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A high-resolution gridded dataset 
to assess electrification in sub-
Saharan Africa
Giacomo Falchetta   1,2, Shonali Pachauri   1, Simon Parkinson1,3 & Edward Byers   1

Spatially explicit data on electricity access and use are essential for effective policy-making and 
infrastructure planning in low-income, data-scarce regions. We present and validate a 1-km resolution 
electricity access dataset covering sub-Saharan Africa built on gridded nighttime light, population, 
and land cover data. Using light radiance probability distributions, we define electricity consumption 
tiers for urban and rural areas and estimate the by-tier split of consumers living in electrified areas. The 
approach provides new insight into the spatial distribution and temporal evolution of electricity access, 
and a measure of its quality beyond binary access. We find our estimates to be broadly consistent with 
recently published province- and national-level statistics. Moreover, we demonstrate consistency 
between the estimated electricity access quality indicators and survey-based consumption levels 
defined in accordance with the World Bank Multi-Tier Framework. The dataset is readily reproduced 
and updated using an open-access scientific computing framework. The data and approach can be 
applied for improving the assessment of least-cost electrification options, and examining links between 
electricity access and other sustainable development objectives.

Background & Summary
The United Nations’ Sustainable Development Goal 7 (SDG 7) aims at ensuring access to affordable, reliable, 
sustainable and modern energy for all by 20301. Access to electricity services (SDG targets 7.1.1 and 7.A and 7.B) 
is a key priority under this goal - also due to the strong interconnections it exhibits with other development objec-
tives2–5, but achieving it globally presents significant challenges6. Spatially-explicit, up-to-date and harmonized 
information on electrification progress is needed to identify where local, national and international efforts can be 
focused to achieve the most benefits.

Tracking initiatives such as the Progress Towards Sustainable Energy portal7, the Status of Electricity Access 
Report8, and the publication of field-collected data9,10 have quantified electrification progress over the last 20 
years. It is estimated that in 2016 the global population without access dipped below 1 billion11, largely as a result 
of international investment flows12, declining costs of distributed access solutions (e.g., solar PV)13, and support-
ing policy frameworks14. Of those still without access, around 600 million live in sub-Saharan Africa (SSA), where 
15 countries have electrification levels below 25%11.

Monitoring at national scales is important to track efforts regularly. Yet, assessing sub-national heterogeneity 
is essential to render a clearer picture of the electrification status of a country and improve the efficacy, design, 
and implementation of local-scale electrification plans15,16. This is because electrification efforts could be concen-
trated in specific regions, such as those nearer to existing grid-connections, whereas progress may remain slow 
or even stagnate in more remote areas that lack access to energy resources17,18. Moreover, data on differences in 
consumption levels are needed to assess the quality and inequality of access and subsequent implications of these 
access inequalities19. However, actual electricity consumption data are rarely available at a high level of spatial res-
olution. Using field-surveys to collect such data are costly and time-intensive. In this context, an ongoing debate 
is centered on how to best deliver good quality data to track energy access objectives and to lower its collection 
and processing costs, as well as to make sound decisions under data scarcity20.
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Here, we present and validate an updatable, fully-reproducible 1-km resolution dataset of electricity access 
and use tiers for SSA built on regularly updated gridded nighttime light (NTL), population, and land cover data. 
The dataset is in the form of netCDF files with counts of the number of people without access in each 1-km2 cell 
for each year between 2014 and 2018 and the estimated tier of consumption in each pixel for 2018. The estimates 
for each metric and country are validated with the most recent available figures. The data can be browsed inter-
actively in a web-based interface. The entire code - from data generation, processing, and export - is available for 
results reproduction. New NTL composites are published each month, allowing continuous updates. Our esti-
mates are broadly consistent with both field survey-based province-level electrification levels reported by DHS 
surveys, and aggregated national-level figures published yearly by the the ESMAP/World Bank Tracking SDG 7 
report. The dataset can be combined with other regional-level data and implemented in an array of studies for 
developing scenarios and modelling pathways of energy access and demand in Integrated Assessment Models21,22, 
assessing least-cost electrification options15, tracking development objectives at a local scale, designing infrastruc-
ture, and analysing links between electricity access and other socio-economic and well-being metrics.

