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SUMMARY

Genetically encoded fluorescent biosensors are powerful tools for monitoring biochemical 

activities in live cells, but their multiplexing capacity is limited by the available spectral space. 

We overcome this problem by developing a set of barcoding proteins that can generate over 100 

barcodes and are spectrally separable from commonly used biosensors. Mixtures of barcoded cells 

expressing different biosensors are simultaneously imaged and analyzed by deep learning models 

to achieve massively multiplexed tracking of signaling events. Importantly, different biosensors in 

cell mixtures show highly coordinated activities, thus facilitating the delineation of their temporal 

relationship. Simultaneous tracking of multiple biosensors in the receptor tyrosine kinase signaling 

network reveals distinct mechanisms of effector adaptation, cell autonomous and non-autonomous 

effects of KRAS mutations, as well as complex interactions in the network. Biosensor barcoding 

presents a scalable method to expand multiplexing capabilities for deciphering the complexity of 

signaling networks and their interactions between cells.
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In brief

Genetically encoded barcodes that uniquely identify cells expressing a particular fluorescent 

biosensor enable the simultaneous use of a broader set of biosensors in mixed cell populations 

and dynamic imaging of many cellular responses in a single experiment to reduce inter-

experimental variability when interrogating complex biological interactions, such as the 

downstream consequences of receptor tyrosine kinase activation, with the help of image-based 

deep learning models for automated barcode unmixing.

INTRODUCTION

To understand the complex regulatory relationship between signaling, metabolic, and other 

biochemical activities in cells, it is often necessary to study their dynamics under a 

multitude of perturbation conditions. Genetically encoded fluorescent biosensors offer a 

versatile tool to continuously monitor a wide range of biochemical activities in live cells 

while revealing cell-to-cell variability that is masked in ensemble measurements (Newman 

et al., 2011; Zhang et al., 2002). A major drawback of fluorescent biosensors is their 

limited multiplexing capability due to the broad emission spectra of fluorescent proteins 

(FPs) and limited availability of spectral space (Welch et al., 2011). Efforts have been 

directed toward expanding the spectral range by developing far-red/infrared fluorophores, 

replacing two fluorophore biosensors (e.g., those based on fluorescence resonance energy 

transfer [FRET]) with single-fluorophore designs, and computational multiplexing to reveal 
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the spatiotemporal relationship between biosensors (Chernov et al., 2017; Grant et al., 

2008; Machacek et al., 2009; Marston et al., 2020; Mehta et al., 2018; Regot et al., 

2014). Despite these improvements, no more than a handful of biosensors can be imaged 

concurrently. To overcome this limitation, we developed a “biosensor barcoding” method 

for highly multiplexed tracking of fluorescent biosensors. The key idea is to label cells 

with barcoding proteins made of different fluorophores targeted to distinct subcellular 

locations. Combinations of barcoding proteins are then used to generate barcodes that 

uniquely identify the cells expressing specific biosensors (Figures 1A–1C). To track multiple 

activities in parallel, mixed populations of barcoded cells are imaged in a time-lapse 

microscopy experiment. Activities from cells with the same barcode are pooled together 

to obtain the temporal profile of the corresponding biosensor (Figures 1D–1F; Video S1). 

Our method is compatible with any biosensor with emission wavelengths between 450 nm 

and 550 nm, including the majority of existing FRET or single fluorophore biosensors.

RESULTS

Barcoding cells

In theory, N different barcoding proteins can be combined to create 2N different barcodes, 

assuming binary expression (i.e., not expressed or expressed). In reality, the expression of 

barcoding proteins is a continuum, and low-expressors may be hard to distinguish from 

nonexpressors, thus precluding the use of all combinations. To ensure robust barcode 

identification, we only included combinations of two barcoding proteins that were (1) of 

different colors; and (2) targeted to different subcellular locations. Barcoding proteins also 

need to be spectrally separable from biosensors. A large number of fluorescent biosensors 

are based on detecting changes in (1) the intracellular localization or intensity of a single 

fluorophore, in many cases green FP (GFP), or (2) the FRET efficiency between a donor 

and an acceptor, most commonly cyan and yellow FPs (CFP and YFP) (Greenwald et al., 

2018; Terai et al., 2019). Therefore, the cyan-green-yellow range of the emission spectrum 

(~450–550 nm) covers a vast number of existing fluorescent biosensors (Greenwald et al., 

2018).

We first tested whether red or far-red FPs (550–700 nm; red FPs for brevity) targeted to 

different subcellular locations can be used as barcoding proteins. To this end, we constructed 

plasmids encoding sequences of TagRFP (Shaner et al., 2008), mCardinal (Chu et al., 

2014), or iRFP702 (Shcherbakova and Verkhusha, 2013) fused to targeting motifs for 

localizing to (1) the nucleus; (2) the plasma membrane; (3) the nuclear membrane; or (4) the 

cytoplasm (Figures 1A and 1B). We took spectral images of HeLa cells expressing pairs of 

barcoding proteins under a confocal microscope equipped with a spectral detector. Knowing 

the reference emission profile of individual fluorophores, the contribution of each can be 

determined by linear unmixing (Figure S1A). To further increase the number of barcodes, 

we included BFP (EBFP2) (Ai et al., 2007) as the fourth fluorophore because (1) it is not 

excited by the 458 nm laser used for biosensors; and (2) a properly chosen spectral range 

(400–430 nm) detects the emission from BFP but not CFP used for biosensors (Figures 1A 

and S1B). Using four FPs targeted to four subcellular locations, a total of (4 × 3/2) × 4 × 3 = 

72 barcodes can be generated.
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Tracking multiple biosensor activities in barcoded cells

We selected 24 FRET or single-fluorophore biosensors that report the activities of 14 

distinct targets in various subcellular compartments, including kinases (AMPK, ERK, p38, 

JNK, PKC, FAK, Src, and PI3K), G-proteins (Gαi1, Gαi2, and Gαi3), calcineurin, RhoA 

GTPase, and calcium (Table S1). We coexpressed each biosensor with a unique pair of 

barcoding proteins in HeLa cells by transient transfection. Cells with different biosensor/

barcode combinations were then mixed and imaged simultaneously. We obtained the 

activities for individual biosensors by averaging across cells with corresponding barcodes, 

identified by linear unmixing of spectral images as described above. We stimulated cells 

with six pharmacological agents including 2-deoxyglucose (2DG), anisomycin, epidermal 

growth factor (EGF), ionomycin, phorbol-12,13-dibutyrate (PDBu), and UK14304, which 

have been used to test these biosensors in previous studies (Table S1). We analyzed the 

responses of all 24 biosensors to the agents and vehicle control (Figure 2A; Table S2). The 

averaged biosensor activities responded to previously reported stimuli (Figure 2A, black 

boxes), but wide variations were noted between different cells expressing the same biosensor 

(Figure 2B). Moreover, different biosensors that detect the same molecular activity may 

display distinct kinetics. For example, translocation-based ERKKTR (Regot et al., 2014) and 

FRET-based EKAR (Harvey et al., 2008) both report ERK activation, but the kinetics of 

ERKKTR was delayed compared to that of EKAR, consistent with previous observations 

(Figure 2C) (Pargett et al., 2017; Yang et al., 2018).

To validate the results derived from mixed barcoded cells, we compared the responses to 

those from a homogeneous population of cells expressing single biosensors. The kinetics of 

the responses obtained from single-cell populations were in general agreement with those 

from mixed-cell populations (Table S2). Because all responses initiated between 3–9 min 

after stimulation, we compared their magnitude at 9 min and found that for the majority 

(75%) of biosensors, no significant difference was noted between the two groups (Table 

S2). Analysis of responses 15 min after stimulation produced a similar result (Table S2). 

For biosensors that showed statistically significant differences, the responses were smaller 

in the mixed population group in about half of the cases and larger in the remainder. 

Such variability is expected among experimental replicates with identical protocols (see 

the section “Synchrony among biosensors in barcoded cell mixtures” below). To rule out 

cross-transfection between different barcoded cells (e.g., through carryover of transfection 

material orexosomes), we mixed cells transfected with single barcoding proteins of different 

colors and targeting sites. In over 600 cells, no instance of double expression was found, 

suggesting that cross-transfection is an extremely unlikely event (Figures S1C and S1D).

In addition to the responses to known activators, our analyses revealed unanticipated 

responses, such as ionomycin-induced activation of AMPK, JNK, p38, RhoA, and PKC, 

as well as PDBu-induced activation of ERK and p38 (Figure 2A, red boxes). These 

observations are supported by earlier reports based on a variety of assays in different 

cell types (Table S3). Taken together, these results demonstrate that (1) the barcodes 

allow for correct identification of cells expressing different biosensors and are compatible 

with biosensor imaging without affecting biosensor responses; (2) the technique reveals 

variations between cells and kinetics of biosensors; and (3) multiplexed biosensor imaging 
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can facilitate comprehensive identification and kinetic characterization of multiple cellular 

activities.

