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Abstract: HIV-1 proviral single-genome sequencing by limiting-dilution polymerase chain reaction
(PCR) amplification is important for differentiating the sequence-intact from defective proviruses that
persist during antiretroviral therapy (ART). Intact proviruses may rebound if ART is interrupted and
are the barrier to an HIV cure. Oxford Nanopore Technologies (ONT) sequencing offers a promising,
cost-effective approach to the sequencing of long amplicons such as near full-length HIV-1 proviruses,
but the high diversity of HIV-1 and the ONT sequencing error render analysis of the generated data
difficult. NanoHIV is a new tool that uses an iterative consensus generation approach to construct
accurate, near full-length HIV-1 proviral single-genome sequences from ONT data. To validate the
approach, single-genome sequences generated using NanoHIV consensus building were compared
to Illumina® consensus building of the same nine single-genome near full-length amplicons and an
average agreement of 99.4% was found between the two sequencing approaches.

Keywords: HIV; nanopore; proviral; consensus; single-genome

1. Introduction

As of 2019, 38 million people are living with HIV [1]. Although the introduction of
early and effective antiretroviral therapy (ART) has led to significant declines in transmis-
sions, morbidity, and mortality, HIV remains incurable in the large majority of individuals.
Moreover, adherence challenges and the development of drug resistance threaten the
long-term success of ART [2,3]. Therefore, investigating potential future HIV cures and
developing and assessing the most durable therapies continue to be a priority for HIV
research. Genomic characterization of HIV is an essential component of this research and
relies on PCR followed by Sanger or next generation sequencing (NGS) [4,5]. Longitudinal
characterization of single HIV genomes at limiting dilution enables one to investigate viral
adaptation under immune and drug pressure and to monitor HIV persistence in long-lived
and proliferating cell populations.

HIV infection in most susceptible cells leads to active replication with viral release and
cell death. However, a small subset of infected cells persist and carry intact proviruses that
are hidden from the immune response and unaffected by ART [6,7], known as the latent
reservoir. The latent reservoir is the major barrier to an HIV cure in well-treated individuals.
To provide an in-depth analysis of the latent reservoir, novel near full-length (NFL) proviral
amplification and single-genome sequencing assays have been developed. These assays
overcome the limitations of sub-genomic sequencing which do not account for large
internal deletions or deleterious mutations outside of the target region [8–12]. NFL proviral
sequencing involves limiting dilution of PCR using primers targeting the outermost gag
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leader and long-terminal repeat (LTR) regions of the viral genome resulting in ~9 kb
fragments that are about 92% of the proviral genome. NGS via Illumina® sequencing is the
most established method and is followed by the assembly of sequence reads to a genetically
intact reference to assess the presence of frameshifts, inversions, premature stop codons or
large internal deletions that could render these proviruses defective [10–13].

A high through-put, efficient and standardized bioinformatic pipeline that assembles
full-length proviral genomes is vital to increasing our understanding of the genomic
composition and dynamics of infected cells that persist during ART. For instance, little
is known about the correlation between immune escape variants amongst integrated,
sequence-intact proviruses and circulating plasma viruses [14]. Generating long-read viral
envelope sequences would also enable the assessment of viral diversity, cellular tropism
and escape from neutralizing antibodies, especially in underrepresented populations with
a high disease burden [15,16]. In addition, long sequence reads that include the variable
loops of the envelope gene would provide sensitive detection of viral evolution and
compartmentalization in central nervous system (CNS) and other tissues [17–19].

New evidence suggests that ART resistance may be conferred by HIV mutations
outside the drug target gene. For example, mutations located in the polypurine tract
(PPT) [20] and in the gp120 and gp41 interface [21] can confer resistance to dolutegravir,
an HIV-1 integrase strand transfer inhibitor (INSTIs). Investigating these mechanisms
in ART-treated cohorts requires long-read sequencing that should be both cost-effective
and scalable.