Figure 1 illustrates a schematic of the open-source scientific computing framework, which is discussed in 
detail in the Methods section. Recent high-resolution data assembling efforts for nighttime light (NTL)23, popula-
tion24,25, and land cover26, and cloud computing facilities for spatial data processing27 enable estimating the evolu-
tion in electricity access and consumption tiers at the 1-km2-pixel-level. We employ VIIRS-DNB (Visible Infrared 
Imaging Radiometer Suite, Day-Night Band) stray-light corrected product for NTL radiance (450 m resolution 
at the equator) and LandScan (used as the main source) and WorldPop (for comparison) gridded population 
distribution datasets, both with a 1-km resolution. WorldPop was only used as a secondary source due to possi-
ble circularity issues since the underlying model also uses NTL as an input for estimating population. Refer to 
https://www.popgrid.org/compare-data for a comparative overview of inputs and methodology of different grid-
ded population datasets. The use of Landscan and WorldPop supports accounting for recent population growth 
(on average 4.1% in urban areas vs. 2.7% for SSA as a whole in 2017, according to World Bank Data, https://data.
worldbank.org/) and migration dynamics.

Nighttime lights have already been used as a proxy for electricity access28–31, residential consumption32–37, 
outages detection38–40, population fluctuations and migration41,42, regional GDP43,44 and income inequality45. This 
is, however, the first time a fully reproducible and updatable dataset at this high level of resolution has been con-
structed and validated for SSA.

Methods
Data sources and processing tools.  The data sources - described in Table 1 - include VIIRS-DNB stray-
light corrected NTL monthly composites for the years 2014–201823 (which measure radiance and filter cloud 
cover), LandScan 2014 and 2017 downscaled gridded population24, and WorldPop 2015 and 202025 for sensitivity 
analysis. National electricity access rates are drawn from the ESMAP/World Bank tracking SDG 7 portal7, while 
province-level figures are drawn from an array of field surveys through the USAID/DHS Program STATcompiler 
for sub-national benchmarking10. Household survey data to validate consumption tiers have been retrieved from 
the WorldBank Microdata Library (http://microdata.worldbank.org). For defining countries, we adopted the 
global administrative boundaries (GADM) dataset v3.646.
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Fig. 1  Schematic of the open-source scientific computing framework. The flowchart represents the different 
stages, data inputs, and outputs in the generation and validation of the data. Blue: remotely-sensed variables; 
red: processing steps; purple: output metrics; green: output data; white: validation and supporting datasets; grey: 
stages.
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The Google Earth Engine platform27 is used to process satellite imagery and extract data, which is subse-
quently used to produce the datasets and generate plots in the R scientific computing environment. The Code 
Availability and Data Records section links to the repositories that host the Earth Engine Javascript code and R 
script allowing for results reproduction, alteration of parameters for further sensitivity analysis, or other improve-
ments as implemented by new users. Results are also dynamically visualized in a web interface, under https://
gdessa.ene.iiasa.ac.at.

Urban and rural areas identification.  The definition of urbanisation is highly variable across countries 
and regions of both Africa47,48 and the entire world28. The United Nations’ definition of urban and rural popu-
lation is tightly linked to political and administrative factors that make it challenging to generalize the human 
settlement structure across different countries49. Recently, new methods have been promoted to overcome such 
issues, especially in high-income countries50. Those rely on satellite imagery and land cover, but also on functional 
definitions, e.g. accounting for the entire commuting zones surrounding cities.

For identifying urban and rural settlements at the grid-cell level, we adopt the 2017 MCD12Q1 V6 MODIS 
Land Cover Type26 from the Annual University of Maryland classification (having a resolution of 500 m) in com-
bination with the 2017 LandScan population (1-km resolution). Both datasets are updated on an annual basis. For 
urban areas, land cover type 13 (urban and built-up lands) is used as a necessary condition, in combination with 
a population density higher than specific inhab · km−2 thresholds.

Supplementary Table 1 lists the clusters of countries and the corresponding thresholds which have been 
defined and applied so as to minimize the discrepancy with World Bank reported urban-rural population split for 
2017 (https://data.worldbank.org/). Threshold bands partially overlap with geographic regions, such as Southern 
Africa, where a threshold of more than 650 inhab · km−2 is found to effectively predict urban areas. Nonetheless, 
for some countries their threshold does not match their region and they were inserted in density clusters which 
allowed a better estimation of their reported urbanization rate. For rural settlements, land area with a population 
density lower than that of each cluster’s threshold was considered. Non-populated land was discarded.

The approach results in a very consistent estimate (R2 = 0.84 and 0.067 residual standard error in a simple 
linear regression) vis-Ã -vis the World Bank/UN population division figures built on countries’ official national 
statistics. Supplementary Fig. 1 shows the prediction obtained with the approach.

