/

 statistics21. However, to avoid confusion, one can refer to single-time (or zero-delay-time) photon antibunching 
if defined by g (2)(0) and two-time (or delay-time) photon antibunching if defined via g (2)(τ ).

In Fig. 4, we plotted g (2)(τ ) for the range [0, 1.5] of g/κmax . This range is also shown in Fig. 3a, where the 
examples of Cases 4 and 7 can be identified. As expected, one can see oscillations in the SMR and hybrid modes 
in Figs. 4a,c, respectively. These oscillations are induced by the competition between the qubit-SMR coupling 
g and the SMR-QD hopping f in our system. Apparently, by analysing g (2)(τ ) in the weak-coupling regime, the 
frequency of the oscillations is smaller than that in the strong-coupling regime, in which the oscillations are 
caused by both couplings g and f. Moreover in a very weak coupling regime, where g ≪ 1 oscillations occur due 
to the hopping strength f, with the period 2π/f 74. This means that, in the weak-coupling regime, also the coupling 
between the SMR and QD can generate oscillations in our system, where in this case the period of oscillations, 
which are induced by f = 5.5γ , is approximately equal to τ ≈ 0.036 , which coincides with the period deduced 
from the graph, as seen in Fig. 5c. These detrimental oscillations should be suppressed on a time scale longer 
than the SMR lifetime τ = 1/κa to enable boson antibunching to survive in the area of our interest.

Various combinations of correlations effects are shown in Fig. 5. All panels in Fig. 5 show that the photon 
mode a is super-Poissonian and bunched, while the hybrid mode c is sub-Poissonian and antibunched. How-
ever, the properties of the phonon mode b are different in every panel. Specifically, the mode b is in panel: 

Figure 4.  Delay-time second-order correlation functions: (a) g (2)a (τ ) for the photonic mode, (b) g (2)b (τ ) for 
the phononic mode, and (c) g (2)c (τ ) for the hybrid mode versus the coupling strength g and the delay time τ . 
We consider here the SMR-driven system with parameters specified in Eq. (28), which enable us to observe the 
single-photon resonances in the mode c. For clarity, all the values of the correlation functions ≥ 2 are truncated 
at 2.

Figure 5.  Delay-time second-order correlation functions g (2)i (τ ) for the SMR mode a, the QD mode b, and 
the hybrid mode c modes assuming: (a–c) the SMR-driven system specified in Eq. (28) with f = 5.5γ and 
κmax = κb = 6γ , and (d,e) the QD-driven system in Eq. (29) with κmax = 7.5γ , where we additionally set: 
(a) g = 1.3κmax = 7.8γ , (b) g = 1.1κmax = 6.6γ , (c) g = 0.2κmax = 1.2γ , (d) g = 0.7κmax = 5.25γ , and (e) 
g = 0.758κmax = 5.685γ.
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(a) super-Poissonian and unbunched [defined as g (2)b (0) ≈ g
(2)
b (τ ) for non-zero but short delay times τ ], (b) 

Poissonian and unbunched, (c) sub-Poissonian and unbunched, (d) super-Poissonian and bunched, and (e) 
Poissonian and bunched, as usually considered for very short delay times τ . Note that panels (a, b, c) are for the 
SMR-driven system, while the remaining panels (d, e) are for the QD-driven system, which are discussed in 
detail in the next section.

In particular, it is seen that by decreasing the coupling at g/κb = 1.1 in Fig. 5b, the QD mode b is unbunched 
with the Poissonian statistics, while the hybrid mode c exhibits antibunching g (2)(0) < g(2)(τ ) and the sub-
Poissonian statistics g (2)(0) < 1 , in both cases. The role of the auxiliary mode b is, in a sense, to convert the 
super-Poissonian into sub-Poissonian statistics in the mode c.

The destructive interference of both modes a and b, at the balanced linear coupler, can result in the sub-
Poissonian statistics of the hybrid modes. We observe this effect even in the weak-nonlinearity (or weak-cou-
pling) regime, which witnesses unconventional PB, as discussed in detail in “Methods”. It is worth noting that 
in this study we are aiming at observing g (2)(τ ) < 1 not only at τ = 0 , but also for non-zero delay times (e.g., 
τ ∈ [0, 0.1] ), as in standard experimental demonstrations of the boson antibunching statistics reported in, e.g., 
 Refs7,75. Thus, the cases shown in Fig. 4a,c can hardly be considered as convincing demonstrations of the sub-
Poissonian statistics, because of the oscillations, which occur in g (2)a,c (τ ) with increasing τ . More convincing 
demonstrations of these effects without such oscillations (or by considerably suppressing them) are presented 
in Figs. 6 and 7, as analysed in detail in the next section.

To explain the super-Poissonian photon-number statistics and photon bunching in the mode a for the system 
pumped in the SMR mode, let us analyse Fig. 5a with g ≈ κm concerning the anharmonicity of the energy levels 
in these cases.

The g term in Eq. (2) corresponds to the standard Jaynes–Cummings model with the familiar  eigenvalues62:

with the corresponding eigenstates:

which are often referred to as dressed states or dressed-state dublets, where θn = �n/�1 is the mixing angle, 
�1 = ωq − ωSMR is the detuning between the SMR and qubit. Moreover, �n = 2g

√
n+ 1 can be interpreted as the 

n-photon Rabi frequency on resonance, so, in particular, �0 = 2g is the vacuum Rabi frequency. Thus, the energy 
spectrum is clearly anharmonic, which is a necessary condition to observe PB. Note that the Jaynes-Cummings 
interaction can be effectively described in the dispersive limit (i.e., far off resonance) as a Kerr nonlinearity (for 
a detailed derivation see, e.g.,50), which is the standard nonlinearity assumed in many predictions of PB effects.

