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ABSTRACT
Dinosaurs and their close relatives grew to sizes larger than any other terrestrial

animal in the history of life on Earth, and many enormous dinosaurs (e.g.,

Diplodocus, Spinosaurus, Tyrannosaurus) have accessory intervertebral articulations

that have been suggested to support these large body sizes. Some pseudosuchian

archosaurs have been reported to have these articulations as well, but few have been

characterized in these taxa because of a lower abundance of complete, three-

dimensional pseudosuchian vertebral material in relation to dinosaurs. We describe

the axial column of the large (∼4–5 m) poposauroid pseudosuchian Poposaurus

langstoni from the Upper Triassic of Texas (TMM Locality 31025 of the Otis Chalk

localities; Dockum Group, Howard County, TX, USA). P. langstoni was originally

named from pelvic girdle elements and vertebrae; here we describe newly discovered

and prepared presacral vertebrae and a presacral rib from the original excavation of

the holotype in the 1940s. The well-preserved vertebrae have well-defined vertebral

laminae and clear hyposphene–hypantrum intervertebral articulations, character

states mentioned in pseudosuchians but rarely described. The new material

demonstrates variation present in the hyposphene–hypantrum articulation through

the vertebral column. We compared these morphologies to other pseudosuchians

with and without the hyposphene–hypantrum articulation. Based on these careful

comparisons, we provide an explicit definition for the hyposphene–hypantrum

articulation applicable across Archosauria. Within Pseudosuchia, we find the

hyposphene–hypantrum appeared independently in the clade at least twice, but we

also see the loss of these structures in clades that had them ancestrally. Furthermore,

we found the presence of large body sizes (femoral lengths >∼300 mm) and the

presence of the hyposphene–hypantrum is correlated in most non-crocodylomorph

pseudosuchian archosaurs with a few exceptions. This result suggests that the

presence of the hyposphene–hypantrum is controlled by the increases and decreases

in body size and not strictly inheritance.
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INTRODUCTION
The clade Archosauria, which includes extant birds and crocodylians, contains some

of the largest land animals ever to exist (i.e., sauropod and theropod dinosaurs,

Mazzetta, Christiansen & Fariña, 2004; crocodyliforms, Sereno et al., 2001; rauisuchians,

Nesbitt, Desojo & Irmis, 2013), and to understand the consequence of body size on skeletal

morphologies seen only in extinct taxa, we must turn to the fossil record. The appearance

of large body sizes in Archosauria during the Mesozoic Era was accompanied by large

variation in vertebral morphologies (Gauthier, 1986; Apesteguia, 2005;Wilson et al., 2016).

One example of a morphology present in dinosaurs that has been cited as associated

with increased body size is an accessory intervertebral articulation known as the

hyposphene–hypantrum articulation (Gauthier, 1986; Rauhut, 2003; Apesteguia, 2005).

In addition to the centrum faces and zygapophyses, this hyposphene–hypantrum

articulation forms a “lock-and-key” configuration between consecutive vertebrae.

More specifically, the hyposphene–hypantrum articulation consists of a ventrally

expanded lamina of bone that is present at the junction of the postzygapophyses (=the

hyposphene) that fits into a complementary space (=the hypantrum) that separates the

prezygapophyses at the midline (Rauhut, 2003; Apesteguia, 2005). In sauropod dinosaurs,

the presence of these structures has been hypothesized to be related to increased vertebral

column rigidity, thereby decreasing flexibility of locomotion (Apesteguia, 2005).

Among dinosaurs, the hyposphene–hypantrum articulation is present in many clades

with exceptionally large-bodied members such as derived sauropodomorphs and

theropods (Wilson, 1999; Makovicky & Norell, 2004; Brusatte & Benson, 2008; Benson,

2010; Bandyopadhyay et al., 2010; Pol, Garrido & Cerda, 2011), and it has been cited as a

saurischian synapomorphy (Gauthier, 1986) because the articulation is not present in

ornithischian dinosaurs. The hyposphene–hypantrum is also found to vary in shape

and size relative to the rest of the neural arch in sauropods (Apesteguia, 2005). The

hyposphene–hypantrum articulation, however, is not restricted to saurischian dinosaurs,

and descriptions of this vertebral feature have been reported in the close relatives of

dinosaurs (Nyasasaurus parringtoni, Nesbitt et al., 2013; Asilisaurus kongwe, Nesbitt et al.,

2010) and in extinct archosaurs more closely related to crocodylians than to birds

(Bonaparte, 1981; Azevedo, 1991; Weinbaum, 2013; Weinbaum & Hungerbühler, 2007;

Parker, 2008; Nesbitt, 2005; Peyer et al., 2008; Gower & Schoch, 2009; Lautenschlager &

Desojo, 2011; Nesbitt et al., 2014). Although the hyposphene–hypantrum articulation is

present in some paracrocodylomorphs (e.g., Poposaurus gracilis, Weinbaum &

Hungerbühler, 2007; Arizonasaurus babbitti, Nesbitt, 2005; Postosuchus kirkpatricki,

Postosuchus alisonae, Peyer et al., 2008; Prestosuchus chiniquensis, Azevedo, 1991;

Fasolasuchus tenax, Bonaparte, 1981; Batrachotomus kupferzellensis, Gower & Schoch,

2009), and in some aetosaurs (Desmatosuchus spurensis, Parker, 2008; Scutarx deltatylus,

Parker, 2016b), it is not present in extant crocodylians (Romer, 1956). Previous work has

not provided a comprehensive description of the hyposphene–hypantrum articulation

across taxa or explored the possible homologies across archosaurs. Furthermore, the

application of the term “hyposphene–hypantrum” to presacral vertebral morphology is
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inconsistent, and the variation of these structures, if any, is rarely reported. For each

specimen described in a publication the presence or absence of a true hyposphene–

hypantrum articulation was left up to the interpretation of the author, and their verdict is

typically unaccompanied by an explanation.