Electricity access estimation.  A large body of literature has shown that locations where satellite sensors 
cannot detect visible light are likely to be areas where people live without access to electricity28–30,51. We calculated 
the median value of radiance within each pixel of the NPP-VIIRS monthly composites for both 2014 and 2018 
within the Google Earth Engine Platform; a lower-bound noise floor was set at 0.25 μW · cm−2 · sr−1 for 2014 and 
to 0.35 μW · cm−2 · sr−1 for 2018 to remove calibration noise and ephemeral lights as discussed in the relevant liter-
ature52–55. The discrepancy in the noise caps is justified on the grounds of the increased noisiness of the data wit-
nessed from 2017. According to expert opinion, this is owing to calibration adjustments in the lunar correction 
and to the launch of a new VIIRS-equipped satellite (JPSS J1) in 2017 (as discussed in56). The spread in the noise 
lower-bound cap set before and after 2017 was determined from the examination of by-definition zero radiance 
pixels - such as within large water bodies - which nonetheless present a systematically positive radiance for data 
since 2017, and a systematically zero radiance for previous data. Refer to the Supplementary Information for his-
tograms comparing the distribution of background noise before and after 2017 for the same non-populated area. 
Population counts within each GADM level 1 provinces have been produced for both people living in lit (above 
0.25/0.35 μW · cm−2 · sr−1) and in dark areas (≤0.25/0.35 μW · cm−2 · sr−1). The gridded 1-km classification was 
used to aggregate gridded results into spatial polygon features representing provincial and national administrative 
boundaries. Aggregation of the gridded data is achieved assuming grid cells belong to the polygon that contain 
its centroid. To provide an example of the output data, Fig. 2 shows a snapshot of the estimated density of people 
without electricity access over Uganda in 2018.

Classification of consumption tiers.  Previous studies have shown that residential electricity consumption 
can be accurately predicted with satellite derived NTL data at both the country57 and the province-level58. Here, 
we considered a measure of radiance for those estimated to live in areas with electricity access. Based on the 
distribution of the quartile values of non-zero light radiance across SSA countries (Supplementary Fig. 2), four 

Dataset Source Time resolution Spatial resolution Year(s)

VIIRS-DNB nighttime lights 23 1 month 0.008° 2014–2018

LandScan gridded population 24 1 year 1 km 2014–2017

WorldPop gridded population 25 1 year 1 km 2015 and 2020

MODIS Land Cover Type, University of 
Maryland classification

26 1 year 450 m 2017

GADM global administrative layers 46 — — 2018

USAID/DHS StatCompiler surveys 10 1–2 years Province-level 2014–2018, depending on country

ESMAP/World Bank electrification database 7 1 year Country-level 2014–2016

World Bank MicroData Library household 
surveys — 1–2 years Household-level 2014–2018, depending on country

Table 1.  Table of data inputs for electrification data generation and validation.
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tiers of residential electricity consumption were defined, with thresholds set at the median value of each quartile 
distribution. In order to account for the strong urban-rural discontinuity in lighting, this was done separately for 
urban and rural settlements. Settlement classification - and thus indirectly also tiers - is based on population den-
sity data and accounts for the heterogeneity in densities across countries, as described previously. Corresponding 
tier thresholds are reported in Table 2.

The four tiers are validated against survey data consistent with the World Bank Multi-Tier framework59, as 
discussed in the Technical Validation Section. The tier data can be mapped onto a gridded population dataset to 
derive the share of population with access to electricity in each consumption tier in both urban and rural areas.

Data Records
The data60 are hosted on Mendeley Data at the permanent https://doi.org/10.17632/kn4636mtvg. The repository 
includes two netCDF v4 files containing the data output of the analysis, which are reported in Table 3. The first 
file reports the number of people without access in each grid cell between 2014 and 2018. The second reports the 
consumption tier in each populated, electrified cell for the year 2018. Both files have a 1-km spatial resolution and 
cover sub-Saharan Africa entirely. The data may be shared, used and adapted even for commercial use with the 
requirement of attributing to this original work as per a Creative Commons BY v4.0 (CC BY 4.0) License.