The ability to generate long-read lengths has largely been facilitated by third-generation
sequencing technologies such as those developed by Pacific Biosciences (PacBio) and Ox-
ford Nanopore Technologies (ONT). These sequencing approaches have overcome various
shortcomings observed in Sanger and Illumina® sequencing. Whereas Sanger sequencing
offers a fast-sequencing method for low numbers of targets, second-generation sequenc-
ing, or NGS, including Illumina®, offers massively parallel, accurate and cost-effective
sequencing. However, the most significant shortcoming of both Sanger and Illumina®

sequencing is the short-read lengths of up to 1000 bp [22]. Despite these methods being
relatively accurate, the generation of short reads make resolving repetitive regions in
genomes difficult [23–25]. Third-generation sequencing offers unique approaches and
chemistries enabling long-read (>10 kb) sequencing of nucleic acid molecules in real-time
and at high resolution. Moreover, these technologies could preserve base modifications
when sequencing native DNA thereby avoiding the bias introduced by primers utilized
in Sanger sequencing. Long read sequencing also improves de novo assemblies of com-
plex genomes including repetitive regions, improves mapping certainty and enables the
detection of structural variants [22–26].

Major technical differences separate PacBio’s single-molecule, real-time (SMRT) se-
quencing technology and ONT’s nanopore sequencing. SMRT sequencing derives the
nucleotide sequence by detecting fluorescence events that correspond to the incorporation
of four fluorescently-labelled nucleotides by a DNA polymerase that is affixed within a
zero-mode waveguide (ZWM) on a SMRT Cell [27,28]. SMRT is often the preferred third-
generation sequencing method due to the reported lower error rate [24,25]. The SMRTbell
library preparation, which involves the ligation of hairpin adaptors to the ends of double-
stranded DNA fragments, allows the circular DNA library template to be re-sequenced
multiple times to increase read accuracy through circular consensus sequencing (CCS).
However, the read length and number of passes of the SMRTbell library are limited by the
processivity of the DNA polymerase enzyme that is utilized in the sequencing reaction and,
therefore, shorter library inserts are preferentially sequenced [24]. In addition, CCS reads
retain errors and exhibit a bias for insertions and deletions in homopolymer regions [25].

In contrast, ONT sequencing measures the changes in ionic current that occur across
an electrically resistant polymer membrane as single-stranded nucleic acids pass through
biological nanopores that are present on a flow cell. The nucleic acid sequence is inferred
as resistance is dependent on which nucleotide bases occupy and surround the pore which
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is measured by an arrayed sensor chip and passed to an Application-Specific Integrated
Circuit (ASIC) [25,29]. ONT sequencing provides the longest read lengths of all sequencing
technologies, with library inserts of 10,000 to 30,000 bp commonly reported and the most
recent record read length being 43 Gb [30]. Despite the long-read length capabilities;
insertions, deletions and substitutions are frequently observed in ONT sequencing data
which is influenced by the biological nanopore present on the flow cell. Resolving low-
complexity stretches and homopolymer sequences is difficult as the current that is measured
is a function of the particular k-mer that resides in the nanopore at the time and, because
translocation of homopolymers does not change the sequence of the nucleotides within the
pore, it results in a constant signal that makes determining homopolymer length difficult.
To overcome this difficulty, ONT has developed novel R10 pores which differ from prior
R9 pores in having a longer barrel and dual reader head which improves read accuracy
over homopolymer regions substantially [31].

Data generated by conventional ONT displays a higher per-base error rate when
compared to sequencing data generated by non-single-molecule sequencing such as
Illumina® [32] or IonTorrent [33,34]. The simplest, most cost-effective but also most error-
prone mode on which to run an ONT sequencing reaction is the “1D” mode, where each
strand of DNA is passed through the pore only once [25]. Raw signal generated by R9 and
R10 pores is converted to a string of bases by the Guppy basecaller (v 2.2.2.1). However,
both pore types display a raw per-base error rate of about 5% in 1D mode [31,35,36].

For well-conserved genomes (or genome regions) high read coverage alone could
overcome most sequencing errors. Sequencing reads are first aligned to the reference
genome using an ONT-specific reference mapping tool such as minimap2 [25]. A consensus
sequence can then be produced by calling the majority base at each position with a tool
such as samtools pileup [36]. This approach corrects random insertions and substitutions,
but cannot entirely remove more systematic errors in ONT data, such as homopolymer
errors [24,25,37].

