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Abstract: Cognitive Reserve (CR) designates the brain’s capacity to actively cope with insults through a more
efficient use of its resources/networks. It was proposed in order to explain the discrepancies between the
observed cognitive ability and the expected capacity for an individual. Typical proxies of CR include educa-
tion and Intelligence Quotient but none totally account for the variability of CR and no study has shown if the
brain’s greater efficiency associated with CR can be measured. We used a validated model to estimate CR
from the residual variance in memory and general executive functioning, accounting for both brain anatomical
(i.e., gray matter and white matter signal abnormalities volume) and demographic variables (i.e., years of for-
mal education and sex). Functional connectivity (FC) networks and topological properties were explored for
associations with CR. Demographic characteristics, mainly accounted by years of formal education, were asso-
ciated with higher FC, clustering, local efficiency and strength in parietal and occipital regions and greater net-
work transitivity. Higher CR was associated with a greater FC, local efficiency and clustering of occipital
regions, strength and centrality of the inferior temporal gyrus and higher global efficiency. Altogether, these
findings suggest that education may facilitate the brain’s ability to form segregated functional groups, rein-
forcing the view that higher education level triggers more specialized use of neural processing. Additionally,
this study demonstrated for the first time that CR is associated with more efficient processing of information
in the human brain and reinforces the existence of a fine balance between segregation and integration. Hum
Brain Mapp 37:3310–3322, 2016. VC 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

Key words: cognitive reserve; connectome; brain reserve

r r

Contract grant sponsor: Seventh Framework Programme (FP7)
(European Commission; ‘Maintaining health in old age through
homeostasis (SwitchBox)’); Contract grant number: HEALTH-F2-
2010-259772; Contract grant sponsor: Portuguese North Regional
Operational Program (ON.2 – O Novo Norte) under the National
Strategic Reference Framework (QREN), through the European
Regional Development Fund (FEDER); Contract grant sponsor:
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INTRODUCTION

The concept of “cognitive reserve” (CR) emerged to
explain why some aged individuals displaying neuropa-
thologic hallmarks of Alzheimer’s disease (AD) in post-
mortem brain analysis, never presented any clinical
manifestation of the disease in life [Katzman et al., 1988].
Given that these subjects presented larger brain volumes
than the average, the associated notion of “brain reserve”
(BR) arose [Katzman, 1993]; with brain size and neuronal
numbers constituting standard proxies for BR [Katzman
et al., 1988; Mortimer et al., 1982, 2003; Satz et al., 2011].
According to the model, brain size determines the amount
of damage that can be sustained before it leads to some
clinical expression. Specifically, it hypothesizes that bigger
brains can sustain more damage, since enough neural sub-
strate remains to support normal functioning. This is as a
passive model of reserve, since there is a fixed threshold
below which functional impairment will be observed
[Stern, 2009b].

In contrast, several models have been proposed to
explain how the brain can actively cope with brain dam-
age through compensatory mechanisms [Barulli and Stern,
2013; Stern, 2002]. In this context, the CR model was pro-
posed to account for the variability that cannot be
explained by pathological indices. This model states that
individuals with higher CR capacity make a more efficient
or flexible use of the brain’s resources in order to perform
better at a given task [Stern, 2002, 2009a]. The rationale for
the CR model is that individuals with a richer environ-
ment in terms of cognitive activities/demands through the
lifespan accumulate strategies that help them to overcome
more easily the challenges of everyday life. CR has been
postulated as the reason why higher levels of intelligence
[Alexander et al., 1997], education [Stern et al., 1992], and
occupational status [Richards and Sacker, 2003], make
individuals more capable of sustaining greater brain dam-
age without clinical manifestations. Two distinct mecha-
nisms were proposed to explain the underlying features of
CR: neural reserve and neural compensation [Stern et al.,
2005]. Neural reserve is thought to be related to brain net-
works that are less susceptible to deterioration, due to
their increased efficiency [Neubauer and Fink, 2009]. These
networks may be recruited when individuals are faced
with brain pathology. Conversely, the neural compensa-
tion mechanism relies on the hypothesis that individuals
affected by some brain damage recruit networks not usu-
ally activated, as a means to compensate the impairments
caused by damage.

