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Abstract: Cancer treatment, such as chemotherapy, induces early ovarian follicular depletion and
subsequent infertility. In order to protect gametes from the gonadotoxic effects of chemotherapy,
several fertility preservation techniques—such as oocyte or embryo cryopreservation with or without
ovarian stimulation, or cryopreservation of the ovarian cortex—should be considered. However,
these methods may be difficult to perform, and the future use of cryopreserved germ cells remains
uncertain. Therefore, improving the methods currently available and developing new strategies to
preserve fertility represent major challenges in the area of oncofertility. Animal and ovarian culture
models have been used to decipher the effects of different cytotoxic agents on ovarian function and
several theories regarding chemotherapy gonadotoxicity have been raised. For example, cytotoxic
agents might (i) have a direct detrimental effect on the DNA of primordial follicles constituting the
ovarian reserve and induce apoptosis; (ii) induce a massive growth of dormant follicles, which are then
destroyed; or (ii) induce vascular ovarian damage. Thanks to improvements in the understanding
of the mechanisms involved, a large number of studies have been carried out to develop molecules
limiting the negative impact of chemotherapy on the ovaries.
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1. Introduction

In the past few decades, the significant diagnostic and therapeutic progress made in the field
of oncology has improved the survival rates of children and young adults. However, it is now
clearly established that these excellent results are achieved through treatments that have potentially
deleterious impacts on reproductive function. In order to protect gametes from the gonadotoxic effects
of chemotherapy and/or radiotherapy, several fertility preservation (FP) techniques, such as oocyte
or embryo cryopreservation with or without ovarian stimulation or cryopreservation of the ovarian
cortex, should be proposed [1]. However, the application of these methods may be limited by age,
pubertal status, disease, and emergency. In addition, these procedures may be difficult to perform, and
the future use of cryopreserved germ cells remains uncertain. Therefore, improving the FP methods
currently available and developing new FP strategies represent major challenges in oncofertility.

Chemotherapy exerts toxicity on the ovaries directly. It is important to distinguish between
the short- and long-term effects of drugs on the ovaries. Soon after the beginning of treatment,
chemotherapy induces apoptosis of growing follicles, leading to temporary amenorrhea. The impact of
drugs on fertility after healing concerns the effects of chemotherapy on the primordial follicular reserve
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as these treatments may lead to a premature loss and, at worst, primary ovarian insufficiency (POI).
POI is a well-known long-term side effect of cancer chemotherapy treatment. The extent of ovarian
damage depends upon several factors, of which the most important are the type of drug, its dosage,
and the protocol [2]. Chemotherapeutic agents can be divided into five categories: alkylating agents,
antitumor antibiotics, platinum-based drugs, antimetabolites, and taxanes. The mechanisms implicated
in the gonadotoxicity of these molecules have been explored in various experimental models, such as
analysis of histological female ovary sections after chemotherapy, animal models treated with injections,
xenograft models, or cell cultures in the presence of active metabolites of chemical agents, and are not
yet fully understood [3]. Several hypotheses have been proposed and could coexist. On the one hand,
chemotherapeutic agents could exert direct toxicity on primordial follicles, inducing DNA damage
and subsequent apoptosis. On the other hand, it has been suggested that these drugs could trigger an
indirect depletion of primordial follicles by over-recruitment. Increasing knowledge of the possible
mechanisms implicated in chemotherapy-induced ovarian damage will facilitate the development of
new therapies, called fertoprotective agents [4], aimed at protecting the follicular reserve [5].

2. Follicular Ovarian Reserve and Its Regulation

In mammals, the follicular ovarian reserve, constituted by primordial follicles, is established early
on in life then keeps declining regularly throughout the reproductive period. The pool of primordial
follicles serves as a source of growing follicles and fertilizable eggs for the entire female reproductive
life. Actually, each primordial follicle can remain quiescent for years; be activated and enter the
growing process; or undergo atresia directly from the dormant stage [6]. To produce mature oocytes,
activated primordial follicles develop through primary and secondary stages before acquiring an antral
cavity. At the antral stage, most follicles undergo apoptotic degeneration and only a few of them grow
further to reach the preovulatory stage under the cyclic gonadotropin stimulation that occurs after
puberty [7].