To explore the morphology of the hyposphene–hypantrum articulation in

pseudosuchians, we describe the axial column of the large pseudosuchian Poposaurus

langstoni from the Late Triassic of Texas. The holotype specimen of this species was

collected in the early 1940s near Otis Chalk, TX, USA (TMM Locality 31025) from

the Dockum Group (Long & Murry, 1995). The holotype was erected solely based on

the right ilium (TMM 31025-12), but additional material comprising four presacral

vertebrae (eighth cervical, pathologically fused ninth cervical and first trunk, and

third trunk) and a right ischium was also referred to the same species by Long &

Murry (1995). Additional presacral vertebrae and most of a rib were collected from the

same quarry as the holotype and previously referred material during the original

excavation in the early 1940s; we attribute this material to P. langstoni and describe it

herein for the first time because it has only been prepared recently. We also describe

two vertebrae (TMM 31025-177, TMM 31025-257) in detail that were previously

figured by Long & Murry (1995), but not described in detail with the previously

published material. The material of P. langstoni we describe here is of interest

because it includes a variety of presacral vertebrae (four cervical, four trunk) from

throughout the column, and it is preserved in three dimensions so that articulation

surfaces are easy to discern. These characteristics are not present in most Triassic

pseudosuchian fossils (e.g., Sillosuchus longicervix, PVSJ 85, Alcober & Parrish (1997);

Ticinosuchus ferox, PIZ T 2817, Krebs (1965)) because preservation is typically poor in

Triassic-aged deposits. These vertebrae possess features that traditionally have been

associated with saurischian taxa, including vertebral laminae (Wilson, 1999) and the

hyposphene–hypantrum articulation (Apesteguia, 2005), and help act as a benchmark

for comparison with other pseudosuchians with similar structures.

SYSTEMATIC PALEONTOLOGY

ARCHOSAURIA Cope, 1869 sensu Gauthier, 1986

PSEUDOSUCHIA Zittel, 1887–1890 sensu Gauthier & Padian, 1985

POPOSAUROIDEA Nopsca, 1923 sensu Nesbitt, 2011

POPOSAURUS LANGSTONI Long & Murry, 1995 sensuWeinbaum & Hungerbühler, 2007

Horizon and Locality: Quarry 1 of the Otis Chalk localities (TMM Locality 31025),

Dockum Group, Howard County, TX, USA. Biostratigraphic and lithostratigraphic

correlations indicate the Otis Chalk localities are Upper Triassic (latest Carnian–early

Norian) (Stocker & Kirk, 2016).

Holotype: TMM 31025-12, right ilium.

Previously Referred Specimens:

TMM 31025-257, right ischium.
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TMM 31025-259, fused last cervical (ninth presacral) and first trunk (10th presacral)

vertebrae.

TMM 31025-177, presacral vertebra (posterior cervical).

TMM 31025-257, presacral vertebra (anterior trunk).

Newly Referred Specimens:

TMM 31025-1261.5, presacral vertebra (mid-cervical).

TMM 31025-1262, presacral vertebra (mid-cervical).

TMM 31025-1261.3, presacral vertebra (mid- to posterior cervical).

TMM 31025-1261.4, presacral vertebra (anterior to mid-trunk).

TMM 31025-1261.1, presacral vertebra (anterior to mid-trunk).

TMM 31025-1261.2, presacral vertebra (mid- to posterior trunk).

TMM 31025-2160, most of a presacral rib.

Justification for Newly Referred Material:

The holotype and the newly referred material were collected from the same quarry

(TMM 31025 Quarry 1) during the 1940 and 1941 excavations (unpublished WPA field

notes, TMM). The preservation and color of the holotype, referred, and newly referred

material are identical. The relative size is also consistent between this new material and the

previously referred material and holotype, but appears to represent two individuals

(see below) (Fig. 1).

We assign six presacral vertebrae to P. langstoni based on general morphology of

their centra and neural arches, well-defined vertebral laminae, and an accessory rib

articulation in the posterior cervical vertebrae (Figs. 2 and 3). These newly referred

vertebrae share some character states with both of the previously described vertebrae of

P. langstoni (Long & Murry, 1995; Weinbaum & Hungerbühler, 2007). The posterior

cervical vertebra of the newly referred material (TMM 31025-1261.3) possesses an

accessory rib articulation adjacent to the parapophyses and lacks a ridge on the ventral

surface of the centum, both features that link this material to previously referred material

(TMM 31025-177). This accessory rib articulation is a synapomorphy of the clade

Poposauroidea (Nesbitt, 2005;Weinbaum & Hungerbühler, 2007) because it is also present

in P. gracilis (TTU P-10419,Weinbaum & Hungerbühler, 2007), and in another member of

the clade, A. babbitti (MSM 4590, Nesbitt, 2005). These newly referred vertebrae of

P. langstoni also possess well-defined vertebral laminae that are also on vertebrae

previously assigned to P. gracilis (TTU P-10419,Weinbaum & Hungerbühler, 2007), as well

as on the vertebrae of many saurischian dinosaurs such as Apatosaurus louisae and

Allosaurus fragilis (Wilson, 1999) and other paracrocodylomorphs such as A. babbitti,

Postosuchus sp., F. tenax, B. kupferzellensis, and P. chiniquensis (Nesbitt, 2005; Weinbaum,

2013; Bonaparte, 1981; Gower & Schoch, 2009; Azevedo, 1991). The shape and

morphologies of the centra and neural arches of the new material described here,

including dorsoventrally elongate centrum facets, well-defined and pronounced laminae,

and an accessory rib articulation on the cervical vertebrae, are also strikingly similar to

that of P. gracilis (TTU P-10419, Weinbaum & Hungerbühler, 2007) and previously

referred vertebrae of P. langstoni (TMM 31025-177, TMM 31025-257, TMM 31025-259,

Long & Murry, 1995). The presence of these features in these new vertebrae allows us to
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assign them to the genus Poposaurus; however, because the diagnostic characteristics that

separate P. gracilis and P. langstoni are in the ilium and ischium (Long & Murry, 1995;

Weinbaum & Hungerbühler, 2007), we can only assign this material to P. langstoni by

relying on the information that they were collected from the same quarry during the 1940

and 1941 excavations as the ilium and ischium that erected the species (unpublishedWPA

field notes, TMM).