Altogether, research provides support for both the
abovementioned types of reserve. It was demonstrated
that several anatomic measures such as brain volume,
head circumference, synaptic count, and dendritic branch-
ing are susceptible to alterations during the lifetime. In
fact, it is thought that the underlying mechanisms con-
ducting to these changes are also involved in the develop-
ment of CR [Stern, 2006]. Despite this, there is no direct

way to quantify CR and the most common proxies of CR
present several limitations. In order to overcome this, a
latent model was recently developed as a strategy to
obtain a quantitative measure of CR that was closer to the
definition of the discrepancy between observed and
expected cognitive abilities [Reed et al., 2010]. Briefly, the
authors isolated the variance of episodic memory
explained by (1) demographic characteristics and (2) brain
pathology, measured by structural MRI. This residual var-
iance (i.e., the variance in episodic memory not explained
by any of the abovementioned variables) was defined as
CR. The authors observed that this measure correlated
with longitudinal cognitive decline and with the degree of
brain atrophy attenuation, such that individuals with low
CR had an augmented cognitive decline as a result of
brain atrophy. Since then, this model has been replicated
and extended [Zahodne et al., 2013]. Despite these find-
ings, few researchers have explored the brain networks
associated with CR using neuroimaging techniques [Stern
et al., 2005, 2008] and, none have explored such properties
when individuals are at rest (i.e., independently of a task-
performance).

Herein, we used the abovementioned latent model in
order to isolate CR and then to assess the brain correlates
of CR, by exploring its relationship with FC networks and
network topological properties, using graph theory meas-
ures [Bullmore and Sporns, 2009]. With this strategy, we
tested whether CR is associated with higher FC and/or
higher global efficiency of neuronal networks.

METHODS

Ethics Statement

The present study was conducted in accordance with
the principles expressed in the Declaration of Helsinki and
was approved by the local and national ethics committees.
The study goals and tests were explained to the partici-
pants and all gave informed written consent.

Participants

The participants included in the present study are part
of the sample recruited for the SWITCHBOX Consortium
project (www.switchbox-online.eu/). Details regarding
participants’ selection, neurocognitive assessment and
inclusion/exclusion criteria were previously described
[Marques et al., 2015b]. Briefly the recruitment was per-
formed in two-phases. In the first phase, a larger sample,
representative of the general Portuguese older population
in terms of age, gender, and education [n 5 1,051, after
inclusion/exclusion criteria; subjects were randomly
selected from the Guimar~aes and Vizela local area health
authority registries] underwent the neuropsychological
assessment [Costa et al., 2013; Santos et al., 2013, 2014]. In
the second recruitment phase, 120 subjects were selected
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from the previous sample in order to provide cognitive
profiles of overall good cognitive performance (n 5 60) and
overall poor performance (n 5 60), based on the neuropsy-
chological testing, and underwent the MRI scanning proto-
col [Marques et al., 2015b]. Primary exclusion criteria
included inability to understand the informed consent,
participant choice to withdraw from the study, incapacity
and/or inability to attend the MRI session, dementia and/
or diagnosed neuropsychiatric and/or neurodegenerative
disorder (medical records). Adjusted thresholds for cogni-
tive impairment were calculated depending on factors
such as age and/or education [Busch and Chapin, 2008;
Grigoletto et al., 1999]. Thus, the applied Mini Mental
State Examination (MMSE) test score thresholds were the
following: MMSE score< 17 if individual with� 4 years of
formal school education and/or� 72 years of age, and
MMSE score< 23 otherwise (follows the MMSE validation
study for the Portuguese population) [Guerreiro et al.,
1994].

From the 120 subjects originally recruited for the main
project, nine refused to undergo the MRI acquisition proto-
col, four had brain lesions/pathology detected at the time
of the acquisition and seven presented excessive motion/
artifacts, leaving a final sample of 100 older adults that
were considered in the present study.

Neuropsychological Assessment

A team of certified psychologists performed the neuro-
psychological assessments. The neuropsychological test
battery included the following tests: Digit-span Forward
(DB) and Backward (DB) test, Stroop Words (SW), Stroop
Colors (SC), Stroop Words/Colors (SWC), Controlled Oral
Word Association Test (COWAT-FAS; admissible words),
Selective Reminding Test (SRT), Digit Symbol Substitution
Test (DSST), Mini-Mental State examination (MMSE), Geri-
atric Depression Scale (GDS, long-version) [Santos et al.
2014].

A Principal Component Analysis (PCA) was performed
using the sample of 1,051 participants in order to reduce
the dimensionality of the data with the least possible loss
of information. PCA resulted in the identification of two
significant factors, “MEM” (memory) and “GENEXEC”
(general and executive function), and this factor structure
has been confirmed [Santos et al., 2015]. Briefly, the MEM
factor was composed of the long-term storage (LTS), con-
sistent long-term retrieval (CLTR) and delayed-recall (DR)
variables evaluated with SRT; while, the GENEXEC factor
was composed of the variables MMSE, DF, DB, SW, SC,
SWC, COWAT-FAS admissible words. For further details
regarding the exploratory and confirmatory factor analysis
please consult [Santos et al., 2015].

