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Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous rare disorders

associated with retinal dysfunction and death of retinal photoreceptor cells, leading to

blindness. Among the most frequent and severe forms of those retinopathies is retinitis

pigmentosa (RP) that affects 1:4,000 individuals worldwide. The genes that have been

implicated in RP are associated with the proteins present in photoreceptor cells or

retinal pigment epithelium (RPE). Asymmetric presentation or sudden progression in

retinal disease suggests that a gene mutation alone might not be responsible for retinal

degeneration. Immune responses could directly target the retina or be site effect of

immunity as a bystander deterioration. Autoantibodies against retinal autoantigens have

been found in RP, which led to a hypothesis that autoimmunity could be responsible

for the progression of photoreceptor cell death initiated by a genetic mutation. The

other contributory factor to retinal degeneration is inflammation that activates the innate

immune mechanisms, such as complement. If autoimmune responses contribute to the

progression of retinopathy, this could have an implication on treatment, such as gene

replacement therapy. In this review, we provide a perspective on the current role of

autoimmunity/immunity in RP pathophysiology.
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INTRODUCTION

Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous rare disorders
associated with the retinal dysfunction and death of retinal photoreceptor cells. An incidence of
IRD is estimated for 1 in 2,000–3,000 individuals, affecting about 2 million people in the world (1).
The disease progresses over several decades of patient life and could be a rapid evolution over two
decades, or a slow progression that never leads to complete blindness. A dysfunction or death of
photoreceptor cells may cause vision loss and blindness. The prognosis of vision loss is difficult
to determine because the disease symptoms may depend on a type of inheritance (autosomal
dominant, autosomal recessive, or X-linked) and retinal regions involved that includes the
periphery, the macula, and both the macula and periphery (2, 3). Furthermore, considering retinal
cell contribution to pathology, IRDs can be divided into rod-dominant defect, cone-dominant
defect, macular dystrophy, dysfunction of photoreceptors, and bipolar cells, vitreoretinopathies,
and hereditary choroidal diseases (3). Among the most frequent and severe forms of those
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retinopathies is retinitis pigmentosa (RP) which affects 1:4,000
individuals worldwide (1, 4). The objective of this review is to
provide a perspective on the current knowledge on the role of
autoimmunity/immunity in retinal degeneration initiated by a
genetic mutation.

RETINITIS PIGMENTOSA

The retina consists of two types of photoreceptor cells, rods that
are responsible for night vision, and cones for daytime vision
and color vision. RP is characterized by degeneration of rods and
cones caused initially by the gene mutations, typically affecting
rods. Vision loss occurs when the primary rods deteriorate and
are eliminated, which usually causes healthy cones to decline
next, resulting in blindness (5). The age of RP onset differs and
depends on the gene mutations. The rod dysfunction affects the
peripheral retina and loss of central vision is the consequence of
cone dysfunction, which occurs usually later in life. In addition,
when cone degeneration occurs first, it leaves rods mostly
unaffected but can cause a severe loss of visual acuity and daylight
vision. Early-onset RP is diagnosed when the symptoms of mid-
stage RP are already present at 2 years of age and late-onset RP
is diagnosed when the symptoms are clinically apparent at or
after midlife.

More than 250 genes with about 4,500 causative mutations
are identified in different IRD-related diseases (RetNet—Retinal
Information Network, http://www.sph.uth.edu/retnet) (6, 7).
The genes that have been implicated in syndromic and non-
syndromic disease are mostly associated with photoreceptors or
RPE, and they involve phototransduction, visual cycle cascade,
photoreceptor transcription, and structure (2, 7, 8). Although
various genetic mutations have been identified in the patients
with RP, the mechanisms by which, these mutations lead to
photoreceptor apoptosis, remain mostly unknown (9, 10).

Non-syndromic RP usually involves the peripheral visual field
loss, pigment deposits in the fundus, loss of photoreceptor cells
as shown at optical coherence tomography (OCT) of the retina,
and decreased or absent rod functional responses evaluated by
electroretinography (ERG) (11–13). Pigmented deposits, called
bone spicules found in the periphery of the retina are a result
of photoreceptor cell degeneration. Other classic triads of RP
that include intra-retinal pigment migration, optic nerve pallor,
and attenuated vessels are not always present on the initial
examination. Death of rods can be a direct consequence of
genetic mutations; however, death of cones may be caused by
the initial death of rods, not to mutations in the cone proteins.
Therefore, the period between the onset of rod degeneration and
a patient’s legal blindness often spans decades (14). To add to
the complexity of RP, 20–30% of patients may have an associated
non-ocular condition (15).