The maintenance of female reproductive function implies the presence of a vast majority of
quiescent primordial follicles and continuous repression of primordial follicle activation into early
growing follicles. This activation, starting during fetal life, is finely controlled though maintaining a
balance between inhibitory and stimulatory factors. In vitro experiments and genetically modified
mouse or sheep models have enabled the decoding of the molecular mechanisms that control follicular
activation. Numerous factors, such as growth factors, hormones, transcription factors, or cytokines,
produced by oocytes and/or granulosa cells, can act in an autocrine, paracrine, or endocrine manner [8].
The quiescence of primordial follicles is maintained by several molecules including phosphatase
and tensin homolog deleted on chromosome 10 (Pten), tuberous sclerosis complexes 1–2 (Tsc1–Tsc2)
complex, Forkhead box protein O3A (Foxo3A), p27, anti-Müllerian hormone (AMH), and Forkhead box
L2 (FoxL2) [6]. Many studies have highlighted the crucial roles of the phosphatidyl-inositol-3-kinase
(PI3K) signaling pathway in oocytes in controlling follicular activation [9]. Indeed, in genetically
modified mouse models, it was observed that the PI3K–Akt–mammalian target of rapamycin (mTOR)
signaling pathway is crucial for the control of survival and activation of primordial follicles [10]. For
example, Pten and Tsc1–2 are negative regulators of this signaling pathway and, in mice, the deletion
of these genes from oocytes leads to primordial follicle activation and subsequent early follicular
depletion. In these models, mTOR activity is accelerated within the oocyte, highlighting the critical
role of this serine/threonine kinase in primordial follicle activation. The transcription factor FoxO3A,
mainly expressed in the oocytes of resting follicles, acts downstream of the PI3K signaling pathway
and appears to be the main actor involved in follicular activation [8]. At the same time, the survival
of primordial follicles is maintained by other mechanisms involving PDK1 signaling, rpS6. Several
studies have suggested the involvement of the autophagy process in the regulation of the ovarian
reserve of primordial follicles. For example, autophagy is implicated in maintaining the primordial
oocyte pool in murine newborns [11], and the induction of autophagy at birth seems to be a crucial
step to preserve the stock of primordial follicles [12,13].
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In the same manner, primordial follicle survival or apoptosis results from a balance between the
expression of survival (antiapoptotic) and proapoptotic factors. Among these factors, the proteins
B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX) likely play a critical role.

Thus, a synergistic and coordinated suppression of follicular activation, provided by multiple
inhibitory and activator molecules, is necessary to preserve the primordial follicular stockpile in
association with the process maintaining dormancy. Any disorder in these complex mechanisms can
lead to a premature loss of the follicular reserve [14].

3. Follicular Atresia and Apoptosis

3.1. Pathophysiology: DNA Alteration, Follicular Atresia, and Apoptosis

The molecules used in chemotherapy induce alterations in the DNA. Double-stranded breaks
(DSB) are one of the main DNA lesions caused by these cytotoxic agents and the most severe. DSB can,
in turn, lead to either DNA repair pathways allowing cell survival or cell death by apoptosis [15]. DNA
repair pathways differ according to the type of chemotherapeutic agent and may involve, for example,
pATM, RAD51, or PARP1 proteins [15]. When the repair pathways are not sufficiently activated,
DNA damage induces cellular apoptosis. This mechanism is mainly mediated by p63 protein (and,
more specifically, the TAp63 isoform), which activates Bcl2-associated X (BAX) protein and the Bcl-2
antagonist killer (BAK) protein. BAX/BAK activation can be transmitted by TAp73 or secondary to p53
up-modulator of apoptosis) and phorbol-12-myristate-13-acetate–induced protein 1 activation [16].
These mechanisms are particularly complex within the ovaries and differ according to the type of
chemotherapy molecule. A recent and extensive review discusses the induction and repair of DNA
damage in the ovaries [15].

The impact of chemotherapeutic agents on growing follicles is well known, and apoptotic pathways
have been well documented [5,17]. Almost all classes of drugs induce DNA alteration of granulosa
cells and/or oocytes, leading to either apoptosis of growing follicles or the survival of mutagenic
oocytes. This phenomenon often induces temporary amenorrhea [18]. More rarely, if fertilization
occurs during drugs’ exposure, it can lead to spontaneous abortion or congenital abnormalities in the
offspring [19]. These complications are closely related to the timing of oocyte exposure to cytotoxic
treatment. Fertilization months or years after the end of protocol seems to be safe for offspring as
these pregnancies are achieved from oocytes exposed in a dormant state, which remained genetically
undamaged [20].