Missing values in cognitive scores were imputed using
multiple imputation (linear regression, 10 imputation data-
sets) as implemented in SPSS 23 using all the data points
available in the dataset The total amount of missing values

was 1.5% of the total of data points available. Four subjects
were identified as multivariate outliers according to a 95%
confidence interval (P< 0.05) criterion for the Mahalanobis
distance, which corresponds to a threshold value of 3.84.
Thus, 96 subjects composed the final sample for the Struc-
tural Equation Model (SEM) and resting-state fMRI
analysis.

Magnetic Resonance Imaging Acquisition

The imaging session was performed at Hospital de
Braga (Braga, Portugal) on a clinical approved Siemens
Magnetom Avanto 1.5 T MRI scanner (Siemens Medical
Solutions, Erlangen, Germany) and using a 12-channel
receive-only head-coil. The imaging protocol included sev-
eral different acquisitions. For the present study, only one
structural and one rs-fMRI acquisition were considered.
For the structural acquisition, a T1-weighted magnetization
prepared rapid gradient echo (MPRAGE) sequence with
the following parameters was used: 176 sagittal slices, TR/
TE5 2,730/3.48 ms, FA 5 78, slice thickness 5 1 mm, slice
gap 5 0 mm, voxel size5 1 3 1 mm2, FoV 5 256 mm. For
the rs-fMRI acquisition, a blood oxygen level dependent
(BOLD) sensitive echo-planar imaging (EPI) sequence was
used: 30 axial slices, TR/TE 5 2,000/30 ms, FA 5 908, slice
thickness 5 3.5, slice gap 5 0.48 mm, voxel size 5 3.5 3

3.5 mm2, FoV 5 1,344 mm and 180 volumes. During the
resting state scan, the subjects were instructed to remain
still, awake, with their eyes closed, as motionless as possi-
ble and trying to think of nothing in particular. After the
scan, all participants confirmed that they had not fallen
asleep.

Structural Segmentation

The structural scans of each subject were segmented
with in FreeSurfer toolkit version 5.1 (http://surfer.nmr.
mgh.harvard.edu), which implements a semi-automated
segmentation workflow. FreeSurfer enables the segmenta-
tion of both GM and WM as well as subcortical segmenta-
tion. The stages of processing implemented in this pipeline
are fully described elsewhere [Desikan et al., 2006; Des-
trieux et al., 2010; Fischl et al., 2002, 2004]. Validation
against manual segmentations has also been described
[Fischl et al., 2002] and its results are considered robust
across sessions, scanner platforms, updates, and field
strengths [Jovicich et al., 2009].

For the present study, only the intracranial volume
(ICV), total GM volume (GMV) and white matter hypoin-
tensities volume (i.e., WMSA) were considered. This T1-
based WMSA volume estimate has been successfully used
as a measure of WM lesion volume [Salat et al., 2012], and
showed sensitivity in measuring WM lesions in Alzhei-
mer’s disease [Salat et al., 2012], as well as to correlate
with estimates based on FLAIR acquisitions and to
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correlate better with clinical symptoms in MS [Bagnato
et al., 2010].

Specification of the Structural Equation Model

A structural equation model was defined in order to
estimate the variance of the performance in cognitive
dimensions explained by CR. For that, three main latent
variables were created: one expressing the variance of cog-
nitive performance uniquely dependent on demographic
characteristics (Demographic, DEM); one uniquely associ-
ated with structural MRI variables (Brain Reserve, BR);
and, one accounting for the variance not attributed to the
other two dimensions (Cognitive Reserve, CR). This model
constitutes a replication of a previously validated and
replicated model [Reed et al., 2010]. Nevertheless, some

modifications were applied to the model proposed by
Reed and colleagues in order to address the goals of the
current study and these differences will be detailed in the
following paragraphs.

Similarly to the original model, structural MRI variables
were regressed on the BR latent variable. Namely, GMV
was regressed on ICV and a latent variable was specified
in reflecting gray matter component (GMC), accounting
for ICV. WMSA were included as an observed variable
(log-transformed in order to reduce skewness) and was
modeled through a latent variable (WMC – White Matter
Component). GMC and WMC were finally regressed on
BR. Differing from the model proposed by Reed and col-
leagues; hippocampal volume was not included as a mea-
sure of BR capacity. Indeed, in the present study we did
not assess individuals with any diagnosed temporal
dementias; furthermore, despite being relevant for

Figure 1.