Most information on the IRD degenerative mechanisms was
obtained from the animal models that mimic photoreceptor cell
degeneration phenotypes but the knowledge of molecular
signaling pathways associated with RP pathogenesis is
still incomplete (16, 17). Increasing evidence shows that
immune/autoimmune processes may also contribute to the

pathogenesis of RP, causing additional retinal degeneration (18).
Immune responses could directly target the retina or be a site
effect of immunity as a bystander deterioration (19).

The retina has a unique immune defense system, consisting
of innate immune cells and the complement system. The
sequestration of the eye from the immune system is part of the
phenomenon known as an immune privilege (20). Under normal
physiological conditions, the retina resides behind the protective
blood-retinal barriers, and circulating immune cells are not able
to enter the retina (21). In immunologically privileged sites, such
as the eye, brain, and testis, autoreactive T cells and B cells can
cross from the periphery into the tissue and remain inactive
due to the sequestration of antigens behind those barriers (22).
However, the sequestration of retinal antigens can be broken by
infectious agents or other causes of tissue damage, which may
lead to disease development (23). Such an event is dependent on
several factors, such as the nature and dose of an antigen, number
of exposures, frequency of activated T cells, upregulation of
the major histocompatibility complex (MHC), and costimulatory
molecules in the affected tissues (24).

AUTOIMMUNITY IN RETINAL
DEGENERATION

Autoimmunity develops when the immune responses react
against the own body, causing inflammation, degeneration,
tissue destruction, and organ failure. Autoimmune responses
resemble normal immune responses to the pathogens but
they are activated by self-antigens or autoantigens. Immune
mediated destruction of self-tissue could occur through specific
recognition of autoantigens or could be a byproduct of non-
specific inflammation (25, 26). Autoimmune diseases have
high prevalence (∼7–9%) in the population, mostly affecting
women, and can cause major illness and death (22). There are
different triggers and pathways involved in the pathogenesis of
autoimmune diseases (27). The most important feature of an
autoimmune disease is the knowledge of an autoantigen involved
in the pathogenic process. The retina contains a number of potent
autoantigens that are expressed in the thymus and secondary
lymphoid tissue, where immunologic tolerance and prevention
of autoimmune disease is maintained by a variety of processes,
such as clonal deletion and anergy (28–30). Thymic expression
is a common feature for all the tissue-specific antigens and their
levels of expression play a role in determining the susceptibility
to autoimmunity against these molecules.

The other contributory factor to retinal degeneration
is inflammation that activates innate immune mechanisms,
such as toll-like receptors, inflammasome receptors, and
complement components that initiate complex cellular cascades
by recognizing or sensing different pathogen and damage-
associated molecular patterns (31, 32).

Some observations corroborate that a gene mutation
alone might not be responsible for retinal degeneration, e.g.,
sudden acceleration in photoreceptor decline does not explain
degeneration caused by a gene mutation but is an indication that
some other processes may be involved. The gene mutations may
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initiate a stress of photoreceptor cells, secretion of chemokines,
and recruitment of microglia to the outer retina, which in
effect induces immune (inflammatory cells, cytokines, and
chemokines) and autoimmune responses (autoantibodies,
autoreactive B cells, and T cells) (33–35). Accumulated microglia
secrete cytokines that can cause an increase photoreceptor cell
death, disruption of the blood-retina barrier, and attraction
of macrophages into the retina (33). Cell death, deposition
of debris into subretinal space, and antigens released from
dying cells/debris may trigger an autoantibody production (32).
The presence of autoantibodies (AAbs) is the consequence of
breakdown of tolerance and they are an important serological
feature of autoimmune diseases. Initially, circulating AAbs
and minor tissue infiltrates may appear without clinical
consequences, but later in life, the autoantigens released from the
damaged organ may be recognized as foreign substances by the
immune system and, in effect, develop pathogenic autoimmunity
(autoimmune disease) (19, 26). Altogether, in RP, autoimmunity
is likely to be responsible for the progression of photoreceptor
cell death that was initiated by a defective gene.