Technical Validation
To assess the consistency of the estimated electrification levels, we produced a cross-sectional fit comparing the 
NTL estimate against the most recent official data source available, the ESMAP/World Bank Tracking SDG 7 elec-
trification data for the year 2016, as shown in Fig. 3a. The plot also includes a colour-legend for PPP per-capita 
GDP, which suggests that discrepancies tend to be larger in poorer countries. Overall, this reveals a rather consist-
ent estimation of the heterogeneity in the data (R2 = 0.81). The remote sensing approach performs well in terms 

Pop.  without access per sq.  km
25-100

100-500

500-1000

1000-2500

2500 +

Fig. 2  Distribution of people without access over Uganda in 2018. The figure provides a sample representation 
of the output dataset. Colours represent the density of people without electricity access in each 1-km pixel. 
Administrative boundaries correspond to the first level of the GADM definition46.

Tier

Urban Rural

Lower-bound Upper-bound Lower-bound Upper-bound

1 >0 <0.40 >0 <0.38

2 ≥0.40 <0.48 >0.38 <0.45

3 ≥0.48 <0.88 >0.45 <0.68

4 ≥0.88 — >0.68 —

Table 2.  Definition of radiance tiers (μW · cm−2 · sr−1) for electrified areas used to estimate consumption levels.
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of reproducing the electrification levels - among others - in Botswana, Namibia, Tanzania, Uganda, Mali, Guinea, 
Madagascar, and Namibia.

The largest underestimations are found for Ethiopia (−26.8%), Cameroon (−11.3%), Gabon (−9.2%), while 
electrification levels are significantly overestimated vis- a-vis official figures in Liberia (+26%), Guinea Bissau 
(+20.2%), and Benin (+18.9%). Downward bias can be mainly attributed to - amongst other reasons - the under-
detection of standalone access solutions such as solar-home-systems, or to the low level of lighting among highly 
distributed communities. For instance, the large discrepancy in Ethiopia could be owing to the very rapid dif-
fusion of solar-home-systems among rural households over the last years (4 million off-grid solar devices sold 
between 2015 and 2017, with a penetration of 20% in 201761), which might be scarcely detected by NTL data due 
to the inherent mismatch between solar power production and night-time light measurements in the absence of 
diurnal storage systems. Moreover, limited interior lighting might not be visible from outside and thus detectable 
using the satellite imagery.

Upward discrepancies (overestimations) are prone to be attributable to a number of factors. These encompass 
illegal connections (refer to62,63 for a recent contribution to estimation of electricity thefts), other sources of light 
(e.g. from the effect of gas flaring, leading to very high and diffuse radiance detected by satellites and poorly 
filtered by data processing algorithms), or from the presence of a large number of people without access even in 
areas where there is electricity (such as in urban slums and peri-urban settlements).

Finally, it was assumed that a 1-km pixel being lit implies that everyone in that location has access. This 
assumption implies that these people are in proximity to connection possibilities, i.e. remoteness is not a 

File Time resolution Spatial resolution Format

Density of people without electricity access 1 year (2014–2018) 1 km netCDF v4

Tier of electricity consumption 1 year (2018) 1 km netCDF v4

Table 3.  Output data files, resolution, and format.

Fig. 3  Scatterplot representing: (a) the national electricity access rates estimated at the pixel-level relative 
to values reported by ESMAP/World Bank for year 2016 (the point size is scaled to the national population 
and colours describe the PPP per-capita GDP of each country); (b) the province-level electricity access rates 
estimated at the pixel-level relative to USAID/DHS StatCompiler (with point size scaled to the province 
population and colours identifying the country of belonging). Various years are included between 2014 and 
2017, depending on the survey data available for specific countries.
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significant problem. At the same time, a pixel being identified as dark still allows for the possibility that some form 
of (standalone) electricity generation is in place. Therefore, our estimate might be interpreted best as a measure 
of grid-based electricity access. Crucially, the accuracy of official electrification levels and the differing survey 
criteria by which a household is considered electrified across countries can affect the validation. In any case, 
both caveats are mitigated here by the high resolution of the data, which limits potential errors of misclassifying 
populations as with or without access.

Overall, the validation shows that our bottom-up approach to estimate electrification levels - derived from 
1-km grid cell level estimates - represents a generally effective method for predicting national electrification levels. 
In an attempt to perform a more precise validation, we collected survey-derived province-level shares of house-
holds with access to electricity from the USAID/DHS Program STATcompiler (demographic and health sur-
veys, and disease-related surveys)10. This was possible for fifteen SSA countries (Angola, Burundi, Burkina Faso, 
DR Congo, Ethiopia, Ghana, Mali, Malawi, Mozambique, Nigeria, Senegal, Sierra Leone, Tanzania, Zambia, and 
Zimbabwe). It is emphasized that the the surveying period of data reported by the USAID/DHS STATcompiler 
often spans between two calendar years. Therefore, to produce a consistent validation, we referred to different 
years (between 2014 and 2017) dependent on the survey year in each country, and produce NTL-based estimates 
for each year. Also, USAID/DHS data are subject to smoothing processes due to the use of sampling weights 
(equivalent to the frequency that the sampling unit represents in the target population.), which might skew access 
rate estimates10.