We suggest that among the holotype, referred material, and newly referred material

there are at least two individuals of P. langstoni based on a bimodal distribution of

the prezygapophyseal height to centrum height, and it appears at least one of the vertebral

positions is duplicated. We refer two of these vertebrae (TMM 31025-177, TMM

31025-257) to the same individual (individual “A” (Fig. 1A)) as the previously referred

pathologically fused vertebrae of P. langstoni from Quarry 1 (TMM 31025-259) because

they most closely resemble that material in size. These vertebrae (TMM 31025-177, TMM

31025-257) were both figured but not fully described by Long & Murry (1995) along with

TMM 31025-259, and those authors attributed these specimens to a novel taxon,

Lythrosuchus langstoni, because these presacral vertebrae were more compressed and taller

than previously described material of P. gracilis and possessed an accessory rib

articulation. Weinbaum & Hungerbühler (2007) later assigned these vertebrae to the same

genus, Poposaurus, because a specimen of P. gracilis (TTU P-10419) also possessed the

accessory rib articulation in a posterior cervical vertebra. The presacral specimens TMM

31025-1261.5, TMM 31025-1262, TMM 31025-1261.3, TMM 31025-1261.4, TMM

31025-1261.1, and TMM 31025-1261.2 we refer to as belonging to individual “B”

(Fig. 1B) because they are slightly larger than those vertebrae we have assigned to

individual “A.”

Poposaurus langstoni is only known from a single locality and other archosauromorphs

are known from the same locality. The stem archosaur Trilophosaurus buettneri and a

phytosaur are also known from TMM 31025, Quarry 1. The vertebral morphologies of the

three taxa known from the locality are disparate and can easily be distinguished from one

another. For example, the centra of T. buettneri are much longer anteroposteriorly than

7 8 9 10 11 12 13

8 9 10 11 12

(a) (b)

Figure 1 The reconstructed vertebral columns of both individuals of Poposaurus langstoni from the

holotype locality TMM 31025, (A) individual “A” and (B) individual “B.” Material includes vertebrae

described by Long & Murry (1995) and in this publication. Gray portions represent missing material.

Numbers refer to presacral position within the vertebral column. Arrow indicates anterior direction.

Figure not drawn to scale. Full-size DOI: 10.7717/peerj.4235/fig-1

Stefanic and Nesbitt (2018), PeerJ, DOI 10.7717/peerj.4235 5/37

http://dx.doi.org/10.7717/peerj.4235/fig-1
http://dx.doi.org/10.7717/peerj.4235
https://peerj.com/


they are dorsoventrally tall, whereas the centra of P. langstoni are dorsoventrally taller than

they are anteroposteriorly long. The vertebrae of T. buettneri (e.g., TMM 31025-140) are

also much smaller in overall size than the known material of P. langstoni (Long & Murry,

1995), which is sufficient evidence to claim that all material from TMM 31025, Quarry 1

that is much larger than the known T. buettneri material is likely P. langstoni. These

Figure 2 Cervical vertebrae of Poposaurus langstoni in anterior (left) and posterior (right) views.

(A, C) TMM 31025-1261.5, presacral 7; (B, D) TMM 31025-1262, presacral 8; (E, G) TMM 31025-

1261.3, presacral 9; (F, H) TMM 31025-177, presacral 8. Abbreviations: ara, accessory rib articulation; bs,

bivalve shell; c, centrum; dp, diapophysis; k, keel; nc, neural canal; ns, neural spine; poz, postzygapophysis;

pp, parapophysis; prz, prezygapophysis. Scales = 5 cm. Full-size DOI: 10.7717/peerj.4235/fig-2
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Figure 3 Trunk vertebrae of Poposaurus langstoni in anterior (left) and posterior (right) views.

(A, C) TMM 31025-1261.4, presacral 11; (B, D) TMM 31025-1261.1, presacral 12; (E, G) TMM

31025-1261.2, presacral 13; (F, H) TMM 31025-257, presacral 12. Abbreviations: c, centrum; dp, dia-

pophysis; ha, hypantrum; ho, hyposphene; nc, neural canal; ns, neural spine; poz, postzygapophysis;

pp, parapophysis; prz, prezygapophysis. Scales = 5 cm. Full-size DOI: 10.7717/peerj.4235/fig-3
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vertebrae also lack a spine table, which is evidence against them being attributed to the

phytosaur taxon known from this locality. Additionally, the phytosaur material is all from

a single individual and its preservation is distinct, being more yellow than this material’s

brown/orange color.

DESCRIPTION
Vertebrae (general)
The axial column of P. langstoni consists of eight presacral vertebrae, and all are well

preserved and nearly complete although most are missing parts of the diapophyses,

parapophyses, zygapophyses, and some are crushed slightly (Figs. 2 and 3). Each vertebra

can be assigned to a presacral position within a range of two or three positions, depending

on its general position among the other vertebrae preserved and based on comparisons

with other archosaurs with more complete vertebral columns. For this specimen of

P. langstoni, all the vertebrae were assigned general positions in the vertebral column

mainly based on the position of the diapophyses, as they appear higher on the neural

arch further posteriorly in the series as with P. gracilis (TTU-P 10419), Parringtonia

gracilis (NMT RB426), and a number of specimens of Alligator mississippiensis (e.g., TMM

M-12606).