While apoptosis and atresia in growing follicles in response to chemotherapeutic agents have
been well investigated, the nature of these mechanisms in dormant follicles is still under debate [15].
According to several studies, the main chemotherapeutic agents induce follicular depletion by directly
affecting the primordial follicles entering massively into atresia [15]. Overall, rodent models as well as
models of human ovarian xenograft or in vitro ovary cultures were used to investigate the impact of
chemotherapy on primordial follicles. Cyclophosphamide is a widely used alkylating agent and is
recognized as one of the most gonadotoxic drugs. It has been shown to induce DNA double-stranded
breaks and activate the DNA damage response in a human ovarian xenograft model [21]. These results
were confirmed in in vitro ovarian cultures with cyclophosphamide active metabolite [22–24] or after
in vivo cyclophosphamide injection [25]. In the same manner, in vitro analysis of newborn mouse
ovaries revealed DNA damage and apoptosis of primordial follicles after cisplatin treatment [26,27],
which were further confirmed after in vivo injection in newborn or adult mice [16,25]. Recently, a
model of a xenograft of human cortex ovaries in nude mice revealed the same results [28]. Furthermore,
similar effects with similar models were also found following doxorubicin exposure [29,30].

The improvement of knowledge of the specific apoptotic and DNA repair pathways involved in
the ovarian damage induced by chemotherapy will reveal targets for protective agents to reduce or
prevent ovarian damage (Figure 1) [3].
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Sphingosine-1-phoshate (S1P) is a membrane sphingolipid involved in several physiological 
processes, including apoptosis of ovarian follicles. Indeed, it was shown that the sphingomyelin 
pathway regulates the developmental death of oocytes and S1P protects the ovarian reserve from 
radiation injuries [31]. Later, in an animal model, S1P injection directly into the ovaries was shown to 
decrease the apoptosis of primordial follicles induced by chemotherapy and thus protect fertility 
[32,33]. In a human ovarian xenograft model, S1P can block the human apoptotic follicle death 
induced by cyclophosphamide and doxorubicin and preserve the primordial follicle stockpile [34,35]. 
Moreover, S1P seems to reduce the atresia of primordial follicles that occurs during the slow freezing 
and thawing of human ovarian cortical strips, confirming its protective role [36]. Recently, ceramide 
1 phosphate (C1P), another sphingolipid, was also found to be a potential ovarian protective agent 
as ovarian administration of this drug reduces the ovarian damage induced by cyclophosphamide 
and protects the ovarian reserve via the inhibition of apoptosis and improvement of stromal 
vasculature [37]. However, one study had conflicting results, demonstrating that S1P was not 
effective against apoptosis in rats after intraperitoneal cyclophosphamide treatment [38]. 

One of the major limitations of these treatments is that S1P and C1P must be administered by 
continuous administration or injection directly into the ovaries. Nevertheless, recently, a long-acting 
oral form of an S1P analog has been developed and its impact on the ovaries was evaluated in a rat 
model [39]. It was suggested that this treatment might decrease spontaneous follicular apoptosis, 
making these molecules potentially appropriate for human use. 

Figure 1. First hypothesis of chemotherapy-induced ovarian damage: apoptosis of primordial follicles.
Chemotherapy induces double-stranded DNA breaks in the oocyte. If not repaired, they induce
follicular atresia by apoptosis. Several molecules (in green), acting mainly on the different stages
of the apoptotic pathway, have been proposed to avoid follicular atresia and maintain the pool of
reserve follicles.

3.2. Fertoprotective Agents

3.2.1. Sphingosine 1 Phosphate and Ceramide 1 Phosphate

Sphingosine-1-phoshate (S1P) is a membrane sphingolipid involved in several physiological
processes, including apoptosis of ovarian follicles. Indeed, it was shown that the sphingomyelin
pathway regulates the developmental death of oocytes and S1P protects the ovarian reserve from
radiation injuries [31]. Later, in an animal model, S1P injection directly into the ovaries was shown to
decrease the apoptosis of primordial follicles induced by chemotherapy and thus protect fertility [32,33].
In a human ovarian xenograft model, S1P can block the human apoptotic follicle death induced by
cyclophosphamide and doxorubicin and preserve the primordial follicle stockpile [34,35]. Moreover,
S1P seems to reduce the atresia of primordial follicles that occurs during the slow freezing and thawing
of human ovarian cortical strips, confirming its protective role [36]. Recently, ceramide 1 phosphate
(C1P), another sphingolipid, was also found to be a potential ovarian protective agent as ovarian
administration of this drug reduces the ovarian damage induced by cyclophosphamide and protects the
ovarian reserve via the inhibition of apoptosis and improvement of stromal vasculature [37]. However,
one study had conflicting results, demonstrating that S1P was not effective against apoptosis in rats
after intraperitoneal cyclophosphamide treatment [38].