Structural equation model used in order to decompose memory

(MEM) and general executive functioning (GENEXEC) factors

into independent variables of demographic characteristics influ-

ence (DEM), brain reserve capacity measures (BR) and cognitive

reserve (CR). DEM was mainly accounted for school years

(r 5 0.92) but also by sex (r 5 0.24). Sex and school years were

also correlated (r 5 0.22). Intracranial Volume (ICV) correlated

strongly (r 5 0.86) with gray matter volume (GMV). As

expected, the latent gray matter component (GMC) was signifi-

cantly modeled by GMV (r 5 0.46) and the latent white matter

component (WMC) was almost entirely (r 5 0.97) modeled by

the volume of white matter signal abnormalities (WMSA). GMC

positively accounted for BR (r 5 0.67) and WMC negatively

accounted for BR (r 5 20.74) due to the inverse relationship

between white matter lesioning and BR. CR was the greatest

predictor of GENEXEC (r 5 0.67), followed by DEM (r 5 0.62)

and then BR (r 5 0.33). MEM was mostly predicted by CR

(r 5 0.88), then by DEM (r 5 0.37) and BR (r 5 0.27).
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memory processing, hippocampal volume does not
account for executive functioning, which was also relevant
for the purpose of the current study.

Regarding the DEM latent variable, sex (female as refer-
ence) and years of formal education were regressed on
this variable. The specification of the DEM variable differs
from the one used by Reed and colleagues as they have
included variables accounting for the different ethnicities
in their sample. Since all of the participants from our
study were Caucasians, our model does not include any
ethnicity factors. Also, major difference between our
model and the one presented by Reed et al. [2010], con-
cerns the fact that we study CR as a function of the var-
iance, not only from episodic memory but rather from
cognition in general. As described in the neuropsychologi-
cal assessment section, two factors comprising memory
(MEM) and general executive functioning (GENEXEC) test
variables were already validated for this sample [Santos
et al., 2015]. Thus, these two dimensions were used in the
model instead of measures of episodic memory. Since both
MEM and GENEXEC are composite measures of several
neuropsychological test scores they were modeled through
two latent variables regressed on the corresponding test
scores.

Finally, the model was set so that the MEM and GEN-
EXEC dimensions were linear combinations of the DEM,
BR and CR latent variables. Therefore, they represent the
variance in MEM and GENEXEC that can be attributed to
demographic characteristics (DEM), MRI-derived struc-
tural variables (BR) and the variance in those dimensions

unrelated to both demographic and structural MRI varia-
bles (CR). In other words, CR was quantified as the resid-
ual variance in cognitive factors that is not accounted for
by the DEM variables (sex and years of formal education)
and by the BR capacity variables (brain size and WM
lesioning). In order to achieve the model identification,
variances for cognitive dimensions (MEM and GENEXEC)
and MRI variables (GMC and WMC) were fixed to account
for measurement error. Furthermore, variances for main
latent variables were constrained, by fixing residual var-
iances of BR and DEM to 0, and CR to 1. Using this strat-
egy, main latent variables (BR, DEM and CR) are assumed
to have an independent contribution to cognitive dimen-
sions (MEM and GENEXEC). Thus, with this model, we
were able to estimate the amount of variance attributed to
BR, DEM and CR for each subject. In order to achieve this,
multiple imputation was performed with Bayesian estima-
tion, resulting in 10 complete databases. Values for the
variables of interest were then obtained for each subject,
by creating a new database, in which the average of
imputed databases for each variable was calculated.

The analytical model is represented in Figure 1.
Observed variables are expressed in rectangles and circles
represent the latent variables. The specification of the
model was conducted using IBM AMOS v22. The neces-
sary assumptions were verified and met. Regarding the
assumption of univariate normality of the endogenous var-
iables, only WMSA and MMSE scores were considered to
present moderate nonnormal distribution (i.e., skewness
and kurtosis between 1.0 and 2.3) while all the other

TABLE I. Demographic and cognitive characterization of the sample assessed in the study

Mean (SD) Range Skewness Kurtosis

Demographic measures
Gender (05Male) 0.48 (0.5) [0; 1]
Age 64.77 (8.11) [51; 82] 0.09 21.00