In P. langstoni, cervical vertebrae were identified by the presence of the parapophyses on

the anterior rim of the centrum located anywhere from the base of the centrum to the

base of the neural arch just ventral to the location of the neurocentral suture, whereas

the parapophyses of trunk vertebrae are only present on the neural arch. The

parapophyses migrate dorsally from the base of the centrum posteriorly along the

tetrapod vertebral column (such as in P. gracilis and A. mississippiensis). Because the

diapophyses are located on the neural arch in vertebrae posterior to presacral 7 in other

paracrocodylomophs (e.g., P. gracilis, P. gracilis, A. mississippiensis) we can constrain the

position of the anteriormost vertebra of P. langstoni (TMM 31025-1261.5) at presacral

∼7 or 8. This vertebra also has a very slight ventral keel, which further constrains its

position to presacral ∼7 or 8 because this is characteristic of the most anteriorly located

cervical vertebrae in other paracrocodylomorphs (e.g., P. gracilis).

Using these criteria for assignment of position within the axial column, the known

vertebrae of P. langstoni include four cervical vertebrae and four trunk vertebrae (Fig. 1).

All centra are amphicoelous and slightly mediolaterally compressed. All vertebrae have

clearly defined vertebral laminae, and these laminae are identified using the nomenclature

of Wilson (1999) and more broadly used for early archosaur taxa (Nesbitt, 2005, 2007,

2011; Nesbitt, Liu & Li, 2010; Nesbitt et al., 2014; Weinbaum, 2013; Lautenschlager &

Desojo, 2011; Parker, 2008, 2016a, 2016b). All of the trunk vertebrae of this specimen

preserve one or both of the accessory articulation structures (i.e., hyposphene,

hypantrum) that form the hyposphene–hypantrum articulation. None of the cervical

vertebrae however have the hyposphene–hypantrum present, and this is consistent with

our observations that the articulation is only present in the trunk region (presacral

position 10 to the last presacral before the sacrum) of archosaur vertebral columns.
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Vertebrae (cervical)
The cervical vertebra of individual “A” (TMM 31025-177) and the three cervical vertebrae

of individual “B” (TMM 31025-1261.5, TMM 31025-1262, TMM 31025-1261.3) (Fig. 2)

are amphicoelous, but both the posterior and anterior articular surfaces of the centrum

are only slightly concave. The lateral and ventral portions of the anterior and posterior

articular faces of the centra of the cervical vertebrae of individual “B” are thickened and

rugose, a morphology that is more similar to P. gracilis than to previously described

material from P. langstoni (Weinbaum & Hungerbühler, 2007) and the centrum of the

cervical vertebra of individual “A.” The centra of these vertebrae are shorter

anteroposteriorly in comparison to their dorsoventral height.

Both articular facets of the centrum of TMM 31025-1261.5 are slightly elliptical, with

the long axis oriented dorsoventrally. The anterior articular facets of the centra of TMM

31025-1262, TMM 31025-1261.3, and TMM 31025-177 are circular, and the posterior

articular facets of these centra are slightly elliptical with the elongated axis oriented

dorsoventrally (Fig. 2). These posterior centrum facets are very similar in shape to those of

the anterior cervical vertebrae of P. kirkpatricki (UCMP A269/124557, Long & Murry,

1995; TTU-P 9002, Weinbaum, 2013) in that they appear elliptical and elongated

dorsoventrally. All of the cervical vertebrae possess deep laterally opening fossae on the

centrum on both their left and right sides just dorsal to the parapophyses and about 1 cm

ventral to the neurocentral sutures.

The two more posterior cervical vertebrae of individual “B” (TMM 31025-1262

and TMM 31025-1261.3) and the posterior cervical vertebra of individual “A”

(TMM 31025-177) possess a well-preserved accessory rib articulation between the

diapophysis and the parapophysis. The presence of these accessory articulations

provides evidence that these vertebrae had double-headed ribs associated with them, an

uncommon occurrence in pseudosuchians, reported only in this specimen, P. gracilis

(TTU P-10419), and A. babbitti (MSM 4590). Each of the accessory rib articulations are

dorsoventrally long and thin, projecting laterally from their respective centra. The

accessory rib articulation of TMM 31025-1262 is broken at its base on the left lateral

side, but it is intact on the right lateral side and protrudes 0.5 cm from where it attaches

to the rest of the centrum. It is located 1 cm dorsal to the parapophyses. The accessory

rib articulations of TMM 31025-1261.3 are intact on both sides, protrude 1.5 cm

laterally, are located 3.2 cm from the diapophyses, and are located just dorsal to

and touching the parapophyses. On the right lateral side of TMM 31025-177, the

accessory rib articulation is just dorsal to and separated by 1 cm from the parapophyses.

The left lateral side does not preserve this articulation; however, the paradiapophyseal

lamina is clearly broken in the place where the articulation would be present. The

accessory rib articulations on each cervical vertebra connect to the diapophyses through

the paradiapophyseal laminae. This accessory rib articulation is also present in the

posterior cervical vertebrae of P. gracilis (TTU P-10419) and A. babbitti (MSM 4590),

and it is a synapomorphy of the clade Poposauroidea (Nesbitt, 2005; Weinbaum &

Hungerbühler, 2007).
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Vertebrae (cervical; individual “A”)
TMM 31025-177
TMM 31025-177 is a posterior cervical vertebra. The positions of the parapophyses and

diapophyses place it as likely between presacral 7 and 9, and the positions of these

articulations are very similar to those in TMM 31025-1262. The parapophyses are low on

the centrum and well separated from the diapophyses, which are located on the neural

arch (Figs. 2F and 2H).

This specimen is mostly intact but is missing the neural spine, which is broken at

the base, and the left prezygapophysis is broken. Both postzygapophyses are broken

slightly at the edges and the diapophyses are both broken off where they connect to

the neural arch and laminae (Figs. 2F and 2H). The neural arch is fused to the centrum,

and although the neurocentral suture is nearly obliterated, there is still clear evidence of

where it was located because raised areas on the lateral sides with a distinctive texture

make the juncture (Brochu, 1996). The neural arch is slightly taller than the height of

the centrum, and the neural arch is taller than it is laterally wide. In anterior view,

the neural canal is deeply excavated and appears elliptical due to elongation of the

dorsoventral axis.