One of the major limitations of these treatments is that S1P and C1P must be administered by
continuous administration or injection directly into the ovaries. Nevertheless, recently, a long-acting
oral form of an S1P analog has been developed and its impact on the ovaries was evaluated in a rat
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model [39]. It was suggested that this treatment might decrease spontaneous follicular apoptosis,
making these molecules potentially appropriate for human use.

However, even if S1P might be a promising fertility preservation strategy in the future, additional
studies have to be conducted to confirm the protective role of this molecule, to evaluate possible
interference with chemotherapy, and to evaluate the impact of this strategy on offspring.

3.2.2. Imatinib

Imatinib is a competitive tyrosine kinase inhibitor and, more specifically, a c-Abl kinase inhibitor.
This protein is implicated in the apoptotic pathway induced by DNA damage in activating TAP63
transcriptional activity. Clinically, it is used for the treatment of hemopathies or other cancers. Based
on its role as a c-Abl kinase inhibitor, imatinib was evaluated as a molecule to prevent the primordial
follicle loss caused by cisplatin as this drug was shown to induce DNA damage and subsequent
apoptosis in primordial follicles via TAP63 activation. It was hypothesized that imatinib could prevent
the TAP63 accumulation and activation induced by cisplatin and thus impede follicle apoptosis. This
molecule was first evaluated in 2009 by Gonfloni et al. in a mouse model [26]. In this study, the authors
observed the occurrence of massive primordial and primary follicle depletion in cisplatin-treated mice,
whereas they noted a significant rescue of these follicles in the ovaries of mice simultaneously treated
with cisplatin and imatinib. Furthermore, they showed that this treatment had a long-term impact on
fertility and reproductive outcomes. Similar results were found by the same team in 2012 [40], while
others have confirmed these results using in vitro newborn ovary cultures [41] and in vitro culture and
subrenal grafting of mouse ovaries [42]. Nevertheless, two studies have also contested these results,
finding that imatinib did not protect primordial follicles from cisplatin-induced apoptosis and did not
prevent impaired fertility [28,43].

Thus, due to the existence of conflicting results, additional studies are needed to evaluate whether
imatinib could be a new treatment to limit cisplatin gonadotoxicity. Moreover, as imatinib interferes
with the apoptotic pathway, it will be crucial to show that imatinib does not interfere with the antitumor
activity of cisplatin.

3.2.3. Molecules Interfering with the DNA Repair Pathway

Following spontaneously occurring, or chemotherapy-induced, DNA damage, the efficiency of
the DNA repair pathway is a critical determinant of a cell’s survival. Thus, several studies have tried
to develop molecules aiming to induce DNA repair instead of the apoptosis pathway to encourage
follicle survival and limit follicular depletion.

For example, Rad 51 is a protein implicated in DNA repair after double-strand breaks. It was
shown that, in an in vitro oocyte culture model, DNA damage in oocytes can be induced by doxorubicin
and that oocytes possess the machinery and capability for repairing such DNA damage through
Rad51 activation [44]. So, strategies manipulating Rad51 could be potential candidates to limit follicle
depletion due to chemotherapy.

Recently, Rossi et al. reported the protective effect of luteinizing hormone (LH) on the primordial
follicle pool of prepubertal mouse ovaries against cisplatin-induced follicular depletion [27]. First,
these authors conducted an in vitro analysis and showed that LH treatment of prepubertal ovarian
fragments generated antiapoptotic signals, reducing the oocyte level of proapoptotic TAp63 protein
and favoring the DNA repair pathway in the oocytes. Thereafter, they showed that the administration
of a single dose of LH to prepubertal female mice, concomitantly with cisplatin injection, inhibited the
depletion of the primordial follicle reserve caused by the drug. If this protective role of recombinant
LH is confirmed, it could be a very interesting candidate as this molecule is already available to women.
Thus, clinical studies could be conducted relatively quickly.
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4. Follicular Activation