HIV-1, however, has regions such as the variable loops in the envelope gene (Env)
that are very poorly conserved across subtypes and even within subtypes and within
donors [38,39]. In these regions, it is difficult or impossible to produce a high-quality
alignment of an ONT read to a reference sequence using tools such as minimap2, because
true variation, including insertions and deletions, is indistinguishable from sequencing
errors, especially for homopolymer regions [40]. This problem can potentially be addressed
by a de novo assembly approach using tools such as Canu [41]. De novo assembly does not
require a reference genome and its accuracy is not affected by the intra-variant heterogeneity
of HIV-1. However, this approach is computationally expensive and not guaranteed to
succeed. De novo assembly is not an exact method, and early assumptions in de Bruijn graph
formation caused by sequencing errors can result in the formation of false contigs [42].

These problems, while most significant in ONT data, are also present when sequencing
HIV-1 data using other platforms. The tool SHIVER, designed to be used with data from
the Illumina® [43], solves this problem using a hybrid de novo assembly approach, where
de novo contigs are aligned to create a draft consensus, to which the original sequencing
reads are then aligned to refine the consensus, check its accuracy and remove false contigs.
This approach requires several manual steps and is not ideal for high-throughput use.

Here, we present the new NanoHIV tool, a novel method for generating HIV-1 consen-
sus sequences from ONT data. NanoHIV uses a bootstrap approach to refine a consensus
sequence, including the refinement of variable regions, by first constructing a consensus se-
quence built from only highly conserved regions and then refining it by including variable
regions from long reads as insertions.

2. Data Generation
2.1. Inclusion Criteria & Data Collection

Nine children from the Children with HIV Early Antiretroviral Therapy (CHER)
cohort who initiated ART between ages 1.7 and 11.1 months were selected for investigation
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(Table 1). The participants were selected on the basis of having a total HIV-1 DNA count
above 40 copies/106 PBMC [44,45]. At the time of testing, the participants had been on ART
for 6–9 years. Furthermore, these participants were selected based on the probability of
obtaining intact proviral genomes. Previously, Katusiime et al. identified seven intact NFL
proviral genomes from three of the nine children using Illumina® MiSeq™ sequencing [12].
These seven intact genomes were sequenced in the current study with ONT. In addition,
two HIV genomes known to be defective were included in the analysis. The therapeutic
histories and the respective number of proviral genomes in the participants selected for
ONT sequencing are shown below.

Table 1. Study participant details, treatment histories and identified proviral genome status.

PID
Age ART
Initiated
(Months)

ART Regimen Time on
ART (Years)

No. of Proviral Genomes
Sequenced with ONT

Identified as
Intact

Identified as
Defective

333716 2.3 AZT/3TC/LPV/r 8.55 0 1
339606 8.5 AZT/3TC/LPV/r 7.93 2 1
339266 9.23 AZT/3TC/LPV/r 8.2 4 0
340116 9.32 AZT/3TC/LPV/r 8.83 1 0

Therapy included Zidovudine (AZT), lamivudine (3TC) and lopinavir with low dose ritonavir (LPV/r).

2.2. Near Full-Length Amplicon Generation

The methods described in Katusiime et al. [12] were used to generate amplicons for
Illumina® MiSeq™ and ONT sequencing. In brief, genomic DNA was extracted from
peripheral blood mononuclear cells (PBMCs), diluted to a proviral endpoint and single
HIV genomes were amplified with a nested near full-length (NFL) PCR using Ranger
mix (Bioline, London, UK). The initial amplifications were performed using previously
described primers with minor modifications to allow for HIV-1 subtype C amplification as
shown in Table 2; the pre-nested primer set included Li_OuterF and Li_OuterR; the nested
primer set used Li_InnerF and Li_InnerR [46] to generate amplicons of 8.8 kb. However,
the protocol was later adapted as a hemi-nested PCR approach, where the first round PCR
remained unchanged while the second round PCR was performed using a newly designed
primer, NFL_alt_in_F [12] and Li_OuterR to amplify an important region of HIV that
included the packaging signal (Table 2), as this region was recently shown to be essential
for replication competence [47]. Amplicons resulting from the adapted NFL approach
measuring approximately 9 kb were used for single-genome sequencing.

Table 2. Near full-length single-genome amplification primers.