TMM 30125-177 has distinct laminae forming thin, pronounced ridges on its

neural arch. These laminae are thinner than those on the cervical vertebrae attributed

to individual “A.” On its lateral sides there are clear posterior and anterior

centrodiapophyseal laminae, which connect the diapophyses to the posterior and anterior

portions of the neurocentral junction, respectively. There is a clear paradiapophyseal

lamina connecting the parapophyses and diapophyses, and the accessory rib articulation

is located on this lamina. This paradiapophyseal lamina extends nearly straight

ventrally from the diapophysis, less than 5� from vertical. The postzygapophyseal laminae

are thin and well defined and connect the parapophyses and the lateral aspect of the

postzygapophyses at about a 10� angle dorsal to the anteroposterior horizontal. The

prezygadiapophyseal laminae are laterally thick and short with the prezygapophyses

and diapophyses less than 0.5 cm apart. These laminae are at a ∼45� angle dorsal to
the anteroposterior horizontal.

Vertebrae (cervical; individual “B”)
TMM 30125-1261.5
TMM 30125-1261.5 is the anteriormost vertebra of this newly referred material and can

be identified as a posterior cervical vertebra (presacral 7 or 8). It is nearly complete, with

only slight breakage and very minor post-depositional compression in some areas

including on and just ventral to the prezygapophyses. It also has a very slight ridge

along the midline of the ventral surface of the centrum. The parapophyses on the lateral

sides of this vertebra are located on the base of the anterior rim of the centrum and are

lowest on the centrum relative to the other vertebrae and well separated from the

diapophyses. The neural arch is fused to the centrum, and the neurocentral suture is

nearly obliterated, but there is a slightly raised area with a distinctive texture on the lateral

surface where the suture was originally present (Brochu, 1996). In anterior view, the neural
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canal is circular and filled with matrix and in posterior view, the canal is obstructed by a

large bivalve shell that based on general morphology, can be attributed to the freshwater

mussel group Unionidae (Huber, 2010) (Figs. 2A and 2C).

The neural spine is tall and laterally compressed in TMM 31025-1261.5. A long

depression extends dorsoventrally along the posterior surfaces of the neural spine. The

neural spine is virtually identical in preserved morphology to that of TMM 31025-1262,

but it is broken off at the dorsal end. In posterior view, the spinopostzygapophyseal

laminae are paired and form distinct ridges from the base of the neural spine to nearly the

distal end of the neural spine. The neural spine is flat in anterior view, and no

spinoprezygapophyseal laminae are present on that side. The neural spine is much wider

at its base, at 2.5 cm just dorsal to the postzygapophyses in posterior view, and tapers to

about 0.5 cm thick in anterior and posterior views at its most dorsal point. It does not

expand laterally into a “spine table” as in the mid-trunk vertebrae of Nundasuchus

songeaensis (NMT RB48), the anterior and posterior trunk vertebrae of F. tenax (PVL

3850, PVL 3851), the trunk vertebrae of P. chiniquensis (UFRGS-PV-0156-T), and

anterior trunk vertebrae of B. kupferzellensis (SMNS 80294). From lateral view, the neural

spine of TMM 31025-1261.5 remains relatively consistent in anterior–posterior length

at about 2.5 cm.

TMM 31025-1261.5 has distinct laminae that form thin, pronounced ridges on all

surfaces of its neural arch and centrum. These laminae are more laterally expanded

than the laminae of the posterior cervical vertebra of individual “B” (TMM 31025-177)

and are more similar in terms of lateral expansion to the other cervical vertebrae of

individual “A,” TMM 31025-1261.3 and TMM 31025-1262. On the lateral sides of TMM

31025-1261.5, there are clear anterior and posterior centrodiapophyseal laminae, which

connect the diapophyses to their respective portions of the neurocentral junction. The

paradiapophyseal lamina connects the parapophysis with the diapophysis, and is angled

∼5� from vertical in lateral view. The postzygapophyseal laminae are well defined and

connect the parapophyses and the lateral aspect of the postzygapophyses at about a 45�

angle dorsal to the anteroposterior horizontal. This specimen is crushed so that the left

postzygapophysis is pushed toward the diapophysis and this has compressed the lateral

side of the left postzygapophyseal lamina (Figs. 2A and 2C). The prezygadiapophyseal

laminae are laterally thick and the prezygapophyses and diapophyses are ∼3 cm apart.

These laminae extend dorsally from the diapophyses at a right angle to the anteroposterior

horizontal with the prezygapophyses being dorsal to the diapophyses. The club-like

diapophyses are fully intact where they connect to the neural arch, and the articular facets

at their distal ends are elliptical. In posterior view, there are clear embayments present on

the lateral sides of the transverse processes. A deep fossa is present on the left transverse

process in anterior view (=prezygapophyseal centrodiapophyseal fossa of Wilson et al.

(2011)), but a symmetrical counterpart is not present on the right transverse process

(Figs. 2A and 2C). There are epipophyses on the dorsal portion of the postzygapophyses

that form a rugose structure about 0.2 cm from the end of the articular surface. The

presence of epipophyses is typically cited as a synapomorphy of Dinosauria (Long &

Murry, 1995; Langer & Benton, 2006; Langer, Ezcurra & Bittencourt, 2010; Novas, 1996),
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but are known to occur within Pseudosuchia (Gower & Schoch, 2009; Bonaparte, 1981;

Nesbitt, 2007, 2010; Revueltosaurus callenderi, PEFO 34561) and are found outside

Archosauria among stem members (Nesbitt, 2011; Nesbitt et al., 2015). There are

interzygapophyseal laminae on the dorsal portion of the prezygapophyses connecting

their lateral edge to the anterior extent of the postzygapophyses, a feature also found in

Azendohsaurus madagaskarensis (FMNH PR 3823, Nesbitt et al., 2015).