4.1. Physiopathology of Ovarian Reserve Depletion Due to Follicular Activation

A more recent theory suggests that chemotherapy, such as cyclophosphamide or cisplatin, induces
follicular depletion through the massive growth of resting follicles, occurring simultaneously with
the apoptosis of growing follicles [45]. Recruitment of primordial follicles would be secondary to the
activation of the PI3K signaling pathway, whose role in follicle quiescence has been well-established by
many knockout mouse models as well as in vitro studies on human ovarian cortex fragments [8,46].
In addition, cytotoxic agents destroy growing follicles, resulting in a reduction in AMH secretion.
As this hormone is supposed to inhibit primordial follicles’ recruitment, its decrease amplifies follicular
activation and the subsequent depletion of the follicular reserve. In the first study revealing this
hypothesis, no primordial follicles showed signs of apoptosis [45]. Other studies, using the same
mouse model, confirmed this hypothesis, called the “burnout effect” [47,48]. Thus, the burnout effect
consists of the trigger of recruitment of dormant follicle growth, mediated by an upregulation in the
PI3K/PTEN/Akt pathway, occurring simultaneously with large follicle apoptosis and resulting in a
reduction of AMH secretion. The route by which chemotherapy induces the activation of this signaling
pathway remains unclear. It may be via the direct influence on the oocytes and pregranulosa cells of
primordial follicles [49]. This theory was also supported when using other cytotoxic agents such as
cisplatin [50,51]. In consideration of this theory, Lande et al. showed that, in vitro, phosphoramide
mustard, a cyclophosphamide metabolite, enhances human primordial follicle activation in developing
follicles [52]. This theory could also explain the alteration of the follicular reserve induced by the
presence of an ovarian endometrioma [53] or massive follicular loss secondary to ovarian cortex
transplantation [54,55]. Nevertheless, the molecular mechanism by which chemotherapy activates the
PI3K pathway within primordial follicles is not known.

In accordance with this hypothesis, in the last few years, several investigations have been carried
out to develop new molecules that would preserve the ovarian reserve by inhibiting the PI3K pathway
and follicular activation (Figure 2) [3,56].
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Figure 2. Second hypothesis of chemotherapy-induced ovarian damage: “burnout” effect.
Chemotherapy induces both activation of the PI3K pathway and atresia of growing follicles. These
two actions cause follicular depletion by massive activation of the primordial follicles. Molecules
that interfere with the PI3K pathway have been developed to block the accelerated recruitment of
primordial follicles (in green). (+: activates, - inhibits)
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4.2. Fertoprotective Agents

4.2.1. AS101

AS101 [ammonium trichloro(dioxoethylene-o,o′)tellurate] is a nontoxic immunomodulatory
compound that modulates the PI3K–Pten–Akt pathway [57]. It has been shown to reduce the negative
hematologic and dermatologic side effects of chemotherapy [58]. As cyclophosphamide was found to
activate the PI3K pathway, inducing primordial follicle recruitment and subsequent follicular depletion
of ovarian reserve, AS101 was investigated as a treatment to prevent cyclophosphamide-induced follicle
loss in a mouse model [45]. Ultimately, in vivo treatment of mice with AS101 was found to reduce the
cyclophosphamide-induced depletion of primordial follicles. No increase in fetal malformation was
observed in mice previously treated with AS101, indicating the safety of this treatment for offspring.
This treatment was the first one tested and yielded encouraging results; nevertheless, to date, no other
studies using this molecule to prevent cyclophosphamide ovarian damage have been performed.

4.2.2. Anti-Müllerian Hormone

AMH is a glycoprotein hormone expressed by the granulosa cells surrounding the oocytes. It is
produced by follicles from the primary stage of development until selection for dominance, and plays
a key role during folliculogenesis. As it has been shown to limit the activation of primordial follicles in
in vivo or in vitro mouse models [59–61], it was suggested in three recent studies that this hormone
could be an effective treatment option to limit chemotherapy-induced gonadotoxicity [48,62,63].

Kano et al. reported that, in mice, superphysiologic doses of AMH delivered either by a
recombinant protein via osmotic pumps or gene therapy could limit the primordial follicle loss
induced by cyclophosphamide, doxorubicin, or cisplatin [62]. The protective effects of AMH vary
between drugs, suggesting that different mechanisms for ovarian damage are induced by different
chemotherapeutic agents.