To demonstrate the anharmonic energy levels of the complete Hamiltonian H+ on resonance (see Fig. 2), we 
assume a weak drive coupling strength ηa . Given that, the system Hilbert space can be truncated. We assume that 
the polariton number is at most equal to two in this weak-drive regime. The ground state is |ψ0� = |0, 0, g� with 
the corresponding eigenvalue E0 = 0 . The three eigenvalues of the first manifold (with eigenstates containing a 
single polariton), as shown in Fig. 2b, are:

while the five eigenvalues of the second manifold (with eigenstates containing two polaritons), which are shown 
in Fig. 2c, read:

(15)E±n ≡ E(|n,±�) = nωSMR ±
1

2

√

�2
1 +�2

n

(16)
|n,+� ≡ cos

(

θn
2

)

|n�|e� + sin
(

θn
2

)

|n+ 1�|g�,

|n,−� ≡ − sin
(

θn
2

)

|n�|e� + cos
(

θn
2

)

|n+ 1�|g�,

(17)E
(1)
1,3 = �∓

√

g2 + f 2, E
(1)
2 = �,

Figure 6.  Same as in Fig. 4, but for the QD-driven system with parameters given in Eq. (29). We observe here 
single-PRs and the corresponding single-PB effects.
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where f1 =
√

3f 2(10g2 + 3f 2)+ g4  . In particular, by assuming f = 5γ  and g = 7.5γ  , the eigenener-
gies of the first and second manifolds are, respectively: (1) � , �± 9.01388γ ≈ �± 9γ  , and (2) 2� , 
2�± 5.82965γ ≈ 2�± 6γ , and 2�± 16.11725γ ≈ 2�± 16γ.

A simple way to probe the pumped mode is to record the second-order correlation g (2)(0) as a function of 
�SMR , where the pump frequency ωp is changing (see Fig. 8). To do so, we first consider the resonance case as 
ωSMR = ωm = ωq = ω in Eq. (8) and ω − ωp = � . As depicted in Fig. 8a, one can see local minima with negative 
values in log g (2)(0) for the three modes, which indicate Case 1 in Table 1, at �SMR/γ = ±9 , which correspond to 
� = ±

√

g2 + f 2 ≈ ±9γ , given Eq. (17). This means that the pump frequency is located at the two dressed state 
dublets with energies E(1)1  and  E(1)3  . And we are off-resonance from the second energy manifold, which implies 
the possibility of observing PB at these frequencies.

Furthermore, our simulations predict a maximum of log g (2)(0) ≈ 3 showing a strong super-Poissonian sta-
tistics in the three modes (corresponding to Case 8 in Table 1) as �SMR → 0 . In particular, at �SMR/γ ≈ ±6 , the 
pump frequency is near E(2)1 ≈ 6 and E(2)4 ≈ −6 , respectively, of the second manifold, in which the probability of 
the two-photon resonance is maximised, as a signature of PIT. It signifies that the pump is in resonance with one 

(18)

E
(2)
1,2 =

1

2

[

4�−
√

2(3g2 + 5f 2 ± f1)

]

,

E
(2)
3 = 2�,

E
(2)
4,5 =

1

2

[

4�+
√

2(3g2 + 5f 2 ∓ f1)

]

,

Figure 7.  (a–d) Delay-time second-order correlation functions g (2)i (τ ) (in the logarithmic scale) for the SMR 
mode a, the QD mode b, and the hybrid mode c modes in the QD-driven system assuming that g/κmax is equal 
to: (a) 3, (b) 2.1, (c) 3.8, and (d) 2.2. The four different predictions of correlations for the QD mode b correspond 
to all the cases listed in Table 2. (e,f) Same as in Fig. 4, but for the parameters given in Eq. (30). Note that panels 
(a–d) show the cross-sections of the 3D plot in (f) at the values of g/κmax marked by broken lines.
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of the levels in the second manifold of the hybrid system energy levels, here specifically E(2)1  and E(2)4  . One can see 
in Fig. 8, peaks (global maxima in the analysed range) of log g (2)n (0) > 0 for n = a, b, c at �SMR = 0 . In particular, 
the probability of absorbing a single photon decreases here. However, if a photon is absorbed, it enhances the 
probability of capturing subsequent photons, this effect produces the super-Poissonian statistics, which is due 
to the fact that the probability of observing a single photon is also very small ( P10g ≪ 1 ) and smaller than the 
probability of observing two  photons6,76.

It is seen that, by tuning the drive frequency to the transition E2 − E0 in the energy spectrum of the total non-
linear system, the probability of admitting two photons increases. This results in the super-Poissonian statistics, 
which is opposite to the case, when the drive frequency is tuned to the transition E1 − E0 , when the probability 
of admitting subsequent photons decreases resulting in PB.

By assuming the off-resonance condition, ωSMR  = ωm  = ωq , we show in Fig. 8b the correlation functions for 
the three modes (a, b, c) as a function of �SMR in the case, when the drive is tuned in-between the dressed state 
eigenenergies of the hybrid system.

The PB and PIT effects observed in Fig. 8 can be explained by considering some measures of the distances 
from resonances, as shown in Fig. 9a. The distances of the single-, two-, and three-photon resonances (PRs) are 
defined here, respectively, as:

where ωp is the frequency of the pump that is tuned with respect to the energy of the hybrid system. Here ω(n)
i  

are the frequencies (labelled with subscript i) in the nth manifold, so the minimalization is performed over ω(n)
i  

for a given manifold n. Figure 9 shows the resonance distances versus �SMR , where ωp is tuned with respect to 
the energy of the whole system. The dip in g (2)(0) at �SMR/γ = 10 (see Fig. 8b), which is characteristic for PB, 
corresponds to the resonance for a single excitation, as seen from D1PR , and is off-resonance for higher excita-
tions at that frequency (see Fig. 9a). The second-order correlation function g (2)c (0) for the hybrid mode has a 
dip as a signature of PB around �SMR/γ = −3.4 , while the modes a and b exhibit the super-Poissonian statistics 
(indicating PIT), as shown in Fig. 8b. This effect is witnessed as a dip in D1PR and it is off-resonance for D2PR and 

(19)D1PR = min
i

|ωp − ω
(1)
i |2, D2PR = min

i
|2ωp − ω

(2)
i |2, D3PR = min

i
|3ωp − ω

(3)
i |2,

Figure 8.  Correlation functions log g (2)i (0) versus the frequency detuning �SMR (in units of the qubit decay 
rate γ ) between the drive and SMR for: (a) the resonance case ωSMR = ωm = ωq (so also �SMR = �m = �q ) 
and (b) the nonresonance case ωSMR  = ωm  = ωq , where ωb/γ = 1560 MHz. Note that by changing the pump 
frequency, different detunings appear with respect to the modes a and b, and qubit. We set g = 7.5γ and other 
parameters are given in Eq. (28). The numbering of the coloured regions correspond to the cases listed in 
Table 1.