TMM 31025-1262
TMM 31025-1262 is a nearly complete posterior cervical vertebra, with slight breakage and

minor post-depositional compression in some areas, including the prezygapophyses being

pushed toward the neural spine (Figs. 2B and 2D). This specimen can be attributed to

presacral 8 or 9; the parapophyses are low on the centrum, but slightly higher than those of

TMM 31025-1261.5, and well separated from the diapophyses, which are located on the

neural arch. TMM 31025-1262 also differs from TMM31025-1261.5 in that it has club-like

diapophyses that are more expanded and flare out at the distal end where the articular

facets are located; these articular facets are circular rather than elliptical like those of TMM

31025-1261.5. The neural arch is fused to the centrum and there is some evidence of where

a neurocentral suture was present on the right lateral side in the form of a small, raised

ridge (Brochu, 1996). There is no keel on the ventral surface of the centrum. In anterior

view, the neural canal is circular and filled with matrix, and the postzygapophyses nearly

come together at the dorsal portion of the neural canal.

The neural spine is tall and mediolaterally compressed. A long depression extends

dorsoventrally along the posterior surfaces of the neural spine. The neural spine is nearly

identical to that of TMM 31025-1265.5. In posterior view, the spinopostzygapophyseal

laminae are paired and form distinct ridges from the base to nearly the distal end of

the neural spine. There are no spinoprezygapophyseal laminae present on the neural

spine in anterior view. The neural spine is much wider at its base, at 3 cm dorsal to the

postzygapophyses in posterior view, and tapers to about 0.5 cm mediolaterally in anterior

and posterior views at its most dorsal point. It does not expand into a spine table as

in the mid-trunk vertebrae of N. songeaensis (NMT RB48), the anterior and posterior

trunk vertebrae of F. tenax (PVL 3850, PVL 3851), the trunk vertebrae of P. chiniquensis

(UFRGS-PV-0156-T), and anterior trunk vertebrae of B. kupferzellensis (SMNS 80294).

From lateral views, the neural spine remains relatively consistent in thickness

mediolaterally at about 2.7 cm. The distal end of the neural spine is also rounded slightly

in lateral view and is slightly taller posteriorly.

TMM 30125-1262 has distinct laminae forming thin, pronounced ridges on its neural

arch; however, these laminae are more laterally expanded than the laminae of the posterior

cervical of individual “B” (TMM 31025-177) and more similar to the anterior cervical

vertebrae of individual “A” (TMM 31025-1261.3 and TMM 31025-1261.5). On the lateral

sides of the vertebra, there are clear posterior and anterior centrodiapophyseal laminae,

which connect the diapophyses to the posterior and anterior portions of the neurocentral

junction, respectively (Figs. 4A and 4C). There is a clear paradiapophyseal lamina

connecting the parapophyses and diapophyses, and the accessory rib articulation is
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located on this lamina (Figs. 4A and 4C). This paradiapophyseal lamina extends nearly

straight down from the diapophysis, ∼5� from the vertical. The postzygapophyseal

laminae are well defined and connect the parapophyses and the lateral aspect of the

postzygapophyses at about a 45� angle dorsal to the anteroposterior horizontal. This

lamina is compressed on the left lateral side, because the specimen is crushed so that

the left postzygapophysis is pushed toward the diapophysis (Figs. 2B and 2D). The

prezygadiapophyseal laminae are thick in lateral view and the prezygapophyses and

diapophyses are ∼3 cm apart. These laminae extend dorsally from the diapophyses at right

angles to the anteroposterior horizontal plane, and the prezygapophyses are dorsal to the

diapophyses. The diapophyses are intact where they connect to the neural arch, and

they are more robust than in TMM 31025-1261.5 and end in circular articular facets.

Centroprezygapophyseal laminae extend from the ventral side of the prezygapophyses

ventrally along the neural canal to the dorsal edge of the centrum. There are epipophyses

on the dorsal portion of the postzygapophyses that form a rugose structure about 0.2 cm

from the end of the articular surface.

Figure 4 Lateral views of (A, C) one posterior cervical (TMM 31025-1262, presacral 8) and (B, D)

one trunk (TMM 31025-257, presacral 12) from individuals ‘B’ and ‘A’, respectively, of Poposaurus

langstoni. Abbreviations: acpl, anterior centroparapophyseal lamina; ara, accessory rib articulation;

ep, epipophysis; dp, diapophysis; lf, lateral fossa; ns, neural spine; pcdl, posterior centrodiapophyseal

lamina; podl, posteriordiapophyseal lamina; poz, postzygapophyses; pp, parapophysis; ppdl, para-

diapophyseal lamina; prdl, prezygadiapophyseal lamina; prz, prezygapophysis. Scales = 5 cm.

Full-size DOI: 10.7717/peerj.4235/fig-4
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TMM 31025-1261.3
TMM 31025-1261.3 is a posterior cervical vertebra that can be attributed to presacral

9 or 10. The diapophyses are located on the neural arch and are well separated from the

parapophyses. The parapophyses are also more dorsal on the centrum than in both TMM

31025-1261.5 and TMM 31025-1262. Although this specimen’s neural arch is detached

from the centrum, the two portions were fused and then broken post-depositionally.

There is evidence of where a neurocentral suture was located, because there are some

slightly raised areas on the lateral sides of the centrum ventral to the break (Brochu, 1996).

There is a rugose projection, which resembles a thickened and pronounced keel on the

ventral surface of the centrum (Figs. 2E and 2G); however, it is asymmetrical and

protrudes substantially anterior of the articular facet in anterior view. This structure seems

to be pathologic in origin because it is asymmetrical and no other archosaurs possess this

structure in that place.