Recently, we assessed the protective effect of AMH in pubertal mice treated with
cyclophosphamide [48]. In this model, we showed that the ovaries of cyclophosphamide-treated
mice were depleted of primordial follicles, whereas the number of primordial and early-growing
follicles was similar to that in controls among the ovaries of mice treated with concomitant injections of
cyclophosphamide and AMH. Then, we showed that 15 weeks after the end of the treatment, the number
of ovulated eggs after ovarian stimulation was significantly reduced in cyclophosphamide-treated
mice and rescued by AMH co-administration. The molecular mechanisms underlying these effects
were explored. Interestingly, an investigation of the PI3K signaling pathway showed that the
phosphorylation of FoxO3A was significantly lower in mouse ovaries treated with AMH. This
transcription factor, expressed in the nucleus of primordial follicles, plays an essential role in the
maintenance of primordial follicles in a quiescent state [6]. The phosphorylation of FoxO3A induces
the protein nuclear export, leading to the activation of primordial follicles [8]. Our results suggested
that AMH might inhibit primordial follicle recruitment by preventing cytoplasmic shuttling of FoxO3A
induced by cyclophosphamide. Moreover, in this study, we also provide evidence of a possible
role of autophagy in the preservation of the follicular pool reserve. Indeed, we showed that AMH
administration was able to induce autophagy in ovaries and a possible mechanism to explain the
modulation of AMH-induced autophagy might implicate FOXO3A as this factor was shown to be
related to autophagy activation [64]. These results are in accordance with those of other studies
suggesting the involvement of autophagy in the regulation of follicular ovarian reserve [13,65].

Further, Roness et al. confirmed the fertoprotective role of recombinant AMH in the
same mouse model as pharmacological administration of AMH during chemotherapy treatment
reduced follicle activation and primordial follicle loss and significantly improved reproductive
outcomes [63]. Interestingly, they also showed that AMH does not interfere with the therapeutic
actions of chemotherapy.
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These data indicate that AMH represents a potential novel treatment for limiting the primordial
follicle depletion induced by chemotherapy. Nevertheless, these promising results need to be confirmed
further. As AMH is produced only by the ovaries and acts through a specific receptor mainly expressed
by the ovaries, this hormone might be of particular interest since it could act as a targeted therapy
without interfering with physiological mechanisms or the efficacy of chemotherapy.

4.2.3. Melatonin

Primarily revealed as a secretory product of the pineal gland, melatonin
(N-acetyl-5-methoxytryptamine) is commonly used in various biological processes such as
treating insomnia. Moreover, melatonin can be used as a potential therapeutic adjuvant during
chemotherapy as it has been shown to reduce some adverse effects of drugs [66]. Interestingly,
melatonin is also produced in various tissues including reproductive tissues such as the ovaries and the
placenta [67], and melatonin receptors are present in the oocytes and granulosa cells of various species,
including humans [68,69]. Some studies have revealed that melatonin treatment could limit the
depletion of germ cells in the gonads during chemotherapy. In rats, melatonin administration prevents
cisplatin-induced testicular toxicity and reduces sperm motility [70]. Recently, it was suggested as a
new fertoprotective agent option against the ovarian damage induced by chemotherapy [51,56,71].

Jang et al. evaluated the protective effect of melatonin on cisplatin-treated ovaries in a mouse
model [71]. They demonstrated that combined treatment with melatonin and cisplatin significantly
prevented primordial follicle loss in cisplatin-treated ovaries. The molecular mechanisms implicated
were also analyzed. In accordance with the burnout theory, these authors showed that the protection
effect of melatonin was mediated by suppressing follicular recruitment through activation of the
PI3K–Akt–FoxO3a signaling pathway. Nevertheless, this protective effect was partial. In addition, the
same authors recently confirmed these results and revealed that ghrelin enhances the protective effect of
melatonin against cisplatin-induced ovarian failure in a mouse model [51]. The molecular mechanisms
implicated were evaluated and revealed that the coadministration of ghrelin and melatonin inhibited
cisplatin-induced phosphorylation of Pten and FoxO3A. As FoxO3A phosphorylation induces its
cytoplasmic translocation and subsequent follicular activation, the inhibition of this process maintains
the primordial follicles in a dormant state.

This treatment seems promising, but knowledge of the details of the molecular mechanism of
melatonin’s protective response against chemotherapy-induced ovarian damage and the need for
evaluation of this impact on ovaries requires further studies.