In recent years, a new entity of retinal degenerative disease
has been recognized as “autoimmune retinopathy” (AR). AR is
oftenmistaken for RP, because of the overlapping clinical findings
and subacute vision loss (36, 37). However, AR has distinctive
features that include progressive vision loss, often sudden onset
later in life, photopsias, and unique visual field defects in the
patients without familiar history of RP. In addition, AR is
characterized by lack of pigment deposits that often distinguish
AR from RP. ARs may present as paraneoplastic syndromes,
such as cancer-associated retinopathy and melanoma-associated
retinopathy (38–40). Additionally, AR may present without
underlying malignancy but have clinical and immunological
findings similar to paraneoplastic retinopathies (36, 41, 42).
The hallmark of the syndrome are serum AAbs against retinal
proteins that may be involved in the pathogenic processes (43–
45). Anti-retinal AAbs can persist over the evolution of retinal
degeneration and perpetuate the condition (19). Furthermore,
cellular immunity is involved in the condition as increased
number of memory T cells, NK cells, and decreased regulatory
B cell subsets were found in many patients with AR compared
with normal controls (37). The role of many different pathways of
the immune system in the pathogenesis and progression of AR is
under investigation to help with AR diagnosis (46). However, the
evidence that the immune system is involved in AR pathogenesis
helps with successful treatment of the patients with AR with
immunosuppressive drugs, IVIg, and rituximab (42, 47).

PATHWAYS CONTRIBUTING TO THE
DEATH OF PHOTORECEPTORS

The extent of the immune system activation during RP is still
unknown. One can argue that the loss of controlling mechanisms
contributes to tissue damage and activation of pro-apoptotic
pathways in the retina, ultimately leading to cell death (48–
50). To understand its pathology, the immune and autoimmune
responses must be examined when a patient first presents
some aspects of visual loss. However, the age at onset varies

since some patients develop symptomatic visual loss in early
childhood, whereas others can remain relatively asymptomatic
until mid-adulthood. In addition, the failing photoreceptor
cells are phagocytized by microglia to avoid the initiation of
inflammation (51, 52). Several studies emphasized that the
molecular mechanisms of cell death depends on the caspase-
dependent or -independent apoptotic mitochondrial pathway,
involving the Bcl-2 family of proteins (53–56). Besides, anti-
and pro-apoptotic Bcl-2 protein members exist in retinal cells,
suggesting their role in retinal disorders (9, 57). The animal
models of retinal degeneration showed that different cell-death
pathways could be activated and some of them were genotype-
specific (58).

In addition, degeneration of rod photoreceptor cells can
be caused by an impairment of autophagy, the process which
participates in cell death possibly by initiating apoptosis (59–61).
Degradation of proteins by autophagy to prevent the formation
of protein aggregates seems to be a necessary process to prevent
retinal degeneration (62). Therefore, it is essential to identify
all the steps in RP cell death pathways to provide targets for
treatment unrelated to the genetic mutations (63). Findings from
the animal models have shown that photoreceptor cell death
occurred in mice- and rats-expressing mutant rhodopsin in a
similar pattern as in humans and the animals manifest clinical
signs of autosomal dominant retinitis pigmentosa (ADRP) (64).

The inflammatory cells contribute to retinal degeneration
through their cytotoxic effects on photoreceptors (65). Increased
levels of pro-inflammatory cytokines and chemokines, in
addition to anti-retinal AAbs and immune cells, were detected
in sera, aqueous humor, and vitreous of the patients with RP
(18, 31, 37, 66, 67) and in the rodent disease models (68, 69).
Usually, there is a significant upregulation of the inflammatory
markers [interleukin (IL)-1β, IL-6, tumor necrosis factor α (TNF-
α), monocyte chemoattractant protein-1 (MCP-1), and ionized
calcium binding adaptor molecule 1 (IBA1)] by intraocular
cells to start the inflammatory processes (70, 71). In fact, the
pro-inflammatory Th1 cytokines (IL-1α, IL-1β, IL-2, IL-6, and
INF-γ) characteristic of a cytotoxic response, along with anti-
inflammatory Th2 cytokines (IL-4 and IL-10) were found in
aqueous humor and vitreous fluid of the patients with RP (31, 66).
The vitreous in patients with RP predominantly contained CD4
and CD8T cells, as well as human leukocyte antigen (HLA)-DR
activated cells and some B cells. Moreover, serum high-sensitivity
C-reactive protein (hs-CRP) was significantly increased in the
patients with RP, and higher hs-CRP was associated with faster
deterioration of central visual function (72). The patients with an
increased number of inflammatory cells showed reduced visual
function (reduced visual acuity and visual fields). All those factors
may contribute to the progression of the retinal degeneration,
and systemic and local inflammation can change overtime with
the progression of tissue degeneration in RP (31, 37).