School Years 5.40 (3.80) [0; 17] 1.35 1.09

MRI measures

WMSA (log) 3.42 (0.29) [2.98; 4.27] 1.04 0.89

GMV 5.63 E 1 05 (4.99 E 1 04) [4.52 E 1 05; 6.88 E 1 05] 0.12 20.71

ICV 1.47 E 1 06 (1.61 E 1 05) [1.13 E 1 06; 1.90 E 1 06] 0.41 20.20

Cognitive Measures
SRT LTS 27.43 (13.18) [4; 58] 20.07 20.76

SRT CLTR 16.48 (12.27) [0; 46] 0.27 20.77

SRT DR 5.87 (2.66) [0; 12] 20.10 20.14

DD 7.63 (2.20) [3; 14] 0.54 0.03

DB 4.32 (2.45) [0; 10] 0.54 20.27

SW 63.75 (20.82) [22; 103] 0.40 20.42

SC 48.88 (14.80) [18; 81] 0.18 20.48

SWC 28.83 (12.02) [5; 58] 0.40 20.42

FAS 18.22 (11.60) [0; 49] 0.58 20.05

MMSE 26.78 (3.23) [17; 30] 21.27 1.37

Abbreviations: WMSA – White Matter Signal Abnormalities; GMV – Gray Matter Volume; ICV – Intra-Cranial Volume; SRT – Selective
Reminding Test; LTS – Long term Storage; CLRT – Consistent Long-Term Retrieval; DR –Delayed Recall; DD – Digits Direct; DB- Digits
Backward; SW – Stroop Words; SC – Stroop Colors; SWC – Stroop Words Colors; FAS - Controlled Oral Word Association Test (admis-
sible words: FAS); MMSE – Mini-Mental State Examination.
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variables presented only slightly non-normal distributions
(i.e., skewness and kurtosis lower than 1.0). Values of
skewness and kurtosis are presented in Table I. These val-
ues were considered acceptable since SEM models were
shown to be robust to moderate nonormality [Lei and
Lomax, 2005]. Multivariate normality was tested with the
Mardia’s test for multivariate kurtosis [Mardia, 1970] that
yielded a value of 20.976.

Rs-fMRI Data Preprocessing

RS-fMRI data preprocessing was performed using
FMRIB Software Library (FSL v5.07; http://fsl.fmrib.ox.ac.
uk/fsl/) tools. The first five volumes of the rs-fMRI acqui-
sition were removed in order to exclude possible magnetic
field inhomogeneities at the beginning of the acquisition.
The remaining data was corrected for slice timing followed
by head motion correction. In order to reduce potential
contamination of motion on functional connectivity,
motion scrubbing [Power et al., 2012] was also performed
in order to identify and further exclude time-points where
head motion could be critical. Seven subjects were
excluded for having more than 10 motion-contaminated
time-points. Each subject functional dataset was then nor-
malized to Montreal Neurological Institute (MNI) standard
space through an indirect procedure that included: (i)
skull stripping of the mean image of the functional acqui-
sition; (ii) rigid-body registration of the mean functional
image to the skull stripped structural scan; (iii) affine
registration of the structural scan to the MNI T1 template;
(iv) nonlinear registration of the structural scan to the
MNI T1 template using the affine transformation previ-
ously estimated as the initial alignment; (v) nonlinear
transformation of the functional acquisition to MNI stand-
ard space trough the sequential application of the rigid-
body transformation and the nonlinear warp followed by
resampling to 2 mm isotropic voxel size. Linear regression
of motion parameters, mean WM and cerebrospinal fluid
(CSF) signal and motion outliers was performed and the
residuals of the regression were band-pass temporal fil-
tered (0.01–0.08Hz) and used for the subsequent analysis.

Network Construction

The network nodes were defined as the Anatomical
Automatic Labeling (AAL) atlas regions. The mean time-
series of the 116 cortical, subcortical and cerebellar regions
were extracted and correlations between each possible pair
of regions were calculated. This originated a symmetric
adjacency matrix R where each entry rij represents the
Pearson correlation coefficient between the time series of
region i and j. These matrices were then transformed to Z-
score matrices by the application of Fisher’s r-to-Z trans-
form to the correlation coefficients. In the present study,
only weighted matrices were considered. For the analysis
of local and global network metrics, the matrices were

thresholded at different sparsity thresholds s (from 0.025
to 0.45 in steps of 0.025) and thus the metrics were calcu-
lated for the networks composed by different proportions
of the strongest edges.

Network-Based Statistics Analyses

In order to assess if BR and CR measures were associ-
ated with functional connectivity at the edge level (i.e., at
each individual connection) a General Linear Model
(GLM) was applied with each Z-transformed correlation
coefficient as the dependent variable and the linear and
quadratic effects of age as well as the DEM, BR and CR
latent measures as independent variables. Sex and school
years were not included in the model since they presented
high collinearity with the DEM measure. Assessing these
effects at the edge level poses a multiple comparisons
problem since the networks obtained as described in the
previous sections of the manuscript encompassed a total
of 116*115/2 5 6,670 edges. In order to increase the statisti-
cal power of the analysis, the network-based statistic
(NBS) procedure implemented in the NBS toolbox
(https://sites.google.com/site/bctnet/comparison/nbs)
was used [Zalesky et al., 2010]. This approach is similar to
the cluster-based thresholding approach used in voxel-
wise analyses of fMRI data. Instead of considering the null
hypothesis at the single edge level, NBS evaluates the null
hypothesis at the level of interconnected edges (i.e., sub-
networks) surviving a predefined primary threshold. The
null hypothesis assumes that a subnetwork with similar
number of edges, surpassing the primary threshold, occurs
by chance. The authors of this procedure recommend the
use of different primary thresholds in order to capture dif-
ferent effects. In the present study, three different primary
thresholds were used (P< 0.01, P< 0.005, P< 0.001) in
order to capture less pronounced but more extent effects
(less stringent primary threshold— P< 0.01) as well as
localized and pronounced effects (most stringent thresh-
old— P< 0.001). Five thousand permutations were per-
formed and networks were considered significant at a
corrected level of P< 0.05 family-wise error (FWE) cor-
rected. BrainNet viewer (http://www.nitrc.org/projects/
bnv/) was used for visualization purposes.