Figure 9.  Resonance distances, as defined in Eq. (19), versus the frequency detuning �SMR (in units of the qubit 
decay rate γ ) between the drive and SMR for: (a) the SMR-driven system with parameters specified in Eq. (28) 
with g = 7.58γ and (b) the QD-driven system with Eq. (29) with g = 4.5γ.
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D3PR , as illustrated in Fig. 9a, while the modes a and b exhibit PIT. This type of unconventional PB is discussed 
further in sections below.

By decreasing �SMR/γ from 0 to − 2, the correlation function g (2)a (0) for the SMR mode in Fig. 8a resembles 
a shoulder in shape. We observe PIT at this point or region, as expected from our findings in the resonance-
distant diagram in Fig. 9a. Indeed, there is a dip in D2PR for higher resonances at this point, which explains the 
occurrence of PIT.

Let us consider now �SMR/γ → 3 in Fig. 8b for the pump frequency in resonance with the qubit, �q = 0 , 
which is close to the resonance frequency of the hybrid mode. In this case multi-photon transitions are induced, 
which result in PIT at �SMR/γ = 3 , and we observe a peak in log g (2)(0) > 0 at this frequency in Fig. 8b. Clearly, 
we are here in resonance with higher-energy levels, while the drive strength is very small, ηa/γ = 0.7 . The prob-
ability of observing a single photon is also small as the peak for �c = 0 , but if a single photon is absorbed, then 
the probability of capturing subsequent photons increases, as for PIT.

The analysed system parameters are found by optimising our system to observe the super-Poissonian statistics 
in the SMR and QD modes. At the sub-Poissonian statistics area of g (2)(0) , it is possible to observe in Fig. 14 (in 
“Methods”) that g (3)(0) > 1 and/or g (4)(0) > 1 , which are signatures of higher-order photon/phonon resonances 
and multi-PIT (see “Methods”). Actually, by calculating the second-order correlation function to witness the 
PB and PIT phenomena, higher-order correlation functions can be used to test whether a given effect is indeed: 
(1) single-PB or single-PIT, (2) multi-PB or multi-PIT, or (3) nonstandard versions of these effects, as discussed 
in “Methods” and, e.g., in Refs.29,53. As mentioned above, these parameters allow us to achieve the sub-Poissonian 
statistics for a relatively long delay times.

Hybrid‑mode blockade in the QD‑driven system
In this section, we analyse steady-state boson-correlation effects, including the hybrid-mode blockade and PIT, 
in the QD-driven dissipative system, as described by the Hamiltonian H ′′ and the master equation (12) for the 
parameters specified mostly in Eqs. (29) and (30).

To eliminate or at least to suppress the undesired oscillations in g (2)(τ ) , we assume in this section that 
our system is driven classically at the QD. Moreover, we assume that the SMR is in the bad-cavity regime, as 
κSMR ≫ g2/κSMR ≫ γ71. So, we apply the effective system Hamiltonian in the rotating frame, as given by Eq. (9). 
Even if the lifetime τSMR = 1/κSMR of the SMR is much shorter than that assumed in the SMR-driven system, 
which was discussed in the former section, the hybrid mode, as we show below, reveals no oscillations for quite 
long delay times, which is due to driving the QD.

To study boson-number statistics of our system, we compute the second-order correlation function g (2)(0) 
for the optimised parameters, which enables us to demonstrate Cases 4, 6, and 7 of Table 1 in Fig. 3b. In Case 7, 
which is of our special interest, the modes a and b are super-Poissonian, as log g (2)(0) > 0 , while the hybrid 
mode c is sub-Poissonian, as log g (2)c (0) < 0 . By increasing the coupling g between the SMR and qubit, the mode 
b becomes sub-Poissonian, as being affected by the nonlinearity of the mode a.

To check the second criterion for PB, the second-order correlation function g (2)(τ ) is considered below. 
Figure 6 shows g (2)(τ ) corresponding to g (2)(0) plotted in Fig. 3b showing Cases 4, 6, and 7. As expected, boson 
antibunching is observed for the hybrid mode, as shown in Fig. 6c, while the SMR mode reveals bunching, 
as illustrated in Fig. 6a. Moreover both phonon antibunching and bunching, in addition to unbunching [i.e., 
g
(2)
b (0) ≈ g

(2)
b (τ ) for τ � 0 ], have been observed in the studied region of the QD mode, as shown in Fig. 6b. It is 

clear from Fig. 6 that the antibunching of bosons in the three modes survives in some specific coupling regime 
(around g = 0.7κm ) for a relatively long delay time τ > 1/κ and oscillations in g (2)c (τ ) are absent in the hybrid 
mode c. Moreover, boson bunching is observed, when g (2)a (τ ) drops rapidly for delay times greater than the cavity 
photon lifetime, as considered in Fig. 5d,e.

To understand the delay-time dependence of the hybrid mode c, we consider Eq. (9), when the SMR, QD, 
and qubit have the same resonance frequency, ωSMR = ωm = ωq = ω and g = 4.5γ . As illustrated in Fig. 10a, 
there are three dips (local minima) in g (2)b (0) < 0 for the mode b of the QD, where we assumed g < min{κa, κb} 
and f > g . For these parameters, only a weak nonlinearity is induced in the mode b. Thus, the anharmonicity of 
energy levels cannot explain the PB effect observed as a dip at these three dips (see Fig. 9b). Actually, these dips 
in log g (2)b (0) are due to single-photon resonant transitions, which correspond to unconventional PB, as explained 
by the non-Hermitian effective Hamiltonian method in the next section and in “Methods”.

Figure 10c shows log g (2)i (0) for the three modes as a function of �SMR . In this case, we assume that the reso-
nance frequencies of the SMR, QD, and qubit are not the same, and the detuning of each mode with respect to 
ωp is different. It is shown that, when �SMR/γ → 2 , multiphoton transitions (and so PIT or multi-PB) can be 
induced in the mode a, where the pump frequency is in the resonance with the qubit, ωp = ωq . This effect is 
seen in Fig. 14 (in  “Methods”) corresponding to a local maximum in higher-order moments g (3)i (0) and g (4)i (0) . 
Likewise the resonance case, unconventional PB in the modes b and c can be explained by the method applied 
in the next section.