Pre-Nested Primers

Primer Name
Primer

Direction
Nucleotide Position

in HXB2 (bp)
5′-3′ Sequence

Li_OuterF +,* Forward 623–649 AAATCTCTAGCAGTGGCGCCCGAACAG
Li_OuterR Reverse 9662–9686 TGAGGGATCTCTAGTTACCAGAGTC

Nested Primers

Primer Name
Primer

Direction
Nucleotide Position

in HXB2 (bp)
5′-3′ Sequence

Li_InnerF * Forward 769–793 GCGGAGGCTAGAAGGAGAGAGATGG
Li_InnerR + Reverse 9604–9632 GCACTCAAGGCAAGCTTTATTGAGGCTTA

NFL-alt_in_F # Forward 642–664 CCG AAC AGG GAC BHG AAA GCG AA
+ Salminen et al., 1995, * Li et al., 2010, # Katusiime et al., 2020.
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2.3. MiSeq™ Library Preparation

MiSeq™ library preparation and sequencing were performed at the Institute for
Microbial Biotechnology and Metagenomics (IMBM) at the University of Western Cape.
The Illumina® Nextera DNA library prep kit (Illumina, San Diego, CA, USA) was used
as previously described [12]. In brief, DNA was enzymatically fragmented and adapters
added to the template. The DNA was then purified and amplified by PCR that indexed the
samples by adding different primer pairs to individual samples. The 300 cycle V2 MiSeq™
Reagent kit (Illumina, San Diego, CA, USA) was used to sequence the library.

2.4. Bioinformatic Analysis of MiSeq Data

After sequencing, all reads with the same identifying index were assembled to form a
consensus sequence. The sequences were then subjected to checks for viral intactness using
the HIVIntact intactness pipeline [48]. Sequences were first checked for correct size (8.8 kb).
Next, sequences that appeared to be mixed templates were detected and eliminated from
further analysis. The remaining sequences were then translated to allow further analysis
of the nine viral open reading frames (ORFs). A sequence was determined to be intact if,
within these ORFs, there were no stop codons, frameshift mutations, hypermutations or
deletions that could preclude viral infectivity.

2.5. Oxford Nanopore Technologies GridION Sequencing

Seven intact and two defective HIV-1 proviruses identified through the analysis of
the Illumina® MiSeq™ sequencing data [12] were selected for ONT sequencing. Using
the high-fidelity Ranger Mix enzyme, the pre-nested PCR products corresponding to the
identified intact or defective products were used to generate additional NFL amplicons for
ONT sequencing [12].

2.6. ONT Library Preparation

The newly generated NFL amplicons were purified with AMPure XP paramagnetic
beads (Beckman Coulter, Brea, CA, USA) (AMPure XP beads) using an optimized amplicon
to bead ratio of 1:0.8 to ensure purification of products > 1.5 kb. Two wash steps were
performed using freshly-prepared 80% ethanol and the bound DNA was eluted in 5 mM
Tris-HCl. The purity and concentration of the purified NFL amplicons were measured
using the NanoDrop™ 1000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA).

The Amplicons by Ligation protocol (Oxford Nanopore Technologies, Oxford, UK,
2019) (ACDE_9064 _v109_revN_14Aug2019) provided by ONT was followed with minor
modifications to prepare the DNA library for sequencing. Freshly-prepared 80% ethanol
was used for the purification wash steps and the drying time of the bead pellet prior to
elution was lengthened as needed until a change in appearance from shiny to matte was
observed. Following the ligation of ONT’s sequencing adaptors, ONT’s Long Fragment
Buffer was used for the final wash. The bead pellet was incubated at 37 ◦C for 10 min to
increase DNA recovery of the longer NFL HIV fragments. The concentration and purity
of the prepared DNA library was measured with the Qubit™ 2.0 Fluorometer and the
NanoDrop™ 1000 Spectrophotometer, respectively.

2.7. ONT Sequencing Conditions

FLO-MIN106D flow cells with R9.4.1 pores were primed using the reagents from the
Flow Cell Priming Kit (EXP-FLP002) and following the instructions in ONT’s Amplicons
by Ligation protocol. The final steps in the DNA library preparation were completed
immediately before the prepared library was loaded into the SpotON port of the flow cell
as described in the protocol. A new flow cell was used for each sequencing reaction, and a
total of nine flow cells were used.