4.2.4. mTOR Inhibitors

mTOR is a serine/threonine kinase implicated in several crucial processes such as cell growth,
proliferation, autophagy, and survival [72]. In mice, accelerated mTOR activity in the oocyte activates
the primordial follicles, resulting in POI [73]. mTOR stimulators increase the activation of primordial
follicles in animal models and mTOR inhibitors block the primordial-to-primary follicle transition [74].
According to these data, and after having confirmed the burnout theory, recent studies used, in a
mouse model, mTOR inhibitors to preserve the ovarian reserve from cyclophosphamide-induced
follicular depletion [75–77]. Goldman et al. explored the use of the clinically approved drug everolimus
(RAD001) or the inhibition of mTORC1/2 with the experimental drug INK128, showing that mTOR
inhibition preserves the ovarian reserve, as measured through primordial follicle counts and serum
AMH levels [75]. Moreover, cyclophosphamide-treated mice had significantly fewer offspring, whereas
cotreatment with mTOR inhibitors preserved normal fertility. The protective effect of everolimus
was also demonstrated against cisplatin-induced gonadotoxicity in an in vivo mouse model [77]. As
everolimus can be used in the treatment of some breast cancers, this approach represents a very
interesting option for fertility preservation during conventional chemotherapy. On the other hand,
Zhou et al. observed that cotreatment of chemotherapy with rapamycin, another mTOR inhibitor,
prevented the follicle growth wave caused by cyclophosphamide treatment and significantly reduced



Int. J. Mol. Sci. 2019, 20, 5342 9 of 17

primordial follicle loss [76]. Rapamycin is an inhibitor of the mTOR pathway, shown previously to
inhibit the accelerated activation of primordial follicles of Pten−/− rat ovaries [78].

5. Vascular Damage

5.1. Physiopathology

Alterations in the ovarian stroma and vascularization are another mechanism potentially implicated
in chemotherapy-induced follicle loss [3,18]. Indeed, vascular damage, revealed by decreased ovarian
blood flow and reduction in ovarian size, has been demonstrated in women [79] and in mice following
doxorubicin administration [80]. In addition, the histological analysis of human ovaries previously
exposed to chemotherapy revealed that a thickening and hyalinization of cortical stromal blood vessels
had occurred in association with the disorganization of blood vessels in the ovarian cortex and cortical
fibrosis [81].

5.2. Fertoprotective Agents

G-CSF

In light of the vascular damage induced by chemotherapy, granulocyte colony-stimulating factor
(G-CSF) was tested as a fertoprotective agent. Subsequently, it was determined that treatment with
G-CSF decreased chemotherapy-induced ovarian follicle loss and extended the time to premature
ovarian insufficiency in female mice treated with cyclophosphamide and busulfan [82]. Later, similar
protective effects were found, as follicle counts and serum AMH levels were significantly increased in
mice treated with cisplatin and G-CSF as compared with mice treated with cisplatin alone [83].

6. Other Molecules as Candidate Fertoprotective Agents

6.1. GnRH Analogs

Tested in 1995 in rhesus monkeys, gonadotropin-releasing hormone (GnRH) analogs were the
first agents considered as possible chemoprotective molecules against cyclophosphamide ovarian
damage [84]. Subsequent studies evaluated the possible protective effects in a rodent model with
contradictory results [85–90]. In a more recent study, it was proven that ovarian damage occurred even
in the absence of FSH, suggesting that the inhibition of the pituitary–gonadal axis is not involved in
ovarian protection during GnRH agonist treatment [90]. Nevertheless, other mechanisms potentially
implicated in this protective influence were suggested to be vascular effects or the upregulation of
antiapoptotic molecules [91–93].

Several clinical studies have been performed to assess, in women, the ability of GnRH analogs
to protect ovaries from chemotherapy ovarian damage. POI incidence, chemotherapy-induced
amenorrhea, menses recovery, or pregnancy rates were evaluated in cancer patients who received
GnRH analogs or not at the time of chemotherapy treatment. Conflicting results were reported [92,94].
Elsewhere, a meta-analysis of randomized clinical trials revealed diverse conclusions about the ability
of GnRH analogs to preserve fertility [95–98]. Nevertheless, while clinical evidence for the efficacy of
this treatment is still being debated, the safety of this strategy has already been clearly demonstrated.
Thus, this treatment could be proposed for all young women requiring chemotherapy, although gamete
cryopreservation should be performed, if possible, for women who want to preserve their fertility.