Graph Theory Analysis

Graph theoretic analyses were performed at the node
and the global network metrics level. The metrics were
computed with weighted undirected networks, using the
Brain Connectivity Toolbox (BCT, http://www.brain-con-
nectivity-toolbox.net) [Rubinov and Sporns, 2010]. Some
studies involving graph theoretic measures of FC networks
discard edges displaying negative FC since such measures
cannot be calculated in the presence of negative weights
[Achard and Bullmore, 2007; van den Heuvel et al., 2008].
In the present study, we decided to use absolute values of
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Figure 2.

Associations between CR and FC networks using primary

thresholds of P< 0.01 (A), P< 0.005 (B) and P< 0.001 (C).

Adjacency matrices after the application of the primary

thresholds are presented in the middle of each panel. Edges

from the networks revealing positive association are pre-

sented in red and from negative associations are presented

in blue. Associations between CR and local efficiency (D),

strength (E), clustering (F) and betweenness centrality (G).

Statistically significant associations (P< 0.05, FDR corrected)

are presented in filled bars and associations surviving an

uncorrected threshold of P< 0.05 are reported for complete-

ness using unfilled bars.



the network weights for the computation of graph theo-
retic measures; while we recognize that negative FC might
not reflect the same level/kind of meaning as positive FC,
we consider this to be less critical than simply neglecting
the effect of such edges in network topology.

At the node level, four different metrics were calculated
for each region: (1) local efficiency, which is defined as the
average of the inverse shortest path length in the neigh-
borhood of the node and, in a weighted network, distin-
guishes the influence of different paths based on the
connection weights of the corresponding neighbors; (2)
betweenness centrality that corresponds to the proportion
of shortest paths that pass through the node; (3) strength
that is the sum of weights of the edges connected to each
node; and (4) clustering coefficient, defined as the average
intensity of triangles around a node. At the global network
level the following measures were calculated: (1) global
efficiency, similar to the local efficiency but for the entire
network and (2) transitivity which represents a normalized
version of the mean of the clustering coefficients of all
nodes in the network.

Statistical analysis of graph theoretic metrics computed
for different sparsity thresholds were performed with the
integrated measures [Tian et al., 2011] of such metrics
across the range of sparsities. This methodology has the
advantage of reducing the complexity of the analyses and
the number of comparisons. The analyses were performed
with a similar GLM to the one described for the NBS anal-
yses, with the dependent variable being replaced by the
global or local metrics. For the local measures, results
were considered significant at P< 0.05 corrected for multi-
ple comparisons using the False Discovery Rate (FDR) cri-
terion across all metrics and nodes. Global measures were
considered significant at P< 0.0083, which corresponds to
family wise error (FWE) correction for multiple compari-
sons among six tests (two global network properties 3

three latent variables).

RESULTS

Sample Characteristics

Table I presents the overall demographic and neuropsy-
chological/cognitive characteristics of the participants.

Latent Variable Model

According to the modification indices obtained for the
basal model, the covariance between gender and ICV was
specified in order to improve model fit. Afterwards,
although a significant chi-square statistic was obtained
(v2(83)5129.043, P 5 0.001), based on the remaining fit
indices, the specified model was assumed to have a satis-
factory fit (CFI 5 0.952 | TLI 5 0.930 | RMSEA 5 0.076).
The variance of both cognitive dimensions was signifi-
cantly predicted by the main latent variables. Of notice, it
is relevant to observe that CR revealed to be the most rele-
vant predictor of both cognitive dimensions (MEM:
b 5 0.881, P< 0.001; GENEXEC: b 5 0.669, P< 0.001).

Effects of the Cognitive Reserve Latent Variable

Regarding the CR variable, a positive association
between CR and FC in a cortical network was found (Fig.
2A–C). This association was significant for the three pri-
mary thresholds used (P< 0.01, P< 0.005 and P< 0.001).

Additionally, at the local metrics level, CR was posi-
tively associated with local efficiency in the bilateral supe-
rior occipital, bilateral cuneus, right middle occipital and
right inferior occipital regions (Fig. 2D) and positively
associated with the strength of the inferior temporal gyrus
(Fig. 2E). CR was also positively correlated with the clus-
tering coefficient of the left cuneus, bilateral superior occi-
pital and right middle occipital (Fig. 2F) and positively
associated with the betweenness centrality of the left

Figure 3.