AUTOANTIBODIES IN RETINITIS
PIGMENTOSA

Autoantibodies (AAbs) are frequently found in RP and in healthy
individuals. High-affinity pathogenic AAbs are produced by
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antigen-stimulated B cells that undergo somatic hypermutation
to become long-lived plasma cells as a result of the self-tolerance
breakdown (73, 74). Serum IgG autoantibody profiles are unique
to an individual and may be remarkably stable over time (75).
Presence of circulating AAbs specific for photoreceptor antigens
raises the possibility of their pathogenic role (19).

In recent years, significant progress has been made in
understanding the role of anti-retinal AAbs in pathogenesis,
diagnosis, and management of AR, such as paraneoplastic
retinopathies (45, 76–78). Since the ocular findings in ARs are
similar to those found in many forms of RP, especially those that
do not have family history of retinal degeneration, one could
hypothesize that an underlying autoimmunity could cause, or at
least contribute to, the progression of retinal disease. In early
studies, the high levels of anti-retinal IgG and IgM antibodies
were found in various cohorts of the patients with RP (79–81).
However, specificities of those AAbs have not been determined
by the investigators. Later studies showed ∼2% sera of simplex
patients with RP possessed anti-recoverin AAbs, which let the
authors to hypothesis that anti-recoverin AAbs exacerbate the
underlying RP disease (76). This is in an agreement with the
recent study that showed the patients with RP over 50 years old
with identified gene mutation and history of cancer, had serum
anti-recoverin AAbs (82). Such AAbs occurred more likely in
the patients with RP with cancer than in the patients without
cancer. This suggests that anti-recoverin AAbs were generated
in response to cancer rather than to degenerating retina due
to the gene mutation, because the mutations in the tumor
genome can cause tumors to express mutant proteins, such as
recoverin, that is normally expressed on the retina. Moreover,
anti-retinal AAbs were reported secondary to the gene defects
in the patients with RP (18, 66, 72) but their role have not been
fully explained.

Autoantibody Targets Are the Same
Proteins as Mutated Gene Products in RP
The likely sequence of events in the generation of anti-retinal
AAbs in RP is the death of photoreceptor cells induced by a
gene mutation, which causes the release of antigenic proteins
that are then captured by the potential antigen-presenting
cells (e.g., macrophages), and breakdown of the blood-retinal
barrier during that process (83). An abnormal gene may
lead to an abnormal protein or an abnormal amount of a
normal protein, and mutated proteins can cause pathology
by misfolding and aggregation. Those proteins can be targets
of the autoimmune response, especially when mutation leads
to photoreceptor degeneration (69). When photoreceptors die,
it would be expected that the immune system targets freed
proteins from failing outer segments and elicits AAbs against
those autoantigens with the help of macrophages. Some patients
with RP may have serum AAbs against retinal proteins that
were subject to disease-causing mutation (8, 39). For example,
AAbs against arrestin were detected in the patients with RP as
well in the patients with autoimmune uveitis or autoimmune
retinopathy (84, 85). However, the degree of immune reactivity
against arrestin and the severity of disease in the patients

with RP are not strongly correlated. This observation suggests
that the immune responses to the retinal autoantigens are
regulated by factors other than the level of retinal damage and
the release of antigens from the affected tissues. The systemic
autoimmune responses may play a bigger role in formation
of AAbs.