Deep learning models for barcode reading

To facilitate the identification of barcoded cells, we developed deep learning models for 

automated barcode reading. Using deep convolutional neural network models trained on 

curated images, we classified a testing set of linearly unmixed images of cells expressing 

pairs of barcoding proteins. The average accuracy was 97%, but varied from 50% to 100% 

for individual barcodes mostly due to suboptimal unmixing of two red FPs. To overcome 

this problem, we adopted a new barcoding strategy by pairing BFP with one of the three 

red FPs targeted to any of the four subcellular locations, generating a total of 4 × 4 × 3 = 

48 different barcodes. We replaced TagRFP with mCherry, which was brighter but harder to 

unmix with mCardinal in the original barcoding scheme (Figure 3A).

To test the new barcoding scheme for classification by deep learning models, we 

coexpressed BFP targeted to either the nucleus or plasma membrane along with a red FP 

targeted to four different subcellular locations in HeLa cells. Spectral images were acquired 

and unmixed using the reference spectra of mCherry, mCardinal, and iRFP702 to determine 

the identity of the red FP. The BFP image, once classified, could serve as a reference for 

red-FP localization. Therefore, we trained three deep learning models to classify (1) BFP 

images; (2) red FP images combined with nuclear BFP; and (3) red FP images combined 

with plasma membrane BFP (Figure 3B). We tested the performance of these models on 

images of barcoded cells and achieved an average accuracy of 99% (range, 92.5%–100%) 

(Figure 3C). The cause of misidentification included saturating or dim fluorescence signals, 

the presence of a second cell in the region selected for analysis, and unhealthy or apoptotic 

cells. The time to analyze one imaging experiment (~300 cells) was less than 10 s using 

deep learning models (Intel Core i5-7500 CPU @ 3.40 GHz, 3.41 GHz, 32 GB RAM). 

For comparison, human reading of the same number of barcodes took ~2 h. Together, these 

results demonstrated that deep learning models can achieve high efficiency and accuracy in 

barcode reading.

Expanding the barcoding toolkit

We next sought to extend the success with barcoding HeLa cells to other cell lines, including 

293T, MCF7, U87MG, SiHa, U2OS, and A6L, which varied in morphology and transfection 

efficiency. High transfection efficiency was achieved in 293T, MCF7, and U2OS cells. Most 

barcodes in these cells were readily identifiable (Figures 4A, 4B, and S2A). Interestingly, 

in some U2OS cells, plasma membrane-targeted FPs appeared as a broad “haze” that 

resembled cytosolic signals (e.g., the D2E3 cell in Figure S2A). 3D reconstruction of 

z-stacks from these cells revealed a “cowboy hat” morphology with extended protrusion 

of the membrane around the cell periphery (Figure S2B). Although the broad membrane 

signals might appear cytosolic when examined in isolation, they were still distinct from the 

cytosolic signal in the same cell (e.g., the D2E4 cell in Figure S2A).

We applied deep learning models to classify images of barcoded 293T, MCF7, and U2OS 

cells. The models trained on HeLa images correctly identified 97.8% (range, 94.8%–100%) 
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of barcoded 293T cells (Figure 4C). However, the accuracy was lower for MCF7 (90.1%) 

and U2OS (81.4%) (Figures 4D and S2C), in part due to the aforementioned broad 

membrane signals. We therefore trained new models using MCF7 and U2OS images, which 

achieved accuracy of 99.2% (range, 93.3%–100%) and 98.1% (range, 92.7%–100%) for 

MCF7 and U2OS cells, respectively (Figures 4D and S2C). These results demonstrate that 

barcode reading by deep learning models can be generalized to different cell lines.

To overcome the low transfection efficiency in U87MG, SiHa, and A6L cells, we generated 

lentiviral vectors encoding barcoding proteins using the Gateway recombination system 

(Figure S3A). Co-transduction of these cells with pairs of lentiviruses led to robust 

expression of barcoding proteins that were localized to the expected subcellular sites 

(Figures S3B–S3D). In addition to barcoding a broader range of cell lines, the more stable 

expression of lentiviral vectors compared to transient transfections will allow for long-term 

imaging experiments.

We reasoned that the number of barcodes in the new scheme can be easily scaled up with 

additional red FPs that are spectrally separable. In this scheme, red FPs were identified by 

their peak emissions based on the spectral profile acquired using a Zeiss GaAsP detector 

in 15 bins (of 9 nm each) between 560 and 695 nm. For example, the peaks of mCherry, 

mCardinal, and iRFP702 fell within bins 6, 10, and 15, respectively (Figure 4E). Using the 

spectral information from FPbase (Lambert, 2019) as a guide, we selected additional red FPs 

including LSS-mKate2, mStrawberry, RDSmCherry1, mPlum, mNeptune, mNeptune2.5, 

iRFP670, and iRFP682 for testing and acquired their emission profiles by imaging 

HeLa cells expressing nucleus-targeted versions of these FPs (Figure 4E). Eight of the 

FPs (TagRFP, mStrawberry, mCherry, RDSmCherry1, mCardinal, iRFP670, iRFP682, and 

iRFP702) showed distinct emission peaks in all cells examined (Figure 4E; Table S4). With 

four different subcellular localizations, the combination of BFP and one of the eight red FPs 

can generate a total of 4 × 4 × 8 = 128 different barcodes. Besides tracking an even greater 

number of biosensors, the additional fluorophores can compensate for the possible loss of 

usable subcellular locations in cells with more challenging morphologies.

Synchrony among biosensors in barcoded cell mixtures

A common problem associated with comparing or combining biosensor measurements from 

multiple experiments is the variability caused by factors such as subtle changes in cell 

density or temperature. We reasoned that such variability can be minimized by subjecting 

mixed populations of barcoded cells to a common physicochemical environment, allowing 

accurate comparison of different biosensors. To test this idea, we examined the results 

of ten experimental replicates in which barcoded cells expressing PH-AKT, EKAR, nuc-

EKAR, Src, and Lyn-FAK biosensors were stimulated with EGF. Despite identical settings, 

variations in the timing and amplitude of the responses were noted (Figure 5A). We fitted 

individual traces to a biphasic exponential model to obtain the response initiation time (RIT) 

of the responses (Figures 5B and S4). Comparison of the RITs of individual experiments and 

those averaged across ten experiments indicated that different biosensors were synchronized 

in the same experiment despite significant variabilities between experiments (Figure 5C).
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We next examined the responses to more complex stimulation schemes by treating barcoded 

cells expressing EKAR, nucEKAR, PH-AKT, Lyn-FAK, and the Src biosensor sequentially 

with 0.5 and 10 ng/mL EGF. In two experimental repeats, the response to the second 

stimulus was delayed in one but immediate in the other (Figure 5D). Cross-correlation 

analyses showed higher similarities within the same experiment than between experiments 

(Figure 5E). Notably, in the same experiment, highest correlation occurred between the two 

ERK biosensors, EKAR and nucEKAR, and between biosensors for FAK and Src, which 

are known to activate each other through direct interactions (Frame et al., 2010) (Figure 

5E, yellow boxes). The correlation between these two pairs of biosensors was much lower 

across different experiments (Figure 5E, red boxes). In a second set of experiments in 

which cells were stimulated with 1, 10, and 100 ng/mL EGF (Figure 5F), a high correlation 

was noted between biosensors for Src and FAK and between those for RhoA (Fritz et al., 

2013) and ROCK (Li et al., 2017) within the same experiment (Figure 5G, yellow boxes) 

but not between two experimental repeats (Figure 5G, red boxes). Note that ROCK is a 

downstream effector of RhoA through direct binding (Amano et al., 2010). Therefore, the 

strong correlation between biosensor pairs is consistent with known interactions between 

signaling proteins. Together, the above results suggest a high degree of synchronization 

among the activities of different biosensors in the same experiment and significant variations 

of the same biosensor across different experiments.

Interrogating the kinetics of signaling networks

We next investigated the responses of the receptor tyrosine kinase (RTK) signaling 

network to EGF and inhibitors. After testing 28 biosensors for their responsiveness to 

EGF (Table S1), we selected 10 responders that detected the activity of the RTK/EGF 

receptor (EGFR) as well as its multiple downstream effectors, including PI3K, Syk, ERK, 

calcium, RhoA, Src, S6K, FAK, and ROCK (Figure 6A). We used biosensor barcoding 

to simultaneously record their responses to 100 ng/mL EGF, and the results from two 

representative experiments are shown in Figure 6B. PicchuEV, an RTK biosensor (Komatsu 

et al., 2011), showed a gradual increase in activity before reaching a plateau at ~12 min 

after stimulation. Interestingly, the downstream biosensors displayed varying degrees of 

adaptation after reaching the peak level. Importantly, the adaptation of all downstream 

effectors except S6K started while PicchuEV activity was still increasing. To rule out the 

possibility that RTK inactivation was not detected by PicchuEV in real time, we treated 

EGF-stimulated cells with the EGFR inhibitor gefitinib and found immediate decrease in 

PicchuEV activity (Figure S5A). Therefore, the plateauing of the PicchuEV signal indicated 

continued RTK activation, and downstream adaptation was not caused by RTK inactivation.