Scatter plots highlighting significant positive associations between CR and network global effi-

ciency (A) and between DEM (B) and network transitivity.
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Figure 4.

Associations between DEM and FC networks using primary

thresholds of P< 0.01 (A), P< 0.005 (B) and P< 0.001 (C).

Adjacency matrices after the application of the primary thresh-

olds are presented in the middle of each panel. Edges from the

networks revealing positive association are presented in red

and edges from negative associations are presented in blue.

Associations between DEM and local efficiency (D), strength

(E), clustering (F) and betweenness centrality (G). Statistically

significant associations (P< 0.05, FDR corrected) are presented

in filled bars and associations surviving an uncorrected thresh-

old of P< 0.05 are reported for completeness using unfilled

bars.



inferior temporal gyrus (Fig. 2G). At the global network
level, CR was positively associated with global efficiency
(t 5 3.17; P 5 0.002) (Fig. 3A), but not transitivity (t 5 1.76;
P 5 0.082).

Effects of the Demographic Latent Variable

Regarding the NBS results, the demographic latent vari-
able (DEM) was positively associated with FC in a large
network encompassing connections between several corti-
cal regions. These results were significant for all primary
thresholds used (Fig. 4A–C). Additionally, using the inter-
mediate and most strict primary thresholds (i.e., P< 0.005
and P< 0.001), a network mainly involving connections
between the cerebellar vermis and cortical regions evi-
denced a negative association with the DEM variable (Fig.
4B,C).

Regarding the local network metrics, the DEM variable
revealed a significant positive association with local effi-
ciency of the left inferior occipital, bilateral fusiform, bilat-
eral cerebellum 6, bilateral lingual and left calcarine (Fig.
4D) and positively associated with local strength in the left
inferior occipital, bilateral lingual, bilateral cuneus, bilat-
eral fusiform, right rolandic operculum and left cingulum
middle (Fig. 4E). Positive associations between DEM and
local clustering were found in bilateral cerebellum 6, bilat-
eral paracentral, bilateral inferior occipital, bilateral fusi-
form, bilateral lingual, bilateral precuneus, left calcarine,
right Heschl and cerebellum 4 and 5 (Fig. 4F). No signifi-
cant association was found between the DEM variable
with betweenness centrality (Fig. 4G).

At the global network level DEM evidenced a positive
association with transitivity (t 5 3.05; P 5 0.003) (Fig. 3B),
but no association with global efficiency (t 5 1.92;
P 5 0.058).

Effects of the Brain Reserve Latent Variable

No significant associations between the BR variable and
FC networks, local network metric or global network met-
rics were found.

DISCUSSION

In the present study, we investigated how CR impacts
functional connectivity networks, independently of educa-
tion level. For this purpose, CR was quantified as the
residual variance in cognitive factors that is not accounted
for by the DEM variables (sex and years of formal educa-
tion) and by the BR capacity variables (brain size and WM
lesioning). This type of model was shown to be in line
with the CR theory [Reed et al., 2010] and has been, there-
after, validated and extended on [Zahodne et al., 2013].
The replication of the latent variable model revealed to be
valid for the present study, as proved by the satisfactory
fit indices obtained for the model. With this, it was

possible to dissect and quantify the effects of CR based on
the variance of cognitive functioning not explained either
from brain structural variables or by the demographic
characteristics. Ultimately, this strategy enabled us to
study how CR is manifested at the FC level at rest.

Regarding the demographics variable, the present
results closely mimic those obtained in a previous study
from our group in which the effects of years of formal
education in FC networks were investigated [Marques
et al., 2015a]. Briefly, it was shown that education level
was associated with higher FC in a large cortical network
and with decreased (i.e., more negative) FC between the
cerebellum and cerebrum. This was interpreted as more
efficient brain network in individuals with higher number
of years of education and a more effective differential
involvement of the cerebrum and cerebellum. This finding
is not surprising since the DEM variable is mainly
accounted for by the number of years of formal education.
However, in the present study it is further demonstrated
that this demographic variable (DEM) is also associated
with particular topological characteristics of the brain FC
network. At the local metrics level, DEM is also associated
with higher local efficiency, nodal strength and clustering
coefficient in several brain regions spanning most of the
occipital and parietal lobes. Associations in some sensori-
motor regions and the cerebellum were also found. This
suggests that these regions are more tightly connected
between themselves and more segregated from the rest of
the brain, facilitating the communication within these net-
works and revealing the positive effects, mainly of years
of formal education, in posterior brain regions. Addition-
ally, at the global network level, DEM was associated with
the network transitivity but not global efficiency. Transitiv-
ity is a well-known measure of functional segregation
[Rubinov and Sporns, 2010; Watts and Strogatz, 1998].
This suggests that demographic variables, especially edu-
cation level, are associated with the increased ability of the
brain to form segregated groups of brain regions (clusters
or modules), reinforcing the view that higher education
level triggers more specialized use of neural processing.