The presence of AAbs in RP led to a hypothesis that
autoimmunity could be responsible for the progression of
photoreceptor cell death initiated by a genetic mutation. A
majority of causative mutations in RP involve proteins that
participate in the phototransduction cascade, such as rhodopsin
(RHO), the catalytic unit and subunits of PDE6 (PDE6A and
PDE6B, respectively), the subunit of the rod cyclic nucleotide
gated channel (CNGA1), and arrestin (SAG) (86). The patients
with AR have AAbs against phototransduction proteins (77).
Detection of anti-retinal AAbs suggests a generation of AAbs
started against mutant proteins in RP. However, whether AAbs
are made to a wild-type protein or mutant protein has yet to
be determined. The explanation of the role of specific mutations
as etiological causes for RP must mostly depend on their
ability to induce the pathogenic mutant proteins that cause
structural and functional changes in the cell, leading to retinal
pathology (87).

Recent studies on neurodegeneration in multiple sclerosis
(MS) showed that both, mutant and wild myelin protein PLP1
were able to generate the immune responses (88). Using wild
type and mutant peptide microarrays, several serum AAbs
against multiple mutated PLP1 have been found in those
patients. Anti-mutant PLP1 autoantibody responses provided
evidence that PLP1 mutations conceivably elicit the immune-
mediated destruction of myelin (88). We postulate that the
retinal proteins altered by a gene mutation in RP, act as
new autoantigens, thus AAbs may be generated with similar
specificities as to native proteins. It is not easy to determine
whether the patients have autoimmunity to a native or mutant
protein. Explaining the specific role of mutations as etiological
factors for RP relies on their ability to induce the structural
changes in proteins that have pathophysiological consequences
(87). Changes in the net charge of a protein may lead to
conformational modifications in the tertiary and quaternary
structure of that protein, and alters the interaction with other
proteins, especially human HLA molecules. This would apply
only to the mutations that change the amino acid sequences
in such a way that influence the structure and function of
proteins (89). The mutant-proteins accumulate during retinal
degeneration and can be seen by the immune system as
a new and amplify the autoimmune response, eventually
leading to autoimmune pathology. Also, the posttranslational
modifications, such as a protein citrullination can trigger the
activation of the immune system, both locally and systemically
for AAbs production, contributing to disease pathogenesis in
RP (35, 90, 91). These findings suggest that the presence of
mutations and associated immune response could be part of the
pathogenesis of RP.

Few years ago, it has been proposed that the genes encoding
for the proteins that become autoantigens could have a
fundamental propensity toward mutation (92). According
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to the study, the autoantigens contain significantly more
single nucleotide polymorphisms (SNP) than other human
genes do. The SNPs may represent an essential requirement
for the primary generation of an autoimmune response.
Structural features of a given autoantigen can be prerequisite
to determine whether such an antigen is suitable to induce
autoimmune response (89). Thus, the autoantibody repertoire
to the retinal antigens is represented by pro-inflammatory and
immunological properties of autoantigens (93, 94). The ability
of new antigens released from the damaged cells and tissues may
act as chemoattractants for leukocytes, which is an important
step in promoting inflammation and favoring the development
of autoimmunity (93). In fact, two retina-specific proteins,
arrestin and interphotoreceptor retinoid-binding protein
(IRBP) were found to be chemoattractants for lymphocytes
and immature dendritic cells (95). These autoantigens,
which have no primary or secondary structural homology
to chemokines, induce cell migration by interacting with
specific chemokine receptors. IRBP interacts with chemokine
receptors CXCR5 and CXCR3, and arrestin interacts with
CXCR3, and both the proteins can facilitate retinal damage
by inflammatory and immune responses, and potentially
contribute to the development of autoimmune diseases,
such as autoimmune uveitis (95). Moreover, during the
course of disease, specific AAbs bind stronger with the
target antigens in the later stage than those occurring in the
beginning (96).