In Fig. 11, we study how the second-order correlation functions reveal the PIT regime, which corresponds to 
Case 8 in Table 1, as a function of the SMR-pump strength ηa [in panels (a) and (c)] and the QD-pump strength 
ηb [in panels (b) and (d)]. The hybrid mode c is super-Poissonian for all the shown cases and pump strengths. 
The modes a and b are super-Poissonian [except the mode a in panel (b)] for small pump strengths ηa,b . By 
increasing the driving power at least to some values, which can be identified in the figures for specific modes, 
we observe that the correlation functions g (2)(0) also decrease for all the modes (except the mentioned case). 
This property confirms the nonclassicality of the predicted PIT in the hybrid system according to an additional 
criterion of ‘true’ PIT of Ref.14.
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Unconventional blockade explanation via non‑Hermitian Hamiltonian approach
In this section, we apply the analytical mathematical formalism of Ref.45, based on an non-Hermitian Hamilto-
nian, to identify the quantum interference effect that is responsible for inducing unconventional PB, i.e., strongly 
sub-Poissonian statistics in the weak-coupling regime or the weak-nonlinearity regime. We stress that this is an 
approximate approach, where the effect of quantum jumps is  ignored77,78.

By considering the system studied in the former section under the weak-pump condition, we can truncate 
the Hilbert spaces for the modes a and b and the qubit at their two excitations in total. This allows us to con-
sider the total-system Hilbert space of dimension 3× 3× 2 = 18 . Moreover, the weak-pump condition implies 
that C00g ≫ C10g ,C01g ,C00e ≫ C11g ,C10e ,C01e ,C20g ,C02g . Thus, the steady-state of the coupled system can be 
expressed as

where |na, nb, g/e� is the Fock state with na photons in the SMR, nb phonons in the QD, and the lower ( |g� ) or 
upper ( |e� ) state of the qubit. The effective non-Hermitian Hamiltonian of the system can be written as

where H ′′ is given by Eq. (9). Analogously, one can consider the non-Hermitian Hamiltonian with H ′ , given by 
Eq. (8).

In the weak-pump regime, the mean number of photons and phonons in the SMR and QD can be approxi-
mated as �na� ≈ |C10g |2 and �nb� ≈ |C01g |2 , respectively. As derived in detail in “Methods”, the second-order cor-
relation functions for generated photons and phonons, under the same weak-pump conditions, can be given by:

where the superposition coefficients Cn,m,g are given in Eqs. (39) and (41).

(20)
|�abq(t)� = C00g |00g� + e−iωd t

(

C00e|00e� + C10g |10g� + C01g |01g�
)

+ e−2iωd t
(

C10e|10e� + C01e|01e� + C11g |11g� + C20g |20g� + C02g |02g�
)

,

(21)Heff = H ′′ − i
κa

2
a†a− i

κb

2
b†b− i

γ

2
σ+σ−,

(22)

g (2)a (0) =
�a†a†aa�
�a†a�2

≈
2|C20g |2

|C10g |4
,

g
(2)
b (0) =

�b†b†bb�
�b†b�2

≈
2|C02g |2

|C01g |4
,

Figure 10.  Correlation functions log g (2)i (0) versus the frequency detuning �SMR (in units of the qubit decay 
rate γ ) between the drive and SMR for the QD-driven system for: (a,b) the resonant case with ωSMR = ωm = ωq 
(so also �SMR = �m = �q ), and (c) the nonresonant case with ωSMR  = ωm  = ωq . Parameters are set in: Eq. (29) 
with g = 4.5γ for (a,c), and Eq. (30) with g = 9.5γ for (b). Eight different predictions, which correspond to all 
the cases listed in Table 1, are marked for the sub- and super-Poissonian number statistics in the photonic (a), 
phononic (b), and hybrid photon–phonon (c) modes.
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The hybrid photon–phonon modes, which are defined in Eq. (10), are the output modes of the balanced linear 
coupler with the SMR and QD modes at its inputs. As shown in “Methods”, we find, analogously to Eq. (22), the 
second-order correlation function for the hybrid mode c reads:

where the superposition coefficients C′
n,m,e/g are given in Eqs. (40) and (41), and the sixth formula in Eq. (34).

This approach enables us to explain unconventional PB generated in the hybrid system, which is the result 
of a destructive quantum interference effect that assures, together with other conditions, that the probability 
amplitude of having two photons in the SMR and QD is negligible. This method can also be used to find some 
optimal parameters to observe PB in the system.

Figure 12 presents a comparison of our predictions based on the precise numerical solutions of the master 
equation in Eq. (12), as shown by thin curves, with those calculated from Eqs. (22) and (23) using the non-
Hermitian Hamiltonian approach, as shown by thick curves. The locations of the maxima and minima of the 
correlation functions are found similar according to both formalisms. However, these extremal values can dif-
fer more distinctly, especially for the two global minima in the sub-Poissonian statistics of the mode b and the 
super-Poissonian maximum of the mode a. The differences result from the effect of quantum jumps, which 
are properly included in the master-equation approach and totally ignored in the non-Hermitian Hamiltonian 
approach (Fig. 12).

Different types of blockade and tunnelling effects
The sub-Poissonian statistics of a bosonic field, as described by g (2)(0) ≪ 1 , is not a sufficient criterion for 
observing a ‘true’ PB, which can be a good single-photon or single-phonon source. In fact, other criteria, such 
boson antibunching, g (2)(0) < g (2)(τ ) , and the sub-Poissonian statistics of higher-order correlation functions, 
g (n)(0) ≪ 1 , should also be satisfied (see “Methods”). Anyway, most of the studies of PB, and especially those on 
unconventional PB, are limited to testing the second-order sub-Poissonian statistics described by g (2)(0) < 1.

As explicitly discussed in Refs.21,72,79,80, photon antibunching and sub-Poissonian statistics are different pho-
ton-number correlation effects. So, the four cases listed in Table 2, can be considered as different types of PB 
and PIT. We show that all these effects can be observed in the studied system. For brevity, Table 2 is limited to 
phononic effects. PB, as defined in Case I and often referred to as a ‘true’ PB, can be a good single-photon sources; 
but, as mentioned above, other higher-order criteria should also be satisfied.