The following sequencing parameters were selected for all sequencing runs; DNA
sequencing with SQK-LSK109, fast-basecalling, FAST5 and FASTQ files were selected
as sequence data outputs and MinKNOW Release 19.10.2 or 19.12.2 software was used.
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The duration of the run was left as standard and the run was stopped when the se-
quencing throughput declined and sufficient nanopores were no longer available for
successful sequencing.

3. Pipeline Description

The NanoHIV tool takes a folder of ONT FAST5 pore signal data from a single-
molecule ONT HIV-1 experiment, and the resulting called FASTQ reads, as input. The
FAST5 data are used to call variants and correct homopolymers, while the FASTQ reads
are used for reference mapping.

The pipeline involves three mapping steps using minimap2 (v 2.17) [49] with different
settings for each step (Figure 1). The samtools sorting and indexing functions are then used
to sort the resulting SAM format files [50,51]. After each mapping step, the nanopolish
consensus generation tool (v 0.11.3) is used to correct homopolymer errors and generate
a file in the variant calling format (VCF) [52,53]. Finally, the nanopolish tool vcf2fasta is
used to generate a final consensus sequence. In the first round of consensus generation,
minimap2 is used with default settings. This step results in a consensus sequence where
conserved regions represent the target DNA and non-conserved regions represent the
consensus sequence. In this case, a subtype C consensus (GenBank ID AY772699.1) was
chosen as a starting point, as this subtype is most likely to be detected in South Africa. The
next round of consensus generation involves mapping the ONT reads to the consensus
sequence generated in round 1, except with a gap opening and gap extension penalty
1/10th of the default setting. This round results in the long ONT reads spanning the HIV-1
variable loops (V1, V2, and V3) and other highly variable regions of the genome being
aligned with a deletion of the entire region in the consensus sequence and an insertion of
the entire region in the read. The final round of consensus generation involves taking the
consensus sequence from round two and remapping the original ONT reads a third time.
This final round corrects any additional false insertions or deletions created by round two.
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final mapping with the conventional gap penalty of 4 to remove any artefacts introduced by step 2.



Cells 2021, 10, 2577 7 of 12

4. Results

To validate our NanoHIV pipeline, we compared the HIV-1 consensus sequences
generated from the 7 intact and 2 defective proviral genomes collected from four children
in the CHER cohort using ONT and NanoHIV against consensus sequences generated
from the same samples using an Illumina® sequencer and the SHIVER pipeline. The mean
similarity of mapped Illumina reads to the relevant Illumina consensus sequence was
98.9%, while the mean similarity of mapped ONT reads to the relevant consensus sequence
was 92.1%. These figures are likely to be higher than the true similarity, paricularly for ONT
reads, as they do not include very dissimilar reads rejected by the mapping algorithm.

In general, good agreement was found between the Illumina® and ONT data. ONT
sequences were slightly more similar to each other than Illumina® sequences, both within
and across donors. Pairs of Illumina® sequences from the same donor were on average
99.0% similar, while pairs of ONT sequences from the same donor were on average 99.6%
similar. Pairs of Illumina® sequences from different donors were on average 90.8% similar,
while pairs of ONT sequences from different donors were on average 91.6% similar. These
findings suggest a bias in one or both pipelines. However, it cannot be easily determined
whether ONT sequences are more similar due to too few high-quality variant bases being
used to edit the original reference sequence, or whether artificial variants are introduced
into Illumina® sequences due to the de novo assembly step of the SHIVER pipeline. The
genetic distance between ONT/Illumina® pairs of sequences ranged from 98.6–99.7%, with
a mean of 99.4% (Table 3).

Table 3. Total aligned similarity between intact and defective HIV proviral genomes sequenced with
Illumina® MiSeq™ and ONT.