6.2. Tamoxifen

Tamoxifen is an estrogen receptor antagonist and is currently used as an adjuvant therapy for
hormone-sensitive breast cancer. In a rodent model, the administration of tamoxifen significantly
decreased doxorubicin- or cyclophosphamide-induced follicle loss [99]. Similar results were obtained
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in cultured rat ovaries [100]. Nevertheless, the molecular mechanisms of this protective effect during
chemotherapy have not been discovered yet.

6.3. Other Molecules

In the past few years, several other molecules have been observed to decrease
chemotherapy-induced ovarian damage in the drive to preserve fertility, including Chinese
herbal medicine [101], fennel [102], sildenafil citrate [103], tocotrienol [104], genistein [105], and
erythropoietin [106].

7. Conclusions

Improving the knowledge of the molecular mechanisms involved in chemotherapy-induced
ovarian damage can lead to the development of treatments to limit follicular depletion in vivo [3,18,56].
The molecular mechanisms implicated in the protective role of these different agents are more or less
clear. Table 1 summarizes the main fertoprotective agents that have been evaluated in a mouse model,
their mechanism(s) of action, and the proposed mechanism(s) to explain ovarian protection.

Table 1. Main molecules evaluated in an in vivo rodent model to limit chemotherapy-induced
follicular depletion.

Fertoprotective
Mechanism Fertoprotective Agent References

Inhibition of primordial
follicular apoptosis

Sphingosine 1 phosphate
ceramide 1 phosphate Membrane sphingolipid [32–35,37,38]

Imatinib
Competitive

tyrosine-kinase inhibitor
(c-Abl kinase inhibitor)

[16,26,40,42]

GNF2 c-Abl kinase inhibitor [40]

LH Gonadotrophine [27]

Inhibition of primordial
follicle recruitment

AS101 PI3K modulator [45]

Melatonin Pineal hormone [51,71]

Rapamycin mTOR inhibitor [76]

Everolimus (and
INK128)

mTORC1/mTORC2
inhibitor [75,77]

AMH Ovarian hormone [48,62,63]

Several mechanisms
proposed (e.g., vascular

effect, follicular
recruitment inhibition)

GnRH analogs Inhibition of the
pituitary-gonadal axis [85,86,88–90]

Vascular effect G-CSF Granulocyte
colony-stimulating factor [82,83]

Prevention of
chemotherapy nuclear

activation
Bortezomib Proteasome inhibitor [30]

Although histological studies of human ovaries were carried out years ago to assess the impact of
the disease and treatments on the gonads [107,108], this type of research is more difficult to perform
today due to ethical concerns. Nowadays, the assessment of the gonadotoxicity of chemotherapy is
often based on organotypic or cell culture models in vitro. In vivo studies in rodents as well as models
of human ovarian xenograft are also commonly used to investigate the impact of chemotherapy on
primordial follicles and the potential protective role of fertoprotective agents. Moreover, the main
chemotherapies used in these fundamental studies were cisplatin, cyclophosphamide, or doxorubicin.



Int. J. Mol. Sci. 2019, 20, 5342 11 of 17

A recent review has been published that critically discusses the damaging effects of the most common
chemotherapeutic compounds (cyclophosphamide, cisplatin, and doxorubicin) on the ovaries [109].
In clinical practice, the protocols applied incorporate a combination of several drugs. Therefore, the
results obtained should be extrapolated to women, but caution should be used when interpreting the
clinical relevance of such findings. Indeed, it is difficult to mimic the doses and protocols used, and
ovarian physiology and responses to treatments can differ.

For these molecules to be used in clinical practice and studied in women, it is essential that they
do not interfere with the therapeutic action of chemotherapy or important physiological processes.
However, as apoptosis represents the main mechanism of anticancer action, apoptosis inhibitors could
reduce the anticancer effect of chemotherapy. In addition, by blocking the death of oocytes with DNA
alterations, some molecules could facilitate the survival of damaged germ cells and thus promote
infertility, an increased risk of spontaneous miscarriages, or fetal malformations. Finally, the PI3K
pathway is a ubiquitous pathway and the molecules modulating this pathway could interfere with
various physiological processes.

New therapies aimed at limiting follicular loss and protecting the ovaries would be of great interest.
They could be used in combination with the currently available fertility preservation techniques and
administered regardless of age, pathology, or proposed treatment. Moreover, they would also prevent
against hormonal deficiencies and their consequences (e.g., pubertal delay, osteoporosis). Finally, these
treatments may be of particular interest to women with altered ovarian reserve parameters, in whom
no fertility preservation method can be proposed.
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