Our methodology is found to be consistent with the specific electrification levels (R2 = 0.81), as shown in 
Fig. 3b, although a few inconsistencies exist. In particular, greater error is observed between our estimate and 
the USAID/DHS data for provinces with smaller populations. This suggests that the approach is generally more 
effective in estimating electrification in more populated provinces.

Last, to validate the estimated electricity consumption tiers in rural and urban areas, respectively, we retrieve 
household survey data from the World Bank Microdata Library (http://microdata.worldbank.org). Recent data 
on expenditure or consumption of electricity between 2014 and 2018 are available only for three countries: 
Malawi (2016–17), Nigeria (2015–16), and Uganda (2013–14). Thus, it must be highlighted that the estimate is 
built on data from year 2018, but it could only be validated on earlier field data. In all cases, the data collected refer 
to consumption in the month preceding the survey. Expenditure had to be divided by reference prices to obtain 
power demand. For Malawi, a price of MWK 26 in rural and MWK 35 in urban areas was used64, for Nigeria a 
price of NGN 7 in rural and NGN 12 in urban areas was considered65, while for Uganda a price of UGX 400 in 
rural and UGX 550 in urban areas was adopted66. Price discrepancies account for cross-subsidies and monthly 
fees exempted from rural households with low consumption levels67. Continuous consumption values have then 
been clustered into tiers of daily consumption following the thresholds as defined by the World Bank Multi-Tier 
Framework (WB-MTF)59, with WB-MTF Tiers 4 and 5 (the two highest) aggregated to construct a consistent set 
of four estimated tiers. Urban and rural areas are distinguished in the surveys for each household. Figure 4 reports 
the results of the validation, which show a rather consistent estimation.

The main discrepancies are observed for low consumption tiers in rural areas, where our estimate predicts a 
relevant fraction of the electrified households to live with less that 1 KWh/day, a result which does not find robust 
evidence in surveys. In all likelihood, the main reason behind this discrepancy is that survey questions about 
electricity expenditure and consumption only target grid-connected households, and thus results underrepre-
sent communities relying on decentralised electricity access solutions, which often also have low consumption 
levels. Another significant discrepancy is observed for households consuming more than 3.4 KWh/day in urban 
Uganda, overestimated by our data. Here, a plausible source for the discrepancy concerns the high population 
density characterising Kampala and the provinces surrounding Lake Victoria, resulting in greater urban-rural 
classification uncertainty.

Sensitivity analysis.  The analysis includes two main sources of uncertainty: the choice of the NTL noise 
floor, and the accuracy of the gridded population data across different years.
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Fig. 4  Validation of estimated consumption tiers compared to World Bank Multi-Tier framework thresholds in 
urban and rural areas, drawn from household surveys for selected countries with data availability.
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Supplementary Fig. 3a shows the change in the estimate in response to a ±25% change in the NTL data noise 
floor (set at 0.25 μW · cm−2 · sr−1 until 2016 and 0.35 μW · cm−2 · sr−1 for later years, as discussed in the Methods 
section) and can be interpreted a as a confidence interval for the estimate. Although the accuracy of the estimates 
are heterogeneous across countries for the three noise floors, a simple linear regression yields an adjusted R2 of 
0.77 for the baseline, 0.76 for the +25%, and 0.78 for the for the −25%. Therefore, the overall fit does not vary 
substantially, and it is a country-specific question which noise floor minimizes the discrepancy with the World 
Bank reported electrification levels. In our analysis, for consistency purposes we keep the noise floor constant at 
the baseline. In advanced regional or country-level analysis, it is recommended to carry out ad-hoc sensitivity 
analysis on the parameter, by modifying the open-access scientific computing framework.

Supplementary Fig. 3b compares the validation obtained with LandScan and WorldPop data. In this case 
some countries’ reported electrification levels are better estimated when the WorldPop population data are used - 
despite a generally lower fit overall. However, the LandScan results in a ceteris paribus significantly more accurate 
prediction of national electrification level than the WorldPop. A simple linear regression produces a R2 of 0.77 for 
the LandScan and of 0.63 for the WorldPop data. Therefore, results underpin the choice of using LandScan as the 
default gridded population.