To show these four different effects, we use the parameters set in Eq. (30), where κb ≪ κa at the κb = 0.002 γ , 
which indicates that the quality factor is Q ≈ 200, and so ηb/κb ≈ 100 in the case of a strong pump driving the 
QD mode with ηb = 0.22 γ . Apart from the previously mentioned phenomena, such as observing the super-Pois-
sonian statistics and bunching in the SMR and QD modes, while a hybrid mode exhibiting the sub-Poissonian 

(23)g (2)c (0) =
�c†c†cc�
�c†c�2

≈
2|C′

20g |2

|C′
10g |4

,

Figure 11.  Second-order correlation functions log g (2)i (0) versus the drive strengths: (a,c) ηa for the SMR-
driven system and (b,d) ηb for the QD-driven system. Parameters are given in: (a) Eq. (28) with g = 7.5γ 
and ωp = 1554γ , which implies �q = −3γ , �b = 6γ , �a = 0 ; (b) Eq. (29) with ωp = 1568γ , which implies 
�q = 0 , �b = −8γ , and �a = 2γ ; (c) Eq. (28) with g = 7.5γ and ωp = 1551γ , which implies �q = 0 , 
�b = 9γ , and �a = 3γ ; and (d) Eq. (29) with ωp = 1570γ , which implies �q = −2γ , �b = −10γ , and �a = 0.
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statistics and boson antibunching, we find the four types of PB/PIT in the mode b in different coupling regimes, 
as shown in Table 2, which includes the examples of specific experimentally feasible values of g/κa.

Case I corresponds to a stronger form of PB, which we refer to as a ‘true’ PB, when the nonclassical nature of 
bosons is revealed by both their antibunching and sub-Poissonian statistics. Case II corresponds to a stronger 
form of PIT, which can be called a ‘true’ PIT, when bosons exhibit both classical effects: the super-Poissonian 
statistics and bunching. In Case III, one can talk about a weaker form of PIT or, equivalently, another weaker type 
of PB, as such bosons are characterised by the classical super-Poissonian statistics and their nonclassical nature is 
revealed by antibunching. Case IV represents another weaker form of PB or, equivalently, of PIT, which is char-
acterised by the nonclassical sub-Poissonian statistics of classically bunched bosons. These results imply that one 
cannot say in general that the antibunching of bosons leads to their sub-Poissonian statistics and vice  versa21,79.

Therefore, g (2)(τ ) > g (2)(0) does not necessarily imply g (2)(0) < 1, as in Case III, which can be seen in 
Fig. 7c,f. In addition, as another example related to Case IV, let us consider a Fock state |n� with n ≥ 2 , for which 
g (2)(0) = 1− 1/n , such that if n = 2 then g (2)(0) = 0.5, so g (2)(0) < 1 and it is not accompanied by boson 
antibunching, but bunching in this case.

Our focus in this paper is on the generation of PB in the hybrid mode, while the other two modes exhibit PIT. 
Note that this a very special case of Table 1, which shows that eight combinations of boson number correlation 
phenomena in the modes a, b, and c can be generated in our system, as specified by the numbered coloured 
regions in various figures corresponding to the cases in Table 1. Thus, we found all the eight possible combina-
tions of the PIT and PB effects in the hybrid system for the parameters specified in Eqs. (28), (29), and (30).

Detection of the hybrid‑mode correlation functions
Here, we describe two detection schemes for measuring the intensity autocorrelation functions for the hybrid 
photon–phonon modes c and d, as shown in Fig. 13.

Figure 12.  Correlation functions log g (2)i (0) versus the frequency detuning �SMR in units of γ for the QD-driven 
system for the resonant case with ωSMR = ωm = ωq = γ × 1560 MHz (so also �a = �b = �q ). The thin 
curves in each mode are obtained using the master equation in Eq. (12) and the thick curves are obtained 
from the non-Hermitian Hamiltonian method using Eqs. (22) and (23). Parameters are set in Eq. (29) except 
g = 4.5γ and κa = κb = 6γ.

Table 2.  Different single- and two-time phonon-number correlation effects induced in the QD mode, which 
can be observed for different values of the qubit-SMR coupling strength g with respect to the SMR decay rate 
κa , e.g., by setting the other parameters to be the same as in Eq. (30). Here, PNS stands specifically for the 
phonon-number statistics of the mode b. Note that we also found examples of Cases I, II, and IV for the modes 
a and c using the same system parameters as for the mode b.

Case Effect Single-time correlations Two-time correlations Example of g/κa Figure

I Stronger form of PB
(‘true’ PB)

Sub-Poissonian PNS
g
(2)
b (0) < 1

Phonon antibunching
g
(2)
b (τ ) > g

(2)
b (0)

3.0 7(a)

II Stronger form of PIT
(‘true’ PIT)

Super-Poissonian PNS
g
(2)
b (0) > 1

Phonon bunching
g
(2)
b (τ ) < g

(2)
b (0)

2.1 7(b)

III Weaker form of PIT or PB
Super-Poissonian PNS
g
(2)
b (0) > 1

Phonon antibunching
g
(2)
b (τ ) > g

(2)
b (0)

3.8 7(c)

IV Weaker form of PB or PIT
Sub-Poissonian PNS
g
(2)
b (0) < 1

Phonon bunching
g
(2)
b (τ ) < g

(2)
b (0)

2.2 7(d)
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Figure 13.  Schematics of the proposed detection schemes: (a) General scheme for the generation of the 
photonic mode a, phononic mode b, and hybrid modes c, d, and their detection in the measurement unit M, 
which is shown in specific implementations using: (b) detection method 1 and (c) detection method 2. Key: 
ULC(θ) stands for the linear-coupler transformation, which in special cases corresponds to multi-level SWAP 
(for θ = π/2 ) and Hadamard-like (for θ = ±π/4 ) gates; BS is the balanced beam splitter, which corresponds 
to ULC(π/4) , M ′

a ( M ′
b ) is a measurement unit for detecting photons (phonons), CCL is a coincidence and count 

logic unit, HBT stands for the standard Hanbury–Brown and Twiss optical interferometer. Mode e′ ( e′′ ) is in the 
photonic (phononic) vacuum state.