Furthermore, the present results provide evidence that
CR impacts on the brain FC network architecture, even
when education level is accounted for. As expected, CR
was associated with a large and sparse network displaying
higher FC in individuals with higher CR. Similarly to the
associations found for education level, this is likely to
reflect the positive effect in brain functioning facilitating
communication and integration. Higher CR was also asso-
ciated with higher local efficiency and local clustering of
the cuneus as well as superior and middle occipital
regions. This suggests that connections involving these
regions display higher FC in subjects with higher CR,
highlighting their importance in creating tighter functional
connections within the brain network while also contribut-
ing for the formation of local clusters of information proc-
essing. Additionally, the inferior temporal gyrus stands as
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the only region whose nodal strength and betweenness
centrality correlated positively with CR, despite not evi-
dencing any association with its local clustering and local
efficiency. This suggests that the inferior temporal gyrus is
an important hub of the CR network although it does not
contribute to a higher local organization or efficiency of
the network. This region is known to be involved in word
recognition [Dien et al., 2013], visualization of numerals
[Grotheer et al., 2016; Shum et al., 2013], processing of
faces [Weiner and Grill-Spector, 2013] and complex emo-
tional pictures [Geday et al., 2001]. It has also been associ-
ated with working memory dysfunction in depressed
individuals [Parra et al., 2010] and is also part of the
Default Mode Network (DMN) [Greicius et al., 2003]. This
might suggest that individuals with higher CR can better
process visual information through pathways involving
the inferior temporal gyrus.

Of particular interest is the association between CR and
global efficiency. FC networks have weaker connections
between modules, when compared to structural networks,
and thus global efficiency values are typically low [Rubi-
nov and Sporns, 2010]. Despite this, here we show that
individuals with higher CR displayed higher global effi-
ciency values compared to those with lower CR. Global
efficiency is a measure of functional integration, where
higher values mean that shorter and more efficient paths
are available in order to connect every possible pair of
nodes [Rubinov and Sporns, 2010]. This means that indi-
viduals with higher cognitive performance, controlling for
BR and demographic differences, present a more tightly
connected network likely to reflect an increase capacity for
parallel information transfer and integrated processing
[Bullmore and Sporns, 2012]. This is closely related to the
concept of a more efficient use of the brain’s resources,
one of the hallmarks of CR [Stern, 2002]. Previous studies
have found similar associations in structural [Li et al.,
2009] and functional [van den Heuvel et al., 2009] brain
networks with IQ, a proxy of CR. Higher network effi-
ciency would also explain activation of higher cognitive
resources in challenging task conditions [Zihl et al., 2014].

Of note, in this study we assessed these effects in a sam-
ple of older individuals with a large spectrum of cognitive
performance. In fact, some individuals did not go to
school at all and others scored zeros in some of the cogni-
tive tests despite not presenting any diagnosed neurologi-
cal pathology or dementia. Besides being representative of
the Portuguese older population [INE, 2012] it also
enabled us to assess this in a cohort comprising individu-
als with high and low proxies of cognitive reserve.

The present study has some limitations. The model used
should probably include not only measures of hippocam-
pal, but also other temporal lobe structures, such as the
parahippocampal gyrus and perirhinal cortex, which are
known to be involved in the encoding of verbal material.
It would be also appropriate to include the volume of pre-
frontal cortex in the model to account for the variance of

executive functioning explained by MRI-related variables.
Microstructural measures of white matter integrity such as
the ones derived from Diffusion Tensor Imaging (DTI)
could be useful for quantifying BR capacity as it might
add important information on brain structure. Addition-
ally, since the proposed latent model has the potential to
provide longitudinal trajectories of CR, longitudinal stud-
ies should be carried out in order to investigate if CR can
be a moderator of age related cognitive decline in older
individuals as proposed by others [Bozzali et al., 2015;
Tucker-Drob et al., 2009]. Finally, it would be of interest to
consider for other demographic characteristics (such as
primary occupation) and/or cohorts characterized by high
education levels to have a broader picture of the impact of
FC in brain functional connectivity.

CONCLUSION

The present study reveals that CR is associated with
increased FC in a large network and with a better organi-
zation of the network topology. It is also shown that
demographic characteristics, mainly accounted for by
years of formal education, are also associated with brain
network reorganizations. More importantly we brought
evidence that while years of education are likely to be
associated with a higher specialization of the brain net-
work, CR is associated with higher network efficiency.
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