Usage Notes
The dataset is in netCDF (Network Common Data Form) format, which is the standard default for gridded 
time-series data in the earth system modeling community. For the population without access dataset, the netCDF 
file features five layers, which describe years between 2014 and 2018. Each pixel contains the local count of the 
people estimated to live without access to electricity. For the tiers of consumption, the netCDF only contains data 
in pixels where people have access in year 2018. Pixel values range over integers between 1 and 4, where each 
refers to the tier of consumption estimated locally.

The data have a native resolution of 1-km, which allows for assessments at different scales. It can be ana-
lyzed without further edits, but also aggregated at the province level. Potential applications relate to the design of 
scenarios and the projection of future pathways of energy access and consumption in the sub-Saharan African 
continent. This is of particular relevance if the dataset is combined with gridded information on income and pop-
ulation to produce future scenarios of energy access and demand. As discussed in68, there is a need for improved 
data and representation of future energy demand in developing countries. The elaboration of such information in 
Integrated Assessment Models could substantially improve the understanding of the drivers, impacts, synergies 
and trade-offs between different development goals.

The data also have potential to be used in inequality and vulnerability assessments and scenarios. Including 
local-level information about electricity supply and quality offers new possibilities for assessing and correlating 
adaptation options at a finer spatial scale across different spheres, such as health, productivity, agricultural out-
comes, and migration. Further uses include the improvement of the input data for long-term infrastructure opti-
mization models at different spatial scales, or the assessment of national/village-level policies and the effects over 
the 2014–2018 period. At the same time, new NTL data are published on a monthly basis. This allows updating 
the dataset presented here and keeping track of progress with little delay as new data become released.

Finally, the methods and output datasets also exhibit significant potential for being used and improved 
through applications of machine learning and neural-network based methods for identifying patterns, clusters 
and dynamics. For instance, to date the Google Earth Engine platform27 allows for the implementation of up to 
ten different machine learning algorithms on geospatial data. Using those methods to detect electricity-related 
infrastructure69, such as power lines (as recently shown in70), power plants, and substations, may allow further 
improving electricity access and consumption estimates. Furthermore, the forthcoming VIIRS Black Marble 
VNP46 new NTL data product71 is likely to allow even a greater precision in the estimation of electrification levels 
and proxying of consumption levels thanks to less noisiness and more precise calibration of the data.

Code Availability
The latest version of the code and guide for the dataset reproduction are hosted at https://github.com/giacfalk/
Electrification_SSA_data.

The code is available in two files: a JavaScript file to be imported into Google Earth Engine (step 1), and an R 
script to be run after having run the JavaScript file in Earth Engine (step 2). In order to run the Earth Engine script, 
it is necessary to create a Google account and register for Earth Engine via https://signup.earthengine.google.com.

All the input data required for the analysis are openly available, with the exception of the LandScan gridded 
population dataset. To obtain access to population data, it is possible to either apply for an account to use the 
LandScan data at https://landscan.ornl.gov/user/apply, or use the WorldPop data, which are directly accessible 
through running the script in the repository.

Analysis was run in R 3.4.4 using packages raster (2.8–19), ncdf4 (1.16), RnetCDF (1.9–1), googledrive (0.1.3), 
data.table (1.11.8), dplyr (0.7.8), plyr (1.8.4), ggplot2 (3.0.0), wbstats (0.2), ggrepel (0.8.0), sf (0.7–1), cowplot 
(0.9.3), reshape2 (1.4.3), rworldmap (1.3–6), rgdal (1.3–6), tidyr (0.8.3) and RColorBrewer (1.1–2). Furthermore, 
the checkpoint package (0.5.0) is used to provide a snapshot of and retrieve the required version of the packages 
and their dependencies.

The average processing time for the Google Earth Engine Javascript code (to run and export assets to Google 
Drive) is about 10 minutes, while the R script takes around 10 minutes to install the required packages and 
dependencies, and an additional 10 minutes to generate the netCDF files and the figures and save them (although 
this depends on the specifications of the hardware used). Note that the running time of the R script is also sensi-
tive to the internet connection speed, since the script retrieves the assets from Google Drive.

The processing of satellite data and geospatial operations are performed at a 1000 m scale under a EPSG 4326 
coordinate reference system.
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