Association Between Cystoid Macular
Edema With Anti-retinal Autoantibodies
The patients with RP experience central vision loss in the form
of cystoid macular edema (CME), which can form at any stage
of RP, in one or both the eyes, and in any genetic form but
is more often associated with Crumbs homolog (cell polarity
complex component) (CRB1) mutations (97). The origin of
macular edema remains poorly understood. CME is a major
cause of vision loss in uveitis (98). Anti-retinal AAbs, vitreous
traction, retinal pigment epithelium dysfunction, and Müller
cell edema can contribute to the pathology of CME (97). AAbs
against two enzymes, carbonic anhydrase II and enolase were
detected in the patients with bilateral CME and RP, suggesting
that these two enzymes play an important role in foveal function
(99). The high prevalence of anti-CAII and anti-enolase AAbs
in the patients with CME have also been found in a German
group of patients with CME (100). The authors proposed that
blocking of CAII and enolase activity by AAbs in the RPE
may be a major cause of edema formation. Independently, our
laboratory has also found the presence of anti-CAII AAbs in
the patients with PR with CME, further corroborating their
role in pathology of edema (101). In addition, the higher levels
of intraocular cytokines, such as IL-2 have been found in the
patients with CME, impaling their role of inflammation (66).
This suggests that inflammatory mediators as well as AAbs may
contribute to the development of inflammatory CME, but the
exact mechanism for the CME development and its persistence
is still unknown.

HLA AND RETINITIS PIGMENTOSA

A strong association between the HLA region and autoimmune
disease has been established over 50 years. The HLA molecules
are responsible for the induction and regulation of immune
responses, and selection of T cell repertoire (102). The class II
molecules, such as HLA-DR, DP, and DQ present exogenous
peptides that are expressed on antigen-presenting cells (dendritic
cells, macrophages, and B cells) and activated T cells. The likely
mechanisms, by which HLA polymorphisms could contribute
to the development of RP, may be related to the presentation
of autoantigens, the shared epitope, and molecular mimicry.
The only studies of HLA association and RP were performed
over 30 years ago (103). HLA serological typing study of
173 patients with autosomal dominant and recessive RP was
not different than the frequency of HLA antigens in control
population (103). Then, the study of 10 patients with autosomal
recessive RP showed a significant increase in the frequency
of the antigens Cw4, Cw6, and DR11 (104). In other retinal
diseases, the patients with severe diabetic retinopathy had
frequent alleles on the DR3-DQ2 haplotype, such as DRB1∗0301,
DQA1∗0501, and DQB1∗0201 (105). The association between
acute retinal necrosis syndrome and certain HLA specificities
suggested immune predisposition to the disease (106). RPE
cells phagocytose and recycle autoantigen-rich retinal rod outer
segments and co-express HLA DR and DQ Class II antigens
in response to IFN-gamma stimulation (107). This suggests
that the RPE cells may play an immunoregulatory function in
autoimmunity to the retinal antigens as primary inducers and/or
as suppressors of retinal inflammation (108). Further studies are
needed to understand whether the HLA polymorphism influence
the development of RP.

INNATE RESPONSES—CONTRIBUTORY
FACTOR?

There is some evidence that chronic inflammation is associated
with the pathogenesis of RP (109, 110). The indications of chronic
inflammation in the patients with RP and the rodent models
include the presence of serum retinal AAbs, immune cells in the
vitreous cavity of affected individuals, and increased levels of pro-
inflammatory cytokines and chemokines in aqueous humor and
vitreous fluid of the patients with RP (31, 32).

The retina has a unique immune defense system, consisting
of innate immune cells and the complement system. Microglia
that includes microglia (resident macrophages), perivascular
macrophages, and dendritic cells play an important role in
the retinal immune defense (111, 112). They are located
behind the blood-retina barriers within an immune-privileged
microenvironment in the inner layers of the retina, such as the
ganglion layer, inner plexiform layer, and outer plexiform layer
(113, 114).

Under normal physiological conditions, microglia are resting
but in the disease state, the activated microglia change their
shape and perform several important functions in the retina
that includes phagocytosis of debris and apoptotic cells,
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FIGURE 1 | Schematic steps in progressive retinal degeneration.

Mutant-proteins accumulate during retinal degeneration and can be seen as

new, which can amplify the autoimmune response, ultimately leading to

autoimmune pathology. Activation of immune cells by overproduction of

cellular debris due to photoreceptor death results in the inner Blood Retina

Barrier (BRB) breakdown, which invites systemic macrophages into the retina.