Figure 14.  Correlation functions log g (n)i (0) of various orders [second (solid curves), third (dashed), and 
forth (dot-dashed)] versus the detuning between the drive and SMR (in units of the qubit decay rate γ ) for 
the QD-driven system for: (a) the photonic mode a, (b) the phononic mode b, and (c) the hybrid mode c. All 
parameters and colourful regions are the same as in Fig. 10a.
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The measurements of g2(τ ) for the photonic mode a and the phononic mode b are quite standard and are 
usually based on the Hanbury-Brown and Twiss (HBT) optical interferometry and its generalised version for 
 phonons81, respectively. However, the measurement M (as schematically shown in Fig. 13a) of g (2)(τ ) , or even 
g (2)(0) , for the hybrid photonic-phononic modes c and d is quite challenging if applied directly. Here we propose 
two detection methods, as shown in Fig. 13b,c, for indirect measuring of g (2)c,d (0).

The first operation of the measurement unit M in both schemes is a linear-coupler transformation of the 
hybrid modes (c, d) into (a′, b′) , which, assuming that the process is perfect, should be equal to the original 
purely photonic (a) and phononic (b) modes.

We consider a linear coupler (formally equivalent to a beam splitter) described by a unitary operation ULC(θ) , 
which transforms the input operators a and b into:

for a real parameter θ , where T = cos2 θ and R = 1− T = sin2 θ are the transmission and reflection coefficients 
of the linear coupler, respectively. The studied hybrid modes are the special cases of Eq. (24) for c ≡ c(θ = π/4) 
and d ≡ d(θ = π/4) . Clearly, the first transformation ULC(−π/4) in Fig. 13b,c, is the transformation inverse 
to that in Fig. 13a.

Detection method 1 based on measuring photons and phonons. The correlation functions g (2)c,d (0) 
in the hybrid photon–phonon modes can be measured indirectly, as indicated in Fig. 13b, by measuring the 
observables:

where k, l,m, n = 0, 1, 2 , by using the relations:

and analogous relations for the hybrid mode d. The measurement units M ′
a and M ′

b in this method, as shown in 
Fig. 13b, describe the measurements of photons and phonons, respectively. It is seen that, in this approach, to 
determine g (2)c,d (0) , one has to measure the following observables: f01 , f10 , f11 , f02 , f20 , f12 , f21 , and f22 . Almost 
each observable fkl should be measured simultaneously with a specific observable gmn , which can be realised by 
a coincidence and count logic (CCL) unit in Fig. 13b.

The measurements of all the required photonic observables fkl can be performed by using, e.g., the 
Shchukin–Vogel method, which is based on balanced homodyne correlation  measurements82. According to 
that method, a photonic signal is superimposed on a balanced beam splitter with a local oscillator, which is in a 
coherent state |α = |α| exp(φ)� with a tunable phase φ . A desired mean value of the observable fkl can be obtained 
by linear combinations of the coincidence counts registered by specific detectors for different local-oscillator 
phases φ . This part of the method corresponds to a Fourier transform. The simplest nontrivial configuration, 
which enables the measurement of the observables f10 , f01 , f20 , and f02 , requires four detectors and three balanced 
BSs, where additional input ports are left empty, i.e., allowing only for the quantum vacuum noise. By replacing 
the four detectors with four balanced BSs with altogether eight detectors at their outputs, one can measure any 
observable fkl for k + l ≤ 4 . These include the desired observables f21 , f12 , and f22 . Of course, the observable f22 
can be measured in a simpler way via the HBT interferometry. The measurement of phononic observable gmn can 
be performed analogously just by replacing the balanced BSs by balanced phonon-mode linear couplers and using 
phonon detectors as, e.g., in Ref.81. The measurement of two-mode moments 〈fklgmn〉 is, at least conceptually, 
a simple generalisation of the single-mode methods relying on proper coincidences in photonic and phononic 
detectors. Note that a multimode optical version of the original single-mode method was described in Ref.83.

Detection method 2 based on measuring only photons. Figure 13c shows another realisation of 
the measurement unit M, to determine g (2)c,d (0) , and even g (2)c,d (τ ) . This method is, arguably, simpler and more 
effective than detection method 1, because it is based on measuring only photons and using standard HBT inter-
ferometry. Our approach was inspired by Ref.48, where the measurement of single-mode phonon blockade was 
described via an optical method instead of a magnetomotive technique, which was described in Ref.47, where 
phonon blockade was first predicted.

Our measurement setup realises the following three transformations: (1) converting the phononic mode b′ 
into a photonic mode b′′ , (2) mixing the optical modes a′ and b′′ on a balanced BS to generate the modes c′ and 
d′ , which, in an ideal case, have the same boson-number statistics as the original hybrid photon–phonon modes c 
and d; and finally, (3) applying the conventional optical HBT interferometry for these two optical modes. In unit 
(1), this conversion corresponds to a multi-level SWAP gate, which can be implemented by a photonic–phononic 
linear coupler for θ = π/2, assuming that the auxiliary input mode e′ is in the photonic vacuum state, while the 
output mode e′′ is in the phononic vacuum state. In unit (3), the balanced BS action on the optical modes a′ and 

(24)
c(θ) = U†

LC(θ)aULC(θ) = a sin θ + b cos θ ,

d(θ) = U†
LC(θ)bULC(θ) = a cos θ − b sin θ ,

(25)fkl = (a†)kal , gmn = (b†)mbn,

(26)�c†c� =
1

2

(

�f11� + �g11� + �f01g10� + �f10g01�
)

,

(27)

�c†2c2� =
1

4

(

�f22� + 4�f11g11� + �g22� + 2�f01g21� + 2�f10g12� + �f20g02� + �f02g20� + 2�f21g01� + 2�f12g10�
)

,
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b′′ in Fig. 13c corresponds to the transformation of the balanced linear coupler on the photonic (a) and phononic 
(b) modes, as shown in Fig. 13a.

Clearly, the linear-coupler transformation ULC(θ) is applied not only to the modes (a, b), but also to other 
modes. Thus, Eq. (24) should be adequately modified by replacing (a, b) by (c, d), (e′, b′) , and (a′, b′′) . For brevity, 
we omit their explicit obvious definitions here. Note that ULC(π/2) and ULC(π/4) correspond to a multi-level 
SWAP and Hadamard-like gates, respectively; while the balanced BS in Fig. 13c corresponds to ULC(π/4).