We investigated the responses to different concentrations of EGF. As expected, higher 

EGF generally induced greater responses (Figure 6C). However, the temporal profile of 

the responses displayed unique features that fell into three classes: (1) stimulus-dependent 

plateau; (2) stimulus-dependent adaptation; and (3) all-or-none (Figure 6D). Class I included 

only one biosensor, PicchuEV, which reached a plateau level determined by the stimulus 

level. Class 2 included Syk, Src, FAK, RhoA2G, EV-ROCK, and S6K, which reached 

a stimulus-dependent peak level followed by adaptation at various rates. (Note that the 

seemingly non-adapting response of Syk at the highest EGF dose was caused by a delayed 
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second peak induced by continued receptor activation in some experiments, e.g., Exp 1 

in Figure 6B.) Class 3 included GCaMP6S, PH-AKT, and EKAR, which responded with 

a stimulus-independent peak to EGF above a threshold level. To determine the level of 

cooperativity for different responses, we fit the peak response versus EGF concentration to 

a Hill equation (Figure 6E). Whereas class 1 and 2 responses had Hill coefficients close to 

1 and thus were noncooperative, class 3 responses showed strong cooperativity with high 

Hill coefficients, consistent with previous studies on PI3K and ERK signaling (Huang and 

Ferrell, 1996; Shindo et al., 2016; Zhan et al., 2020).

To check whether partial responses may result from averaging across all-or-none responders, 

we examined the responses of individual cells to escalating doses of EGF. For class 1 and 2 

biosensors, the responses triggered by 1 ng/mL EGF were smaller than those triggered by 10 

ng/mL EGF (Figure S5B; note that 100 ng/mL EGF failed to trigger a third response in most 

cells likely due to previous responses). In contrast, the responses of class 3 biosensors were 

independent of EGF doses. Therefore, the dose response features of different classes arose at 

the level of individual cells.

We noticed that EGF triggered transient spreading of cells driven by actin polymerization, 

as detected by recruitment of LifeAct (Riedl et al., 2008) to the protrusions (not 

shown). To test the possible involvement of actin in adaptation, we pretreated cells 

with jasplakinolide or latrunculin B, which stabilizes or inhibits actin polymerization, 

respectively. Neither jasplakinolide nor latrunculin B blocked the adaptation of class 2 

and class 3 responses (Figures S5C and S5D), suggesting that actin dynamics are not 

required for adaptation. Interestingly, the responses of RhoA2G, EV-ROCK, and GCaMP6S 

were greatly diminished, suggesting a possible role of actin in RhoA, ROCK, and calcium 

activation.

We reasoned that the kinetic and dose response features of different biosensors reflect the 

topology of regulatory interactions. Specifically, in class 1 responses, the dose-dependent 

plateaus can be described by a simple binding model (Figure S6A). In class 2 responses, 

adaptation to continued stimulation can result from either negative feedback (NFB) or 

incoherent feedforward loop (IFFL) mechanisms (Hoeller et al., 2014; Ma et al., 2009). 

In both NFB and IFFL models, larger stimuli trigger responses with greater amplitude, 

but in IFFL, the rate of decay is faster in multiple simulation settings, leading to shorter 

overall responses (Iglesias and Shi, 2014; Tu and Rappel, 2018). Because class 2 responses 

did not show a stimulus-dependent change in the decay rate of adaptation (Figure 6D), 

we chose the NFB model in our simulation (Figure S6B), although an IFFL mechanism 

cannot be completely ruled out. Finally, for class 3 responses, the all-or-none features 

are characteristic of excitable networks, which generally involve a positive feedback, or 

autocatalytic loop, that drives a full response once a threshold is crossed, as well as a 

delayed negative feedback loop that shuts off the response (Xiong et al., 2010) (Figure S6C). 

We carried out computational simulations of mathematical models representing different 

network topologies. With appropriate selection of model parameters, we were able to 

recapitulate the experimentally observed dose response kinetics.
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Delineating cell autonomous and non-autonomous interactions of signaling networks

The ability to barcode different cell populations in a mixture allows for the discrimination 

between cell autonomous and non-autonomous interactions. As a demonstration, we 

investigated the effects of mutant KRAS, one of the most frequent drivers of cancer. Taking 

advantage of the membrane localization of KRAS by farnesylation, we used BFP-fused 

KRAS as a barcoding protein. Expression of BFP-fused wild-type KRAS had no effect on 

the activity of the RAS effector ERK, whereas expression of BFP-fused oncogenic (G12V) 

and dominant-negative (S17N) mutants of KRAS led to persistently elevated and suppressed 

ERK activities, respectively, suggesting that BFP fusion did not affect the function of KRAS 

and its mutants (Figure S7A).

We used biosensor barcoding to examine the responses of HeLa cells expressing 

KRAS(G12V). Compared to the stereotypical EGF responses of control cells, 

KRAS(G12V)-expressing cells had smaller responses that were often followed by a 

second peak (Figure 7A) and showed significant variability between experiments (Figure 

S7B). Next, we mixed barcoded control and KRAS(G12V) cells before stimulation with 

EGF. Interestingly, the control cells in the mixture displayed smaller, biphasic responses 

(Figure 7B, top) with increased experimental variability (Figure S7C), suggesting cell non-

autonomous effects mediated by KRAS(G12V) cells. The responses of KRAS(G12V) cells 

were similar regardless of the presence or absence of control cells (Figure 7B, bottom). 

We surmised that KRAS(G12V) may exert their effect through metalloproteinases of the 

MMP or ADAM families, which have been shown to release EGFR ligands that mediate 

the propagation of ERK activation across cell populations (Aoki et al., 2013). To test 

this hypothesis, we pretreated the control-KRAS(G12V) mixture with the MMP/ADAM 

inhibitor (MMPi) TAPI-1 before stimulation. Indeed, the effects of KRAS(G12V) cells 

on the control cells were largely eliminated (Figure 7C). Because cells in the same mix 

are synchronized (Figure 5), we reasoned that the “raw activity” of mixed control and 

KRAS(G12V) cells can be directly compared using non-normalized FP fluorescence (Figure 

7D). As expected, EKAR showed a high basal activity that was not further activated by EGF 

in KRAS(G12V) cells, apparently due to direct activation by the constitutively active KRAS 

mutant. Interestingly, the activities were altered in several other biosensors in KRAS(G12V) 

cells. We verified the effects of KRAS(G12V) on FAK and ERK by immunoblotting (Figure 

S7D). Together, these results reveal the distinct effects of KRAS(G12V) on different nodes 

in the RTK signaling network through both cell-intrinsic and paracrine mechanisms.

We interrogated the interactions within the RTK signaling network by tracking the biosensor 

responses to a panel of inhibitors targeting different nodes (Figure 7E; Table S5). To 

quantify the effects of each inhibitor, we integrated the changes in biosensor activity over 

time, and compared the effects to those of the vehicle control. In addition to the expected 

targets, several inhibitors altered the activities of other nodes in the network (Figure 7F). 

Inhibitory and activating effects of the inhibitors on each node suggest positive and negative 

interactions, respectively (Figure 7G). It should be noted that some of these interactions may 

be indirect or may result from off-target effects of the inhibitors, and are likely cell-type 

specific. Nevertheless, the results highlight the complex regulatory relationships between 

nodes in the RTK signaling network and represent a powerful strategy to discover unknown 
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interactions within signaling networks in cells of interest. Together, our results demonstrated 

the power of biosensor barcoding in delineating both cell autonomous and non-autonomous 

interactions within signaling networks.

DISCUSSION

There has been an increasing need to track multiple biosensors simultaneously for various 

applications. In one study, three different cell populations expressing biosensors targeted 

to distinct subcellular locations were co-cultured for simultaneous imaging (Fujita et al., 

2014). In this strategy, the multiplicity is limited to the number of sites that can be robustly 

distinguished in microscopic images. To our knowledge, the only generalizable approach 

for multiplexing biosensor imaging is the recently reported “signaling reporter islands” 

method, in which different biosensors are clustered at different spots in cells to allow for 

spatial separation of their signals (Linghu et al., 2020). However, the method is technically 

demanding, requiring laborious post-imaging sample processing and analysis to identify the 

biosensor in each cluster, and is incompatible with translocation based biosensors. The need 

to engineer and test individual scaffolds used for clustering also makes this method not 

easily scalable. More generally, one concern about expressing multiple biosensors in the 

same cells is the possible interaction or interference between the biosensors. Our biosensor 

barcoding method overcomes these problems by providing a simple way to simultaneously 

track large numbers of existing fluorescent biosensors, whether they are based on FRET, 

intensity, or translocation, as long as their emission falls within the CFP to YFP (450 nm to 

550 nm) spectral range.