Resident and circulating macrophages can contribute to secondary retinal

damage from inflammation, and in effect ameliorate retinal degeneration.

maintenance of synapses, and response to inflammation (114).
Phagocytosis may actively induce apoptosis and those apoptotic
photoreceptors are selectively eliminated from the outer
nuclear layer to the subretinal space, and then phagocytosed
by monocyte-derived macrophages (115). The activation of
microglia contributes to retinal damage and disease progression
(69, 116, 117). Microglia have different functions depending on
the underlying cause of retinal degeneration (118, 119). In RP, the
death of rod photoreceptors may attract resident microglia that
become activated, depending on the local and systemic cytokines
secretion, then migrate to the outer retina to phagocytose
rod cell debris from dying cells (1, 48). Infiltrating microglia
secrete pro-inflammatory cytokines that stimulate photoreceptor
apoptosis (34, 63). Increased secretion of TNF-α and IL-1b was
found shortly after disease onset (120). The studies from our
laboratory, examining the evolution of autoimmune responses
against retina in naive dystrophic RCS rats over the course of
their retinal degeneration, linked the occurrence of anti-retinal
autoantibodies to the entry of activated macrophage/microglia,
suggesting their role in neurodegeneration (69). Microglial
activation is independent of the underlying genetic defect, and
it is not a side effect of hereditary photoreceptor dystrophies, but
can arise by the availability of endogenous retinal proteins from
the dying photoreceptors (121).

In addition, microglia are the source of complement and
complement-regulatory factors that are markedly up-regulated
in the human retinas with RP (122). The complement system
has an integral role in maintaining immune surveillance and
homeostasis in the eye microenvironment but overstimulation
of the complement system can induce retinal pathology and

ocular inflammation (32, 122). Complement mediates a wide
range of functions in the tissue and can be activated by
three distinct pathways: classical, alternative, and lectin. The
studies using the animal models of RP showed an involvement
of complement proteins in retinal degeneration (123). For
example, in the rd10 mouse that is caused by a spontaneous
mutation in Pde6β gene, at the stage when rod photoreceptors
have completely degenerated, there was an increase in many
classical and alternative complement pathway components,
such as C1q, C1r, C3, and C4 (124). However, photoreceptor
degeneration in the rd1 mouse with a naturally occurring null
mutation within the gene encoding Pdeβ was unaffected by C1q
component (125). In contrast, the levels of C1q progressively
increased over the course of photoreceptor degeneration in
the Rho–/– mouse when the mice lost all the rods over 3-
month period by apoptosis. The C3 and its receptor CR3
signaling regulate the microglia–photoreceptor interactions. The
deficiency of C3–CR3 lead to decrease microglial phagocytosis of
apoptotic photoreceptors and increase microglial neurotoxicity
to photoreceptor cells in RP (123). Another complement
protein C1q is shown to be the primary component of
cone photoreceptor survival factor (126). In the normal adult
RPE–choroid, the choroidal cells are the predominant local
source of most alternative complement pathway components
and regulators (127). Moreover, the occurrence of reactive
complement proteins on the surface of RPE cells may accelerate
lipofuscin accumulation by inhibiting their clearance (128).
These findings have potential implications for the pathological
mechanisms independent of genetic mutation and new targets
for therapy of retinal degeneration. Targeting the microglia
(e.g., minocycline) may reduce the production of several pro-
inflammatory mediators thus may result in broader beneficial
effects than just inhibition of single cytokines (129).

FINAL REMARKS

Inherited retinal diseases represent a highly heterogeneous group
of disorders that have one common element: abnormal visual
function originating at the death of retinal photoreceptors.
The gene defects can initiate death of retinal cells that
can progress further to symptomatic changes mediated by
immune and autoimmune responses (Figure 1). An initial gene
mutation followed by sudden loss and progressive nature of
retinal degeneration suggests the involvement of autoimmune
responses. Since there are a variety of genes and mutations that
cause retinal degeneration, gene replacement therapy approaches
that are currently in development may be time-consuming
and cost-prohibitive for treatment of all forms of RP. If
the autoimmune responses contribute to the progression of
retinopathy this could have implication on development of
retinal degeneration and success of gene replacement therapy.
Alternative approaches can be based on the immunological
pathways that cause retinal degeneration in different forms of RP.
In such cases, immunomodulatory and biologic drugs targeting
B cells could be beneficial in slowing retinal degeneration caused
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by a gene mutation. More studies are needed to fully establish the
role of autoimmunity in different forms of retinal degenerations.
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