Discussion
We proposed a novel type of boson blockade, as referred to as hybrid photon–phonon blockade, which is a 
generalisation of the standard photon and phonon blockade effects. We predicted the new effect in a hybrid 
mode obtained by linear coupling of photonic and phononic modes. We described how hybrid photon–phonon 
blockade can be generated and detected in a driven nonlinear optomechanical superconducting system. Spe-
cifically, we considered the system composed of linearly coupled microwave and mechanical resonators with a 
superconducting qubit inserted in one of them.

We studied boson-number correlations in the photon, phonon, and hybrid modes in the system. By analysing 
steady-state second-order correlation functions, we found such parameter regimes of the system for which four 
different types of boson blockade and/or boson-induced tunnelling can be observed. Thus, we showed that bosons 
generated in the studied system can exhibit the sub-Poissonian (or super-Poissonian) boson-number statistics 
accompanied by boson antibunching in some cases or bunching in others. These results can be interpreted as 
four different types of blockade or tunnelling effects, as summarised in Table 2.

By tuning the pump frequency with respect to the energy levels of the hybrid system, which is driven via the 
SMR, we showed that it is possible to observe PB and PIT that can be explained by a large energy-level anhar-
monicity in the strong-coupling (or large-nonlinearity) regime. However, the time evolution of the second-order 
correlation function g (2)(τ ) oscillates due to the coupling g between the SMR and qubit as well as the hopping 
f between the SMR and QD. We showed that it is possible to induce PB in the hybrid mode c that survives for 
much longer delay times by driving the QD instead of the SMR.

We also predicted unconventional PB in the three modes in the weak-coupling (or weak-nonlinearity) regime 
using a non-Hermitian Hamiltonian approach based on neglecting quantum jumps. Our analytical approximate 
predictions are in a relatively good agreement with our precise master-equation solutions (including quantum 
jumps).

Moreover, as summarised in Table 1, we showed the possibility to observe eight different combinations of 
either PB or PIT in the three modes (a, b, and c) in different coupling regimes of this system. Thus, in particular, 
we found that the tunnelling effects in the photonic and phononic modes can lead, by their simple linear mixing, 
to the hybrid photon–phonon blockade effect.

Finally, we discussed two methods of detecting hybrid-mode correlations. One of them is based on measuring 
various moments of photons and phonons via balanced homodyne correlation measurements. While the other 
method is based on converting phonons of the hybrid mode into photons, by using a linear coupler acting as a 
multi-level SWAP gate, and then applying the standard optical HBT interferometry.

We believe that our study of the interplay between photons and phonons can lead to developing new 
experimental methods for controlling and testing the quantum states of mechanical systems with atom-cavity-
mechanics polaritons. We hope that our work can also stimulate research on quantum engineering with hybrid 
photon–phonon modes.

Methods
Parameters used in our simulations. Our figures, as indicated in their captions, are plotted for the SMR-
driven dissipative system described by the Hamiltonian H ′ , given in Eq. (8), assuming:

and for the QD-driven dissipative system for the Hamiltonian H ′′ , given in Eq. (9), assuming either

or

where γ = 10π MHz. Minor modifications of these parameters are specified in figure captions.

Higher‑order correlation effects. Here we briefly study the kth-order boson-number correlation func-
tions g (k)z (0) , as defined in Eq. (13) for k = 3, 4, in comparison to the standard second-order function g (2)z (0) for 
the photon ( z = a ), phonon (b), and hybrid photon–phonon (c) modes.

Figure 14 shows our results for g (3)z (0) (dashed curves) and g (4)z (0) (dot-dashed curves) in comparison to 
g
(2)
z (0) (solid curves) for z = a, b, c in corresponding panels. Note that the same curves for g (2)z (0) are also shown 

in Fig.  10a, but we repeat them for a better comparison with g (3,4)z (0) . It is seen that the eight cases of Table 1 can 
be divided into a number of subcases depending on g (3)z (0) and g (4)z (0) . Such a classification is quite complex as 
includes, in principle, 83 = 512 cases. So, instead of that, we present another much-simplified classification of 
eight cases only, as shown in Table 3 using the auxiliary function g234 defined as:

(28)A1 = {�a = −3γ ,�b = 3γ ,�q = −6γ , f = 5γ , ηa = 0.7γ , ηb = 0, κa = 1.5γ , κb = 6γ },

(29)A2 = {�a = 5γ ,�b = −5γ ,�q = 3γ , f = 7γ , ηa = 0, ηb = 0.5γ , κa = 7.5γ , κb = 6γ },

(30)A3 = {�a = 4γ ,�b = −4γ ,�q = 7γ , f = 6.4γ , ηa = 0, ηb = 0.22γ , κa = 3.5γ , κb = 0.002γ },



19

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17655  | https://doi.org/10.1038/s41598-022-21267-4

www.nature.com/scientificreports/

In particular [−,−,−] means that the second-, third- and fourth-order sub-Poissonian photon number-statistics 
are observed in a given mode, which are the necessary conditions for observing a ‘true’ single-PB. This case can 
be easily identified in both panels of Fig. 14. One can also find the case when [+,+,+] , which corresponds to the 
super-Poissonian statistics of orders k = 2 , 3, and 4, which might be interpreted, as the induced tunnelling by one, 
two, and three photons. However, we can also find intermediate four out of six cases, which can be interpreted 
as non-standard types single-PB and/or single-PIT, and in some cases can be identified as multi-PB11,26,29,30,53. 
However, a detailed classification of such multi-PB and their interpretation is not at the focus of this paper. The 
presented results show only the possibility of generating in our system a plethora of various photon–phonon 
correlation effects, which can be revealed by higher-order correlation functions for the experimentally feasible 
parameters.

Analytical approach via non‑Hermitian Hamiltonian in Eq. (21). Here, we follow the method of 
Ref.45 to derive the coefficients Cn,m,k and C′

n,m,k for n,m ∈ 0, 1, 2 and k = e, g , which appear in Eqs. (22) and (23).
First we recall that the balanced linear coupler (or a balanced beam splitter) transformation, which leads to 

Eq. (24), if applied to the input Fock states |na, nb� for na + nb ≤ 2 yields:

 So, for the input state |�abq(t)� , given in Eq. (20), the output state of the balanced linear coupler can be repre-
sented as follows:

where the superposition coefficients are:

(31)g234 =
[

sgn log g (2)z (0), sgn log g (3)z (0), sgn log g (4)z (0)
]

.