High-throughput imaging can also be used to track large numbers of biosensors in parallel 

(Chapnick et al., 2019; Kuchenov et al., 2016). However, we demonstrated substantial 

variation in biosensor activities obtained from physically segregated cell populations. 

Importantly, we found that mixing cells expressing different biosensors synchronized their 

responses to perturbations, as demonstrated by the coordinated activities within the same 

imaging experiment but not between experimental replicates. The cause of variation between 

experiments is unclear in most cases but likely involves a combination of subtle differences 

in physical, chemical, and biological factors such as temperature, cell density, nutrient 

levels, or metabolic states of cells. In addition to the synchronization of biosensor activities, 

the ability of our method to identify distinct cell populations in a mixture is hard to achieve 

using other approaches, and will find broad applications in studying cell-cell interactions.

Using biosensor barcoding, we found distinct kinetic properties of multiple downstream 

pathways in the RTK signaling network. In particular, the all-or-none responses of PH-AKT 

and EKAR to increasing EGF stimuli add to a growing list of evidence for excitability 

of the Ras-PI3K-ERK signaling network, including wave-like propagation of activities, 

refractoriness to repeated stimuli, and characteristic spatiotemporal responses to disruptions 

in wave patterns (De Simone et al., 2021; Fukushima et al., 2019; van Haastert et al., 2017; 

Hiratsuka et al., 2015; Yang et al., 2016, 2018; Zhan et al., 2020). Calcium waves have 

also been reported to display features of excitable systems in various tissues (Gelens et al., 

2014). Interestingly, we found that calcium responses were also all-or-none but with a higher 

threshold compared to PI3K and ERK responses, suggesting that calcium signaling belongs 
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to a different excitable network. Moreover, although extensive crosstalk exists between 

Ras-PI3K-ERK signaling and other downstream effectors of RTKs, the responses of FAK, 

Src, Syk, and Rho GTPase were not excitable but showed dose-dependent adaptation that 

likely involves negative feedback mechanisms. The molecular basis of the features displayed 

by different classes of effectors will be key to understanding the structure and function of the 

RTK signaling network, which is the target of many clinically approved therapeutics.

Given the ever-growing list of fluorescent biosensors, with a recent review listing over a 

thousand designs for ~170 cellular targets including enzymes, voltage, ions, and metabolites 

(Greenwald et al., 2018), we envision our method to find a wide range of applications, such 

as reconstructing complex molecular networks, delineating the signaling interaction between 

different cell types, and identifying molecular pathways targeted by pharmacological agents, 

some examples of which are shown in Figure 7. In addition, biosensor barcoding can 

facilitate the development of new biosensors through side-by-side comparison of the 

sensitivity and dynamic range of multiple biosensor designs. Newly developed biosensors 

will then further expand the biosensor barcoding technique. Although we only demonstrated 

the use of barcoding for CFP-YFP FRET- and GFP-based biosensors, our technique can 

be readily adapted to other types of fluorescent or bioluminescent biosensors with similar 

emission spectra.

Limitations of study

The rich kinetic data from simultaneous recording of signaling activities will inform the 

formulation of more comprehensive network models, which hold promise for predicting the 

responses to genetic or pharmacological perturbations with greater accuracy. In this study, 

we used simultaneous tracking of biosensors to construct mathematical models that captured 

salient features of the RTK signaling responses to different concentrations of EGF. For 

each downstream effector, a model of the receptor-effector pair was created and fitted using 

synchronized data from both, but different effectors were modeled separately. Similarly, an 

interaction map was built from the integrated response of biosensors to inhibitors, but a 

quantitative model describing the temporal changes of all measured responses has yet to be 

achieved. To take full advantage of the synchronized recording, it is theoretically possible 

to encompass all effectors in a comprehensive model that is constrained by the kinetic data. 

One hurdle is that as the number of interactions increases, the complexity of the model 

rises greatly and finding unique parameter values and model structures becomes difficult. 

Moreover, the models assume a linear correspondence between the biosensor signal and 

its target activity, which may not have been fully validated across the measured range of 

some biosensors. Nevertheless, we envision that the vast amount of data obtained from 

parallel recording of large numbers of biosensors upon various perturbations will motivate 

further development of computational tools for quantitative modeling of complex biological 

networks.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact Chuan-Hsiang Huang 

(chaung29@jhmi.edu).

Materials availability—Plasmids generated in this study will be deposited to Addgene 

(https://www.addgene.org).

Data and code availability—All data supporting the findings of the current study are 

available within the article and its Supplemental Information files or from the corresponding 

authors upon reasonable request. The codes used in the study are provided as a ZIP file 

(Data S1).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

HeLa, HEK293T, MCF7, and U2OS cells, purchased from ATCC, were grown at 37°C and 

5% CO2 in DMEM high glucose medium (GIBCO, #11965092) supplemented with 10% 

FBS (Corning Cellgro, 35–010-CV), 1 mM sodium pyruvate (GIBCO, #11360070), and 

1X nonessential amino acids (GIBCO, #11140076). Transient transfections were performed 

using GenJet In Vitro DNA Transfection Reagent ver. II (SignaGen, #SL100499), GenJet 

In Vitro DNA Transfection Reagent for MCF7 cells (SignaGen, #SL100489-MCF7), or 

GenJet In Vitro DNA Transfection Reagent for U2OS cells (SignaGen, #SL100489-OS) 

following the manufacturer’s instructions. For biosensor barcoding, 2×105 cells were seeded 

in 12-well plates and allowed to attach overnight. Cells in each well were transfected with 

a pair of barcoding proteins and one biosensor, using a total of 0.75 μg plasmid per well. 

The next day, cells were harvested from each well with Accutase (Corning, 25–058-CI) 

and mixed together. The resulting cell mixture was then seeded into 35 mm glass-bottom 

dishes (Mattek, P35GC-0–14-C) at 7×105 cells per dish and incubated at 37°C and 5% 

CO2 overnight. The cells were starved in serum-free, phenol red-free DMEM (GIBCO, 

#21063029) for 1 h before imaging experiments.

METHOD DETAILS

Plasmids

Biosensors: Plasmids for biosensors were purchased from Addgene (see Table S1). 

ERKKTR, p38KTR and JNKKTR genes were further cloned into pEGFP-N1 (CloneTech) 

via XhoI/SaII and BamHI restriction sites using the following primers:

5′-CAAgtcgacATGAAGGGCCGAAAGCCTC-3′ and 5′-

CAAggatccccGGATGGGAATTGAAAGCTGGACT-3′ for ERKKTR, 

5′-CAA;ctcgagATGCGTAAGCCAGATCTCCG-3′ and 5′-

CAAggatccccGCTGGACTGGAGGGTCAG-3′ for p38KTR; 

5′-CAActcgagATGAGTAACCCTAAGATCCTAAAACAGAG-3′ and 5′-

CAAggatccccGCTGGACTGGAGGGTCAG-3′ for JNKKTR.
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Barcoding proteins: The original set of barcoding proteins were derived from five 

fluorescent proteins (designated A: TagRFP, B: mCardinal, C: iRFP702, D: BFP, and 

E: mCherry) linked to targeting sequences of four subcellular locations (designated 1: 

nucleus, 2: plasma membrane, 3: nuclear membrane, and 4: cytoplasm). Thus, a total of 

16 barcoding proteins were generated, each represented by a letter-number combination 

(e.g., B1 indicates mCardinal targeted to the nucleus). To construct barcoding proteins, 

the following fragments were joined together by overlapping PCR: 1) fluorescent protein 

sequence; 2) spacer (TCTGGCAGCGGAGGCTCTGGAGGC); and 3) targeting sequence. 

The following plasmids were used as templates for the fluorescent proteins: H2B-TagRFP 

(Addgene #99271, a gift from Philipp Keller), mCardinal-H2B-C-10 (Addgene #56162) 

(Chu et al., 2014), piRFP702-N1 (Addgene #45456) (Shcherbakova and Verkhusha, 2013), 

EBFP2-Nucleus-7 (Addgene #55249, a gift from Michael Davidson), and pmCherry-NLS 

(Addgene #39319) (Micutkova et al., 2012). The targeting sequences for the nucleus, 

plasma membrane, nuclear membrane, and cytoplasm were derived from the NLS of 

SV40, CAAX of K-Ras, lamin B1, and the NES of MAPKK, respectively. The sequence 

ATGGGATGTATAAAATC AAAAGGGAAAGACAGC, derived from the Lyn kinase, 

was used as an alternative plasma membrane targeting motif in some cells. Additional 

fluorophores used for further expanding the barcoding proteins are shown in Table S4.