The detached neural arch of this specimen is broken through the center of the

neural canal, and is not a sufficiently close fit with the centrum to be reattached because

small bits of bone are missing. The neural canal is deeply excavated; it is circular in

anterior view and elliptical with the long axis oriented dorsoventrally in posterior view.

The diapophyses are broken off at the point where they begin to extend out from the

neural arch. A few laminae are broken and the specimen is slightly post-depositionally

compressed in some areas, but otherwise it is intact.

TMM 31025-1261.3 has distinct laminae forming thin, pronounced ridges on its neural

arch, and these laminae are more laterally expanded than the laminae of the cervical vertebra

of individual “B” (TMM 31025-177) and more similar to the other cervical vertebrae of

individual “A” (TMM 31025-1262 and TMM 31025-1261.5). On the left lateral side there is

a clear posterior centrodiapophyseal laminae, which connects the diapophysis to the

posterior portion of the neurocentral junction, but this lamina is broken off on the right

lateral side. There is a clear paradiapophyseal lamina, which connects the parapophyses and

diapophyses, but the lamina on this vertebra connects the diapophyses to the accessory rib

articulation instead of the parapophyses because the articulation is located just dorsal to the

parapophyses and nearly touching. The paradiapophyseal lamina extends nearly straight

down from the diapophysis, ∼5� from vertical. The postzygapophyseal laminae are well

defined and connect the parapophyses and the lateral aspect of the postzygapophyses at

about a 45� angle dorsal to the anteroposterior horizontal. The prezygadiapophyseal

laminae are thick in lateral view and the prezygapophyses and diapophyses are ∼1.5 cm

apart. These laminae extend dorsally from the diapophyses at a right angle to the

anteroposterior horizontal with the prezygapophyses being dorsal to the diapophyses. The

diapophyses are broken off about where they connect to the neural arch, but the left one

extends about 0.5 cm laterally before its break. The neural spine is broken off at its base, so

spinoprezygapophyseal laminae are unable to be seen.

Vertebrae (trunk)
The trunk vertebra of individual “A” (TMM 31025-257) and all three trunk vertebrae of

individual “B” (TMM 31025-1261.4, TMM 31025-1261.1, TMM 31025-1261.2) (Fig. 3)
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are waisted between the articular facets of the centra. The anterior and posterior articular

facets of the two anteriormost trunk vertebrae (TMM 31025-1261.4 and TMM 31025-

1261.1) and the trunk vertebra of individual “A” (TMM 31025-257) appear narrow

mediolaterally in lateral and ventral views. The general shape of these centra in posterior

and anterior view are elliptical, with a long dorsoventrally oriented axis, which is similar

to that seen in B. kupferzellensis (SMNS 80296, Gower & Schoch, 2009), P. gracilis (TTU

P-10419, Weinbaum & Hungerbühler, 2007), Effigia okeeffeae (AMNH FR 30587, Nesbitt,

2007), and P. kirkpatricki (TTU P-9002, Weinbaum, 2013). The articular facets of the

centrum of the most posterior trunk vertebra of individual “B” (TMM 31025-1261.2) are

round and not compressed in any direction, and the anterior and posterior articular facets

of the centrum appear thick (∼1 cm) in the anteroposterior direction. There are deep

fossae on the centra on both the left and right lateral sides about 1 cm ventral to the

position of the neurocentral sutures. There is no ridge on the midline on the ventral

surfaces of any of the three trunk vertebrae of individual “B;” however there is a

recognizable, but poorly developed ridge along the midline of the ventral surface of the

centrum of the trunk vertebra of individual “A,” which suggests that the trunk vertebra of

individual “A” is located more anteriorly in the column than the other trunk vertebrae.

All four of the trunk vertebrae preserve one or both of the accessory articulation

structures (i.e., hyposphene, hypantrum) that form the hyposphene–hypantrum

articulation. TMM 31025-1261.4 (Figs. 3A and 3C) is weathered so that a hyposphene

could not be recognized, but a clear and deep hypantrum is visible on the anterior aspect

of the neural arch. TMM 31025-1261.1 (Figs. 3B and 3D) is weathered so that a

hypantrum could not be recognized, but on the posterior aspect of the neural arch there is

a hyposphene preserved. TMM 31025-1261.2 (Figs. 3E and 3G) and TMM 31025-257

(Figs. 3F and 3H) preserve both hyposphenes and hypantra on their neural arches.

Vertebrae (trunk; individual “A”)
TMM 31025-257
TMM 31025-257 is an anterior mid-trunk vertebra (Figs. 3F and 3H). The positions of

the parapophyses and diapophyses place it as likely between presacral 12 and 14 (see

above). The parapophysis is slightly more dorsally located on the neural arch than TMM

31025-1261.4. Both of the parapophyses and both the diapophyses are broken off at their

bases. The neural spine, left and right postzygapophyses, and left prezygapophysis are

broken off. The neural arch is firmly attached to the centrum, with a visibly raised

evidence of where the neurocentral suture was. In anterior view, the neural canal is deeply

excavated and elliptical as the dorsoventral axis is slightly elongated relative to the

mediolateral axis.

The posterior and anterior neural arches of TMM 31025-257 preserve clearly developed

hyposphene and hypantrum articulation structures, respectively. In posterior view,

the hyposphene is broken, but its shape is identifiable; it is triangular with the ventral

edge along the mediolateral horizontal plane and a point of the triangle directed dorsally,

to where the articular surfaces of the postzygapophyses meet at ∼45� angles dorsal to
the horizontal. The sides of the hyposphene each measure 1.2 cm and the base of the
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triangle is 0.8 cm across, although it is slightly arched as the dorsal boarder of the neural

canal. The trunk vertebra of P. kirkpatricki (TTU P-9002, Weinbaum, 2013, Fig. 4), the

trunk vertebra of P. chiniquensis (UFRGS-PV-0156-T), and the posterior trunk vertebra

of F. tenax (PVL 3850, Bonaparte, 1981, Figs. 10 and 11) have similarly shaped

hyposphenes in that they are triangular and connect with the postzygapophyses at the

dorsally located point. B. kupferzellensis (SMNS 80296, Gower & Schoch, 2009, Fig. 2) has a

hyposphene structure present on its trunk vertebrae that appears rectangular and

dorsoventrally elongate. On TMM 31025-257, the face of the hyposphene is

approximately 2 cm from the diapopohyses in lateral view. The hypantrum space

between the prezygapophyses is 1 cm across. On the lateral edges of the hypantrum,

centroprezygapophyseal laminae project laterally from the ventral side of the

prezygapophyses, and they extend ventrally along the neural canal to the dorsal edge

of the centrum.