(32)
|10� →

1
√
2
(|10� − |01�), |01� →

1
√
2
(|10� + |01�), |11� →

1
√
2
(|20� − |02�),

|02� →
1

2
(|20� +

√
2|11� + |02�), |20� →

1

2
(|20� −

√
2|11� + |02�).

(33)
|�cdq(t)� = C00g |00g� + e−iωd t

(

C00e|00e� + C′
10g |10g� + C′

01g |01g�
)

+ e−2iωd t
(

C′
10e|10e� + C′

01e|01e� + C′
11g |11g� + C′

20g |20g� + C′
02g |02g�

)

,

(34)

C′
10g =

1
√
2
(C10g + C01g ),

C′
01g =

1
√
2
(C10g − C01g ),

C′
10e =

1
√
2
(C10e + C01e),

C′
01e =

1
√
2
(C10e − C01e),

C′
11g =

1
√
2
(C20g − C02g ),

C′
20g =

1

2
(C20g +

√
2C11g + C02g ),

C′
02g =

1

2
(C20g −

√
2C11g + C02g ).

Table 3.  Different predictions of the nth-order super- and sub-Poissonian statistics with n = 2, 3, 4 for the 
photon ( z = a ), phonon (b), and hybrid photon–phonon (c) modes, where g234 is defined in Eq. (31). The 
cases marked with 

√
 can be identified under both (1) nonresonance conditions, as shown in Fig. 14b, and (2) 

resonance conditions, as shown in Fig. 14a, except the case marked with ∗.

Case g234 Mode a Mode b Mode c

1 (−,−,−)
√ √ √

2 (−,−,+) ×
√ √∗

3 (−,+,−) × × ×
4 (+,−,−)

√ √ √

5 (−,+,+) ×
√ √

6 (+,−,+) × × ×
7 (+,+,−)

√ √ √

8 (+,+,+)
√ √ √
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We can calculate the coefficients Cna ,nb ,g/e  iteratively45. For a single excitation and assuming the resonance case 
�SMR = �m = �q = � and κa = κb = κ , the steady-state superposition coefficients can be calculated from:

where η = ηb , � = ωi − ωp and ωSMR = ωm = ωq = ω . Moreover, we assume the weak-driving regime. So, in 
the first iteration, the contributions from the states with more than a single excitation, such as C01e , C11g , ..., are 
negligible. From Eq. (35), by comparing the coefficients with a single excitation, we can see that C10g and C00e 
are much larger than C01g , because of a weak-pump amplitude η , and they can be written as

In the second iteration, to include states with two excitations in total, the steady-state coefficients can be calcu-
lated from:

where �κ = �− iκ/2 and �γ = �− iγ /2 . As can be seen from Eq. (37), we have

So, to minimise C02g , the minimalization of C11g and C01g is also required. Destructive interference between the 
direct and indirect excitation paths in the energy ladders of the total system can enable us minimising C02g . This 
explains the occurrence of the dip in g (2)b (0) in the mode b, as a signature of PB. As clearly seen in Fig. 12a, the 
optimal PB in this mode occurs at �SMR/g = ±1.2 . The above equations lead us to analytical optimal conditions 
for the system parameters to maximise the sub-Poissonian character of the QD mode and, thus, to optimise the 
parameters for observing PB in the mode b. Given Eq. (39) for a single excitation and Eq. (41) for two excita-
tions, which are calculated from Eq. (37), we show that the second-order correlation function calculated by this 
method and the master equation method both give very similar predictions, as shown in Fig. 12, where the thick 
curves are calculated based on the non-Hermitian Hamiltonian approach and the thin curves correspond to the 
master-equation approach for the modes a, b, and c.

Thus we find

which yields

Analogously, we find

where �κγ = �κ +�γ and the auxiliary functions Xn read: X1 = �2
κγ − f 2 , X2 = �κγ (2�κ + 5�γ )− 4f 2 , 

X3 = 2�κ(�
2
κ − f 2)X1  ,  X4 =

[

3�2
κ�κγ + (�κ −�γ )f

2
]

g2 −�κg
4  ,  X5 = �2

κ�γ −�γ f
2 −�κg

2  , 

(35)

0 =
(

�−
iκ

2

)

C01g + fC10g + ηC00g ,

0 =
(

�−
iκ

2

)

C10g + fC01g + gC00e ,

0 =
(

�−
iγ

2

)

C00e + gC10g ,

(36)
C10g =

f (24�− 2iκ)C01g

(24g2 − 24�2 + 14iκ�+ κ2)
,

C00e = −
24fgC01g

(24g2 − 24�2 + 14iκ�+ κ2)
.

(37)

0 = 2�κC11g +
√
2fC20g +

√
2fC02g + gC01e + ηC10g ,

0 = �κC10e +�γC10e + fC01e +
√
2gC20g ,

0 = �κC01e +�γC01e + fC10e + gC11g + ηC00e ,

0 = 2�κC20g +
√
2fC11g +

√
2gC10e ,

0 = 2�κC02g +
√
2fC11g +

√
2ηC01g ,

(38)C02g = −(
√
2fC11g +

√
2ηC01g )/(2�κ).

(39)
C01g = (�κ�γ − g2)ηX−1

5 ,

C10g = −�γ f ηX
−1
5 ,

(40)C′
10g =

(�κ�γ −�γ f − g2)η
√
2X5

,

(41)

C02g =
η2[−2�3

κ�γX1 +�2
κX2g

2 − X6g
4 + g6]

√
2X5(X3 − X4)

,

C20g = −
η2f 2[2�κ�γX1 + (2�κ −�γ )�κγ g

2 − g4]
√
2X5(X3 − X4)

,

C11g =
η2f (2�2

κ�γX1 + X7g
2 +�γ g

4)

X5(X3 − X4)
,
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X6 = 3�2
κ + 4�κ�γ + f 2 , and X7 = �κ(2f

2 − 3�γ�κγ ) . These formulas, together with C′
20g in Eq. (34), enable 

us to calculate analytically the correlation functions in Eqs. (22) and (23).

Data availability
All the data necessary to reproduce the results are included in this published article.
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