Chemical reagents—Stocks of 200 μM phorbol-12,13-dibutyrate (PDBu, EMD 

Millipore, #524390), 1 mg/mL anisomycin (Sigma-Aldrich, A9789), 10 mM UK14304 

(Sigma-Aldrich, U104), 10 mM yohimbine (Sigma-Aldrich, Y3125), 1 mM gefitinib 

(Cayman, #13166), 1 mM ionomycin (Peprotech, #5608212), 2 mM jasplakinolide 

(Cayman, #11705), 25 mM latrunculin B (Enzo Life Sciences, BML-T110–0001), 10 mM 

PF562271 (AdipoGen, SYN-1064), 10 mM ZSTK474 (Cell Signaling, #13213), 10 mM 

dasatinib (Cayman, #11498), 10 mM GDC-0994 (APExBIO Technology, B5817), 1 mM 

LY2584702 (Selleck, S7698), 10 mM BAPTA-AM (Selleck, S7534) were prepared by 

dissolving the chemicals in DMSO; 10 mM Y27632 (Enzo Life Sciences, #ALX-270–333) 

in water. Stocks were diluted to the indicated final concentrations in the culture medium. 

The EGF stock solution was prepared by dissolving EGF (Sigma-Aldrich, E9644) in 10 

mM acetic acid to a final concentration of 1 mg/ml. All drug stocks were stored at −20°C. 

2-Deoxyglucose (2-DG, MilliporeSigma, #D8375) was dissolved in culture medium to 100 

mM and used immediately.

Lentivirus production and transduction—Lentiviral plasmids were constructed using 

the Gateway Recombination Cloning Technology (Figure S3). Entry vectors were generated 

by integrating targeting sequence into pDONR221 (Invitrogen, #12536017) with Gateway 

BP Clonase ll Enzyme Mix (Invitrogen, #11789100). To generate fluorescent protein 

sequence-inserted destination vectors, the upstream sequence of the attR1 sequence of 

pLex307 (Addgene, #41392) was first modified from 5′-GCTAGCATCGATTGATCA-3′ 
to 5′-GCTAGCTTAATTAAGGGCATATGATCGATGGATCA-3′ to insert PacI and NheI 

restriction enzyme sites and to remove an in-frame stop codon in the BclI restriction enzyme 

site. The fluorescent protein sequence was subsequently cloned into the vector via PacI 

and NheI sites. The final expression vectors were generated by transferring the targeting 
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sequence from the entry vector to the destination vector with Gateway LR Clonase ll 

Enzyme Mix (Invitrogen, #11791100).

For lentivirus production, 4×106 HEK293T were seeded in a 10-cm dish with DMEM 

supplemented with 10% FBS and allowed to attach overnight. Cells were transfected with 

1.25 μg of pMD2.G (Addgene, #12259), 3.75 μg of psPAX2 (Addgene, #12260), and 5 

μg of lentiviral plasmids using GenJet In Vitro DNA Transfection Reagent ver. II, and 

the cell culture medium was replaced with fresh medium 5 h after transfection. Lentiviral 

supernatants were harvested 24 h after transfection and filtered through a 0.45 μm PVDF 

filter (Millipore, #SLHVM33RS).

For lentiviral transduction of U87MG, SiHa, and A6L, cells were seeded into an 8-well 

chamber (2.5×104 cells) with DMEM supplemented with 10% FBS and allowed to attach 

overnight. Cells were transduced with lentivirus in medium containing 8 μg/ml polybrene 

(Millipore, #TR-1003-G). Cells were incubated at 37°C and 5% CO2 for 48 h before 

imaging.

Microscopy—Imaging experiments were carried out on a Zeiss LSM 780 or 880 

single-point laser-scanning microscope (Zeiss AxioObserver with 780 or 880-Quasar 

confocal module; 34-channel spectral, high-sensitivity gallium arsenide phosphide (GaAsP) 

detectors) with a motorized stage for capturing multiple viewfields controlled by Zen 

software as previously described (Huang et al., 2013). Live-cell imaging was carried out 

in a temperature/humidity/CO2-regulated chamber. To image barcodes, spectral images for 

red-far red barcoding proteins were acquired between 560 and 695 nm at 8.9 nm windows 

using Lambda Mode under 561 nm and 633 nm illumination. Reference spectra for TagRFP, 

mCherry, mCardinal, and iRFP702 were acquired by imaging HeLa cells expressing H2B-

TagRFP under 561 nm excitation, H2B-mCherry and H2B-mCardinal under both 561 and 

633 nm excitation, and H2B-iRFP702 under 633 nm excitation. Since the BFP emission 

spectrum is well separated from those of the red-far red fluorophores (Figure 1A), no 

unmixing is required for BFP images, which were therefore acquired in the channel mode. 

To avoid bleedthrough from CFP and YFP used in FRET-based biosensors, we collected 

BFP emission in the 370–430 nm range under 405 nm excitation. To image biosensors, 

CFP (458–499 nm) and YFP (508–543 nm) emissions under 458 nm illumination were 

obtained. This setting, while optimized for detecting CFP-YFP FRET biosensors, also 

captures GFP-based biosensors due to the overlapping spectra of GFP and YFP. Using 

a single imaging setting for both types of biosensors is convenient, and it reduces cell 

exposure to illumination, therefore minimizing phototoxicity. Time-lapse images of the 

biosensors were taken at a rate of one frame every three minutes unless specified. Cells 

in 2 mL DMEM (GIBCO #21063029) were stimulated by adding signaling activators or 

inhibitors (200 μL for 2DG and 20 μL for all other reagents) at the indicated time points.

Image analysis

Analysis of barcodes by linear unmixing of spectral images: Using the linear unmixing 

function in ZEN Software, spectral images of cells expressing pairs of barcoding proteins 

acquired under 561 nm illumination were unmixed using TagRFP and mCardinal reference 
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spectra, whereas spectral images acquired under 633 μm illumination were unmixed with 

mCardinal and iRFP702 spectra. The unmixed images for TagRFP, mCardinal, and iRFP702 

as well as images of BFP were then combined using NIH ImageJ and Fiji (Schindelin et al., 

2012; Schneider et al., 2012) and visually inspected for the expression and localization of 

each fluorophore. In the majority of cases (> 90%) the two expressed barcoding proteins 

could be unambiguously identified (Figure S1). Cells with ambiguous barcodes were 

excluded from the analysis of biosensors. For simplicity, barcodes were represented by 

four numbers that denoted the expression and location of TagRFP, mCardinal, iRFP702, 

and BFP (0: no expression; 1: nucleus; 2: plasma membrane, 3; nuclear membrane, and 4: 

cytoplasm; see Figure 1C). For the second barcoding scheme in which one of the three red 

FPs (mCherry, mCardinal, or iRFP702) was combined with BFP (Figure 3), spectral images 

acquired under 633 nm excitation were unmixed using the reference spectra of mCherry, 

mCardinal, and iRFP702 followed by processing in NIH ImageJ and Fiji as described above.

Analysis of biosensors in mixed populations of barcoded cells: Images of biosensors were 

processed and analyzed with NIH ImageJ and Fiji (Schindelin et al., 2012; Schneider et al., 

2012). The barcode of each cell, determined as described above, allows for identification of 

the biosensor expressed by the cell. To measure the activities of FRET-based biosensors, the 

mean intensity of YFP over the entire cell was divided by that of CFP for each frame. For 

ERKKTR, p38KTR and JNKKTR, the mean intensity of YFP in the nucleus was divided 

by that of a cytoplasmic region. For PH-AKT, the mean intensity of YFP in an intracellular 

region was measured. For GCaMP6S and GCaMP6S-PM, the mean intensity of YFP over 

the entire cell was measured. The activities for every frame were then normalized to the 

average of those from the prestimulus frames. Normalized activities from cells with the 

same barcode were then pooled together to calculate the mean and standard deviation (SD) 

for the corresponding biosensor.