Patient Identifier Sample Identifier Proviral Genome Status Total Aligned Similarity
Percentage (%)

340116 P4D1 Intact 99.3

339606
P3D8 Intact 98.6
P3G7 Intact 99.4
P3G8 Defective 99.6

333716 P2D4 Defective 99.1

339266

P2C7 Intact 99.6
P1C7 Intact 99.6
P1C8 Intact 99.7
P5D4 Intact 99.6

We generated a phylogenetic tree from the sequence pairs and found good clustering
in general. Several of the samples contained HIV genomes that were very close in genetic
distance and, in these cases, the ONT sequences were likely to cluster closer together than
the Illumina® sequences (Figure 2). In particular, the P5D4 sample had coverage issues
with the ONT method leaving too much of the original reference sequence in the final
consensus. This failing, in turn, caused P5D4 to cluster closer to the P1C8 sample consensus
than to its matching Illumina® consensus.
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5. Pipeline and Data Availability

The full pipeline has been implemented in Python 3, and can be run on any local
machine or cluster that has minimap2 (v 2.17) [49], samtools (v 1.10) [50] and nanopolish
(v 0.11.3) [52,53] in the path. The scripts are available for download via a GitHub repos-
itory at https://github.com/ramics/NanoHIV. The authors welcome contributions to
the project.

The raw ONT sequencing reads have been uploaded to the NCBI Sequence Read
Archive (https://www.ncbi.nlm.nih.gov/sra) and can be found at BioProject ID PRJNA765218.

6. Discussion

We have developed a new bioinformatics pipeline ‘NanoHIV’ which aims to overcome
ONT sequencing error for highly variable genomes. Good agreement was found between
ONT HIV-1 consensus sequences generated using NanoHIV and equivalent Illumina®

MiSeq™ sequences generated using SHIVER.

https://github.com/ramics/NanoHIV
https://www.ncbi.nlm.nih.gov/sra


Cells 2021, 10, 2577 9 of 12

There are several advantages to ONT sequencing. It has the longest read length of all
platforms. Three platform sizes offer flexibility of throughput, scalability and portability.
Native DNA or RNA can be sequenced directly, providing epigenetic information. There are
many library preparation methods including a convenient rapid 10-min library preparation
method. The initial investment for ONT sequencing devices is less than PacBio’s SMRT
sequencers. Furthermore, the sequencing cost per sample can be reduced by utilising a
‘read-until’ approach, where the sequencing run is terminated once sufficient coverage
has been achieved. Sequencing costs can further be reduced by washing and reusing flow
cells with sufficient active nanopores (≥800 as recommended by ONT) and multiplexing
samples on a single flow cell. Oxford nanopore sequencing is the only real-time sequencing
platform that allows for analysis without terminating the sequencing run, allowing for
rapid diagnosis which could be useful in clinical and resource-limited settings [25,55,56].
Nevertheless, the high read error reduces the utility of ONT for variable genomes and
requires novel solutions. Here, we present the development of a novel bioinformatics
pipeline, NanoHIV, developed for and validated against highly variable HIV-1 single-
genome sequences.

The fact that ONT sequences were still likely to cluster more closely together than
Illumina® sequences in a phylogenetic analysis may indicate that too much of the original
HIV-1 reference sequence is being included in each ONT consensus sequence, causing
those sequences to appear more similar than they are in reality. It is also possible that
a mirrored issue in the SHIVER pipeline caused the Illumina® sequences to cluster too
closely together.

NanoHIV was also assessed in an environment where the likely HIV-1 subtype,
subtype C, was known, and an appropriate reference sequence could be chosen. Further
work should be undertaken to ensure that NanoHIV is accurate when the HIV-1 subtype
of the reference differs significantly from the subtype of the sequenced data.

Other approaches have recently been used to reduce ONT post-analytic error. For
example, pre-sequencing circularization of amplicons followed by generation and sequenc-
ing of linear concatemers, an approach reminiscent SMRTbell library circularization, has
shown 99.9% post-analytical sequencing accuracy of highly variable HIV quasispecies [57].
Moreover, new algorithms that take into account translocation time through pores may
improve homopolymer length determination [58].

Additional improvements on NanoHIV could be considered in the future. A hybrid
assembly step to scaffold insertions in the ONT consensus sequence, similar to the SHIVER
approach, could remove any remaining reference bases in the consensus, which may
expand the NanoHIV pipeline.

The NanoHIV pipeline has only been used on ONT data for HIV-1 to date, but
is not limited to HIV-1 single-genome sequencing, and could be expanded to create
single-molecule consensus sequences for other variable viruses, such as hepatitis C or
influenza A viruses.
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