Barcode image classification by deep learning models

Image datasets: To create training and testing sets for deep learning models, we manually 

segmented processed barcode images (see Image Analysis above) comprising four channels 

(BFP, mCherry, mCardinal, and iRFP702), two of which contained “real” signals of an FP 

targeted to one of four distinct subcellular locations (the nucleus, plasma membrane, nuclear 

membrane, or cytosol), in ImageJ (Schindelin et al., 2012). Low quality or ambiguous 

images were discarded. Images from channels that did not correspond to a barcoding protein 

were included in the “none” class, thus generating a total of five image classes. Since 

mCherry, mCardinal, and iRFP702 images were obtained by linear unmixing of spectral 

images (see above), they sometimes contained noise and bleedthrough signals from other 

channels. We therefore performed a “mutual exclusion” correction, whereby we compared 

the mCherry, mCardinal, and iRFP702 images pixelwise and set the pixels from the two 

lower intensity channels to 0. This is because after unmixing, the channel with the real 

signal generally had the highest intensity. We used a script created in Python (Python 

Software Foundation. Python Language Reference, version 3.7, https://www.python.org) to 

carry out “mutual exclusion” correction followed by rescaling the pixel values to be between 

0 and 1 and resizing to 150 pixels by 150 pixels. The final dataset contained 8,946 images 

(2,000 nucleus, 1,304 plasma membrane, 819 nuclear membrane, 1,724 cytosol, and 3,099 
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none), which were split into training (6,516 images), validation (1,630 images), and test sets 

(800 images).

Deep Convolutional Neural Network: We trained three deep convolutional neural network 

models using Keras (Chollet, 2018) with the TensorFlow (Abadi et al., 2015) backend: one 

model to classify BFP images and two models to classify red FP images with a known 

BFP reference marker. The model for BFP image classification had six layers, including 

four convolutional layers and two fully connected layers. We used 32, 64, 128, and 128 

for the number of units in the convolutional layers and 512 and 3 in the fully connected 

layers. The two networks for red FP image classification had seven layers, including four 

convolutional layers and three fully connected layers. We used 32, 64, 128, and 128 for 

the number of units in the convolutional layers and 512, 128 and 5 in the fully connected 

layers. We used 3 × 3 convolutional filters for every convolutional layer and 2 × 2 max 

pooling with step size 2 after every convolutional layer. For the activation function, we used 

rectified linear units for every layer except for the last layer, in which we used Softmax for 

the 3-class and 5-class classifiers. We included a Dropout (with a rate of 0.5) between the 

last convolutional layer and fully connected layer to prevent overfitting (Srivastava et al., 

2014). We used the RMSprop (Hinton et al., 2012) or Adam (Kingma and Ba, 2014) (initial 

learning_rate = 0.001, beta_1 = 0.9, beta_2 = 0.999) optimizer with a batch of 32 training 

images to minimize the cross-entropy loss. The weights were initialized with the default 

Glorot initializer provided by Keras (Glorot and Bengio, 2010). The maximum output of the 

softmax function was used for thresholding during the barcode identification analysis.

We used the preprocessed images as described above to train the BFP models. For the 

two red FP classification models, images from the red FP channels were combined with 

either nuclear or plasma membrane BFP images to form a two-channel image resized to 150 

pixels × 150 pixels. Before inputting the images into the neural network, we augmented 

the training images (using ImageGenerator) by randomly shifting, shearing, horizontal/

vertical flipping, or rotating the images. The models were trained for ~100 epochs, selected 

according to validation loss, and subsequently tested on the test data.

Fitting responses to kinetic models—Suppose that y(i,j)(tk) denotes the normalized 

biosensor level for biosensor i, cell j at time tk. These time-dependent traces were fit to a 

model:

y t =
a1, x < t0

a1 − a2 1 − e−a3 t − t0 e−a4 t − t0 , x ≥ t0

in two different ways. In the first, one set of parameters a1, …, a4 and t0 was selected to 

minimize the sum of all the (squared) differences between the y tk  and all the traces; i.e.

min
a1, …, a4, t0

∑
j

∑
k

y(i, j) tk − y tk
2
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This was done for ten individual experiments. Furthermore, for each specific cell-biosensor 

pair, a set of coefficients was obtained that minimized

min
a1, …, a4, t0

∑
k

y(i, j) tk − y tk
2

Minimization was carried out using nonlinear least-squares optimization in MATLAB 

(MathWorks, Natick, MA) using the “fit” command of the Curve Fitting Toolbox (version 

2020b). Sample values are given in Figure S4.

Simulation of RTK network responses to EGF stimulation—The experimental 

mean data from Figure 6D were fitted to one of three models, according to the respective 

classes. The first, a receptor/ligand binding model described by R + L ⇋ C is given by the 

differential equation

dC
dt = − k1C + k2L

k3 + L , t ≥ t0 (1)

The four parameters, k1, k2, k3 and t0, were obtained by fitting the experimental data 

to the simulation using a custom-based script in MATLAB that relies on fminsearch for 

the nonlinear optimization and ode45 to solve for the differential equation. Here, L is 

the stimulus strength (0.1, 1, 10 and 100 ng/ml) and is the normalized activity of the 

biosensor (minus one, so that the prestimulus level is zero). This model was used to fit the 

experimental data for PicchuEV.

The second model represents the combined activity of a receptor model (as in Equation 1) 

and a negative feedback loop as follows:

dC
dt = − k1C +

k2L
k3 + L , t ≥ t0

dX
dt = −

k8XY
k9 + X +

k6C k4 − X
k7 + k4 − X

dY
dt = −

k12Y
k13 + Y +

k10X k5 − Y
k11 + k5 − Y

In this model, the two species, X and Y, exist in two states, and the transitions between the 

two states is mediated by Michaelis-Menten kinetics. The various parameters, k1, …, k13 

and t0, were obtained as in the first model, fitting the level of X to the biosensor data. This 

model was used to describe Syk, Lyn-FAK, RhoA2G, SRC, EVROCK and EV-S6K.

The third model represents the combined activity of a receptor model (as in Equation 1) and 

an activator-inhibitor excitable network (Xiong et al., 2010):

dC
dt = − k1C +

k2L
k3 + L , t ≥ t0

dU
dt = − k4 + k5V U +

k6U2

k7
2 + U2 + k4C dV

dt = − k9V + k10U
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The various parameters, k1, …, k10 and t0, were obtained as in the previous model, fitting 

the level of U to the biosensor data. This model was used to fit the data for GCaMP6S, 

EKAR and PH-AKT.

The various parameter values are given in the following table. Note that, except for t0, which 

is given in minutes, all other parameters are non-dimensional.

Biosensor t 0 k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k 10 k 11 k 12 k 13

PicchuEV 8.338 0.368 0.134 2.251

GCaMP6S 4.916 0.484 0.114 6.043 0.461 2.306 2.167 0.8560 1.3493 0.0960 0.1251

EKAR 7.582 0.741 0.178 0.361 1.503 1.035 0.130 0.0341 0.0799 2.24 × 
10−5 0.2741

PH-AKT 3.497 0.973 0.108 0.335 0.691 0.456 0.40 0.1314 0.2136 1.25 × 
10−12 0.6303

EV-ROCK 5.609 2.007 0.190 3.550 0.110 1.566 0.628 0.070 0.040 1.42 × 
10−4 1.440

1.83 
× 
10−9

0.071 0.079

EV-S6K 7.701 0.165 0.137 1.939 0.675 0.210 0.046 0.592 0.877 0.367 0.387 0.204 0.109 1.370

Lyn-FAK 5.967 4.817 0.647 18.29 0.241 0.054 6.171 2.300 1.891 1.06 × 
10−6 4.235 7.158

7.946 
× 
10−3

0.159

RhoA2G 5.362 0.476 0.196 3.961 0.221 0.488 1.203 1.657 0.487 0.547 0.978
8.44 
× 
10−4

0.067 0.044

SRC 5.403 0.652 0.175 3.279 0.582 0.450 1.208 0.697 0.405 3.38 × 
10−7 0.260

7.01 
× 
10−4

0.064 0.135

Syk 6.565 0.826 0.112 1.964 0.854 0.070 1.083 0.500 1.170 2.49 × 
10−5 0.271

5.20 
× 
10−4

0.045 0.074

Hill equation fitting—To perform fitting of the Hill equation, we took the peak values of 

the responses of each biosensor at four different concentrations (0.1, 1, 10, 100 ng/ml) of 

EGF stimulation, scaled it to the maximum response, and fitted it to

y = 1/ 1 + (K /x)n

where K is the concentration of half responses, x is the measurement, and n is the 

Hill coefficient. The fitting is performed with the curve_fit tool in the Python library 

“scipy.optimize” with nonlinear least-squares regression.

QUANTIFICATION AND STATISTICAL ANALYSIS

Python and Microsoft Excel were used for statistical analysis and generating graphs. 

Specifically, Python Seaborn package was used for plotting Figures 5E and 5G and Python 

matplotlib.pyplot package for Figures 6C–6E. For imaging experiments involving mixed 

barcoded cells, at least three independent experiments were carried out on different days, 

and statistics were derived by aggregating the number of samples noted in each figure 

legend across independent experiments. Mean ± SD was reported as indicated in the figure 
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legends. Statistical significance and p-values for comparing the responses of single and 

mixed cell populations (Table S2) were determined using two-tailed unpaired Welch’s t test 

for comparison between the two groups.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Large numbers of fluorescent biosensors can be concurrently tracked in 

barcoded cells

• Biosensor activities are synchronized in mixed populations of barcoded cells

• Deep learning models facilitate image analysis for biosensor barcoding

• Simultaneous biosensor tracking reveals signaling network structures and 

interactions
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Figure 1. Schematic of biosensor barcoding
(A) Excitation (Ex) and emission (Em) spectra of barcoding proteins (EBFP2, TagRFP, 

mCardinal, and iRFP702) and biosensors. Excitation laser lines (405/561/633 nm for 

barcodes; 458 nm for biosensors) and the corresponding ranges of emission detection are 

indicated by black lines and blue boxes, respectively. The profiles of different FPs were 

generated using the FPbase Spectra Viewer (Lambert, 2019).

(B) Targeting sites for barcoding proteins.

(C) A pair of barcoding proteins (different colors, different targeting sites) are co-expressed 

with a fluorescent biosensor in the cell. Barcode digits from left to right represent: TagRFP, 
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mCardinal, iRFP702, and BFP targeted to nucleus (1), plasma membrane (2), nuclear 

membrane (3), cytosol (4), or non-expressed (0). For example, 1200 denotes TagRFP at 

location 1 (nucleus), mCardinal at location 2 (plasma membrane), and no iRFP702 or BFP.

(D) Cells are mixed and imaged for barcodes using spectral detectors and for biosensors 

using CFP/YFP channels. The identity of the biosensor can be inferred by linear unmixing 

of the barcode spectral images.

(E) Activities corresponding to the same barcodes are averaged to obtain the temporal 

profile of each biosensor.

(F) Representative images of HeLa cells expressing different biosensors identified by 

barcodes and changes of biosensor signals over time upon treatment with EGF. Scale bar, 

100 μm.

See also Figure S1 and Video S1.
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Figure 2. Multiplexed real-time tracking of biosensor activities in barcoded cells
(A) Mixed population of barcoded HeLa cells expressing 24 FRET (blue) and non-FRET 

(green) biosensors (Table S1) were stimulated with the indicated activators (2DG, 10 mM 

2-deoxyglucose; ANI, 1 μg/mL anisomycin; EGF, 100 ng/mL EGF; ION, 1 μM ionomycin; 

PDB, 200 nM phorbol-12,13-dibutyrate; and UK, 10 μM UK14304). For each barcode, the 

activities were normalized to pre-stimulus levels across cells of the corresponding barcode 

and adjusted for its dynamic range (Table S2). Black boxes indicate expected responses to 

known activators. Red boxes indicate additional responses.
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(B) Individual cell traces of EKAR and ERKKTR activities normalized to pre-stimulus 

levels. Thick blue lines represent the average activities.

(C) Comparison of activation kinetics of EKAR and ERKKTR obtained from mixed 

barcoded cells. Activities are scaled to the peak responses and represent the mean of 46 

(EKAR) and 22 (EKRKTR) cells.

See also Table S3.
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Figure 3. Barcode reading using deep learning models
(A) Emission spectra of mCherry (mCh), mCardinal (mCar), and iRFP702 (iRFP) used for 

barcode reading by deep learning models. TagRFP (TRFP), used in the original barcoding 

scheme (Figure 1), was replaced by mCherry.

(B) Cells were barcoded by one of the red FPs targeted to four subcellular locations plus 

BFP targeted to the nucleus or the plasma membrane. The BFP image was classified by 

model 1. For the red barcoding proteins, spectral profiles were used to determine which of 

the three unmixed channels corresponded to the correct FP. The unmixed red FP image was 

then combined with BFP image and classified by model 2 or model 3 depending on whether 

BFP signal was in the nucleus or membrane. The output was filtered by a certainty threshold 

and checked for the existence of the barcode.

(C) The confusion matrix and identification rate (%) for all barcodes identified by model 2 

(top) and model 3 (bottom) under indicated certainty thresholds. In general, higher certainty 

thresholds lead to increased accuracy but decreased identification rate. The four numbers 

in the barcode denote mCherry, mCardinal, iRFP702, and BFP localized to the nucleus (1), 

plasma membrane (2), nuclear membrane (3), cytosol (4), or non-expressed (0), respectively.
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Figure 4. Expanding the barcoding toolkit
(A and B) 293T and MCF7 cells transfected with BFP targeted to the nucleus (D1) or 

plasma membrane (D2) along with mCherry targeted to one of the four subcellular locations 

(E1, nucleus; E2, plasma membrane; E3, nuclear membrane; and E4, cytosol). Scale bars, 10 

μm.

(C) Confusion matrix (%) of 293T cells barcoded with nuclear or cytoplasmic BFP plus 

mCherry targeted to one of the four subcellular locations using the deep learning models 

trained on HeLa cells.
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(D) Confusion matrix (%) of barcoded MCF7 cells using the deep learning models trained 

on HeLa cells (original models, left) and new models trained on MCF7 cell images (right). 

See also Figure S2 for U2OS cells.

(E) Emission profiles of red FPs acquired on a Zeiss LSM 780 microscope equipped with 

a GaAsP detector. For each fluorophore, the curve represents the mean of 100 HeLa cells 

expressing the nucleus-targeted version of the FP, with the full range of variation shown as 

shaded area. See also Table S4.
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Figure 5. Synchrony between biosensors in mixed barcoded cells
(A) Responses of biosensors obtained from mixed barcoded cells stimulated with 10 ng/mL 

EGF, added 2 min after imaging started. Traces of mean responses are shown in different 

colors for ten experimental repeats (E1–E10).

(B) Response initiation time (RIT) for each biosensor based on the traces in (A) (see STAR 

Methods and Figure S4). Error bars, 95% confidence interval.

(C) ΔRIT, defined as individual RIT minus the average RIT across the ten experiments for 

each biosensor. Error bars, 95% confidence interval.
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(D) Biosensor responses from mixed barcoded cells stimulated with 0.5 and 10 ng/mL EGF 

at 4 and 18 min (red arrows), respectively. Traces of mean ± SD from two experiments are 

shown.

(E) Cross-correlation between the responses of different biosensors between the same and 

different experiments from (D).

(F) Biosensor responses from mixed barcoded cells stimulated with 1, 10, and 100 ng/mL 

EGF at 6, 21, and 36 min (red arrows), respectively. Traces of mean ± SD from two 

experiments are shown.

(G) Cross-correlation between the responses of different biosensors between the same and 

different experiments from (F). In (E) and (G), boxes indicate pairs of biosensors detecting 

the same proteins (ERK) or one protein and its immediate effector (Src/FAK or RhoA/

ROCK) from the same (yellow boxes) or different (red boxes) experiments.

See also Data S1.

Yang et al. Page 33

Cell. Author manuscript; available in PMC 2021 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Responses to RTK stimulation
(A) 10 biosensors (in color) and their targets mapped to the RTK signaling network.

(B) Responses scaled to the peak levels of the 10 biosensors to 100 ng/mL EGF stimulation 

at 0 min in mixed barcoded cells from two independent experiments.

(C) Responses of biosensors in barcoded cells to four concentrations of EGF, applied at 6 

min. The vertical axes represent biosensor activity (mean ± SD of cells from 5 independent 

experiments) normalized to the prestimulus levels

(D) Activities in (C) plotted on the same graph. The biosensors were grouped into three 

classes based on their kinetic and dose-response features (see text).

Yang et al. Page 34

Cell. Author manuscript; available in PMC 2021 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(E) Peak responses (mean ± SEM) at different EGF doses, normalized to the peak levels 

induced by 100 ng/mL EGF, fit to a Hill equation (red dashed line, with the Hill coefficient 

shown).

See also Figures S5 and S6.
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Figure 7. Interactions between pathways and cells
(A) Normalized responses (mean ± SD) of control cells alone and KRAS(G12V) cells alone 

to 100 ng/mL EGF stimulation added at 6 min.

(B) Normalized responses (mean ± SD) of control and KRAS(G12V) cells in a 1:1 mix to 

100 ng/mL EGF (yellow). The responses of control and KRAS(G12V) cells when they were 

separately stimulated with 100 ng/mL EGF were plotted for comparison (blue). See also 

Figure S7.

(C) Normalized responses (mean ± SD) of control and KRAS(G12V) cells in a 1:1 mix to 

100 ng/mL EGF with pretreatment of 10 μM TAPI-1 (MMPi, matrix metalloproteinase 
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inhibitor) for 1 h prior to the experiments (yellow). The responses of control and 

KRAS(G12V) cells when they were separately stimulated with 100 ng/mL EGF were plotted 

for comparison (blue).

(D) Comparison of raw activities (mean ± SEM) of control and KRAS(G12V) cells in a 1:1 

mix pretreated with 10 μM TAPI-1 (MMPi) and stimulated with 100 ng/mL EGF. The raw 

activities represent mean ± SEM of YFP/CFP (for PicchuEV, RhoA-2G, EV-ROCK, EKAR, 

and EV-S6K), CFP/YFP (Syk, Src, and Lyn-FAK), cytosolic fluorescence (GCaMP6S), or 

1/cytosolic fluorescence (PH-AKT).

(E) Biosensors (blue) and inhibitors (purple) targeting the RTK signaling network.

(F) Inhibition matrix showing the effect of inhibitors on biosensor activities. The effect of 

an inhibitor on a biosensor was calculated by integrating the activity for all time points 

after the inhibitor was added minus that of DMSO control. Black boxes denote biosensors 

corresponding to the targets of inhibitors. Positive and negative effects are shown in red and 

green, respectively, and the statistical significance is represented by the color scale. See also 

Table S5.

(G) Feedback loops inferred from the inhibition matrix. Positive (green) or negative (red) 

interactions were assigned when an inhibitor caused an inhibition or activation, respectively, 

of another node in the network.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

p44/42 MAP kinase (phosphorylated Erk1/2) antibody Cell Signaling Cat# 9101, RRID:AB_331646

Phospho-FAK (Tyr397) (D20B1) Rabbit mAb antibody Cell Signaling Cat# 8556, RRID:AB_10891442

Rabbit Anti-GAPDH Monoclonal Antibody, Unconjugated, Clone 
14C10

Cell Signaling Cat# 2118, RRID:AB_561053

Chemicals, peptides, and recombinant proteins

Phorbol-12,13-dibutyrate (PDBu) EMD Millipore #524390

Anisomycin Sigma-Aldrich A9789

UK14304 Sigma-Aldrich U104

Yohimbine Sigma-Aldrich Y3125

Gefitinib Cayman #13166

Ionomycin Peprotech #5608212

Jasplakinolide Cayman #11705

Latrunculin B Enzo Life Sciences BML-T110–0001

PF562271 AdipoGen SYN-1064

ZSTK474 Cell Signaling #13213

Dasatinib Cayman #11498

GDC-0994 APExBIO Technology B5817

LY2584702 Selleck S7698

BAPTA-AM Selleck S7534

Y27632 Enzo Life Sciences ALX-270–333

EGF Sigma-Aldrich E9644

2-Deoxyglucose (2-DG) Sigma-Aldrich D8375

Experimental models: Cell lines

Human: A6L L. Wood Lab (JHU) N/A

Human: HEK293T C. Hung Lab (JHU) N/A

Human: HeLa M. Iijima Lab (JHU) N/A

Human: MCF7 C. Hung Lab (JHU) N/A

Human: SiHa C. Hung Lab (JHU) N/A

Human: U2OS ATCC HTB-96

Human: U87MG M. Iijima Lab (JHU) N/A

Oligonucleotides

Primer for ERKKTR (forward): 
CAAgtcgacATGAAGGGCCGAAAGCCTC

This paper N/A

Primer for ERKKTR (reverse): 
CAAggatccccGGATGGGAATTGAAAGCTGGACT

This paper N/A

Primer for p38KTR (forward): 
CAActcgagATGCGTAAGCCAGATCTCCG

This paper N/A

Primer for p38KTR (reverse): 
CAAggatccccGCTGGACTGGAGGGTCAG

This paper N/A

Primer for JNKKTR (forward): 
CAActcgagATGAGTAACCCTAAGATCCTAAAACAGAG

This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Primer for JNKKTR (reverse): 
CAAggatccccGCTGGACTGGAGGGTCAG

This paper N/A

Recombinant DNA

AMPKAR Tsou et al., 2011 Addgene plasmid #35097

AMPKAR-EV Konagaya et al., 2017 Addgene plasmid #105241

cyto-ABKAR Miyamoto et al., 2015 Addgene plasmid #61510

LAMP1-ABKAR Miyamoto et al., 2015 Addgene plasmid #65068

CaNAR2 Mehta et al., 2014 Addgene plasmid #64728

ER-CaNAR2 Mehta et al., 2014 Addgene plasmid #64732

PM-CaNAR2 Mehta et al., 2014 Addgene plasmid #64730

GCaMP6S Chen et al., 2013 Addgene plasmid #40753

GCaMP6S-PM Tsai et al., 2014 Addgene plasmid #52228

EKAR Harvey et al., 2008 Addgene plasmid #18679

Nuc-EKAR Harvey et al., 2008 Addgene plasmid #18681

Lyn-EKAR This paper N/A

ERKKTR Regot et al., 2014 Addgene plasmid #59150

Cyto-FAK Seong et al., 2011 Addgene plasmid #78300

Lyn-FAK Seong et al., 2011 Addgene plasmid #78299

Src Ouyang et al., 2008 Addgene plasmid #78302

Gαi1 van Unen et al., 2016 Addgene plasmid #69623

Gαi2 van Unen et al., 2016 Addgene plasmid #69624

Gαi3 van Unen et al., 2016 Addgene plasmid #69625

JNKAR Fosbrink et al., 2010 Addgene plasmid #61625

JNKKTR Regot et al., 2014 Addgene plasmid #59151

p38KTR Regot et al., 2014 Addgene plasmid #59152

PH-AKT Watton and Downward, 1999 N/A

AKTAR2 Zhou et al., 2015 Addgene plasmid #64932

CKAR Violin et al., 2003 Addgene plasmid #14860

PM-CKAR Violin et al., 2003 Addgene plasmid #14862

RhoA-2G Fritz et al., 2013 Addgene plasmid #40176

Rac1-2G Fritz et al., 2015 Addgene plasmid #66110

Cdc42–2G Martin et al., 2016 Addgene plasmid #68814

LifeAct Riedl et al., 2008 Addgene plasmid #54610

Raichu-HRas Komatsu et al., 2011 N/A

Raichu-KRas Komatsu et al., 2011 N/A

Raichu-Rras Takaya et al., 2007 N/A

BKAR Kunkel et al., 2005 Addgene plasmid #14875

TORCAR Zhou et al., 2015 Addgene plasmid #64927

Prin-BRaf Terai and Matsuda, 2006 N/A

Prin-CRAF Terai and Matsuda, 2005 N/A

EV-RSK Komatsu et al., 2011 N/A

EV-ROCK Li et al., 2017 N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

EV-S6K Komatsu et al., 2011 N/A

EV-EGFR (PicchuEV(CrkII)) Komatsu et al., 2011 N/A

Syk biosensor Xiang et al., 2011 Addgene plasmid #125729

pEGFP-N1 CloneTech N/A

EBFP2-Nucleus-7 gift from Michael Davidson Addgene plasmid #55249

H2B-TagRFP gift from Philipp Keller Addgene plasmid #99271

pmCherry-NLS Micutkova et al., 2012 Addgene #39319

mCardinal-H2B-C-10 Chu et al., 2014 Addgene plasmid #56162

mCardinal-N1 Chu et al., 2014 Addgene #54590

piRFP702-N1 Shcherbakova and Verkhusha, 
2013

Addgene plasmid #45456

piRFP682-N1 Shcherbakova and Verkhusha, 
2013

Addgene plasmid #45459

pNLS-iRFP670 Shcherbakova and Verkhusha, 
2013

Addgene plasmid #45466

mNeptune2-C1 gift from Michael Davidson Addgene plasmid #54836

mNeptune2.5 Chu et al., 2014 Addgene plasmid #51310

mPlum-C1 Kremers et al., 2009 Addgene plasmid #54839

RDSmCherry1 Shen et al., 2017 Addgene plasmid #89987

LSS-mKate2-C1 Piatkevich et al., 2010 Addgene plasmid #31869

mStrawberry-N1 Shaner et al., 2004 Addgene #54644

pDONR221 Invitrogen #12536017

pLex307 gift from David Root Addgene plasmid #41392

pMD2.G gift from Didier Trono Addgene plasmid #12259

psPAX2 gift from Didier Trono Addgene plasmid #12260

Software and algorithms

Zen Microscopy Software Zeiss https://www.zeiss.com/
microscopy/us/products/
microscope-software/zen.html

ImageJ/Fiji Schindelin et al., 2012; 
Schneider et al., 2012

https://imagej.nih.gov/ij/

Python Python Software Foundation https://www.python.org

Keras Chollet, 2018 https://keras.io/

TensorFlow Abadi et al., 2015 https://www.tensorflow.org/

Dropout Srivastava et al., 2014 N/A

RMSprop Hinton et al., 2012 N/A

Adam Kingma and Ba, 2014 N/A

Glorot Initializer Glorot and Bengio, 2010 N/A

MATLAB MathWorks https://www.mathworks.com/
products/matlab.html
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