The neural spine is laterally compressed, and roughly the same height as the

height of the rest of the vertebra to the base of the neural spine. Grooves extend

dorsoventrally along both the posterior and anterior surfaces of the neural spine. The

spinoprezygapophyseal laminae are paired and cease to form distinct ridges about halfway

up dorsoventrally from the base of the neural spine. The dorsal edge of the neural spine is

rounded and the top centimeter of the neural spine is slightly laterally expanded, although

it is not sufficiently wide to form a “spine table” as in the mid-trunk vertebrae of

N. songeaensis (NMT RB48) and the anterior and posterior trunk vertebrae of F. tenax

(PVL 3850). The neural spine of TMM 31025-257 is angled on the posterior edge and

extends further dorsally on the anterior edge, causing it to be slightly wider at the distal

end than at the base in lateral view, unlike the neural spines of the posterior trunk

vertebrae of P. kirkpatricki (TTU P-9002) and B. kupferzellensis (SMNS 52970), which are

both more rectangular in lateral view.

TMM 31025-257 has distinct laminae between the prezygapophyses, postzygapophyses,

parapophyses, and diapophyses. On the lateral sides, the specimen has paradiapophyseal

laminae, which connect the diapophyses with the parapophyses. There are anterior

centroparapophyseal laminae, which connect the parapophyses with the anterior portion

of the neurocentral junction, and there are also posterior centrodiapophyseal laminae,

which connect the diapophyses with the posterior portion of the neurocentral junction,

and all of these laminae are at a 45� angle ventral to the anteroposterior horizontal

(Figs. 4B and 4D). The prezygapophyseal laminae are well defined and connect the

parapophyses and the lateral aspect of the prezygapophyses at a 45� angle dorsal to the

anteroposterior horizontal. The anterior centroparapophyseal laminae are recognizable

but poorly defined, as the parapophyses are almost on the furthest anteroventral portion

of the neural arch. The prezygadiapophyseal laminae are laterally thin and pronounced

and connect the diapophyses and lateral edge of the prezygapophyses at a ∼10� angle to
the anteroposterior horizontal with the articular surfaces of the prezygapophyses

completely ventral to the diapophyses. TMM 31025-257 has centroprezygapophyseal

laminae on each lateral side of the neural arch; they are thinner laterally in relation

to the other laminae on this specimen’s neural arch, and both are vertically oriented.
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The postzygadiapophyseal laminae are thick in lateral view and poorly laterally expanded

with the postzygapophyses and diapophyses only ∼0.5 cm apart (Figs. 4B and 4D). These

laminae are at a ∼10� angle to the anteroposterior horizontal with the postzygapophyses

being dorsal to the diapophyses. There are slight knobs extending along the anterodorsal

portions of the postzygapophyses from the neural spine, but they do not appear

pronounced enough for us to definitively call them epipophyses.

Vertebrae (trunk; individual “B”)
TMM 31025-1261.4
TMM 30125-1261.4 is an anterior to mid-trunk vertebra. It is weathered post-

depositionally, and the neural arch is broken horizontally through the mediolateral

middle and separate completely from the centrum (Figs. 3A and 3C). It is further

weathered so that the neural arch cannot be accurately reattached to the centrum in a

close fit. Both postzygapophyses are broken off, and the neural spine is broken off near its

base. This specimen can be attributed to presacral 11–13, as the parapophyses are well

separated from the diapophyses, and the parapophyses are located at the junction of

the neural arch and the centrum. The neural arch is fused to the centrum, and there

is evidence of where a neurocentral suture was, which is slightly raised in some

areas (Brochu, 1996).

On the left lateral side, TMM 30125-1261.4 has distinct laminae forming pronounced

ridges, the posterior and anterior centrodiapophyseal laminae, which connect the

diapophyses to the posterior and anterior portions of the neurocentral junction,

respectively. The anterior centrodiapophyseal lamina is recognizable but not clearly

defined on the right lateral side. On both lateral sides the prezygapophyseal laminae are

recognizable and connect the parapophyses and the lateral aspect of the prezygapophyses

at a steep angle (>80�) to the anteroposterior horizontal.

The posterior facet of the neural arch is sufficiently weathered so that no hyposphene

structure is recognizable, however there is a well-defined hypantrum visible on the

anterior facet of the neural arch (Fig. 3A and 3C). The hypantrum is 0.5 cm wide at its

dorsal edge where it meets the articular faces of the prezygapophyses, and widens out

ventrally to 1.1 cm at its ventral edge. The prezygapophyseal articular surfaces are

gently curved and concave dorsally. They are positioned at ∼45� dorsal to the horizontal.

The postzygapophyses are both completely broken off, and it is also unclear as to

where they were originally positioned on the neural arch because of the extensive

weathering. The neural spine is broken at 1.5 cm from its base. A deep groove extends

dorsoventrally along what is preserved of the anterior surfaces of the neural spine.

On either side of this groove, the spinoprezygapophyseal laminae are paired and form

thin (<0.5 cm) and distinct ridges and are separated for the preserved length of the

neural spine. On the right lateral side of the neural arch, in dorsal view, there is a

deep fossa between the base of the neural spine and the prezygapophyseal lamina.

The left lateral side is broken in this corresponding place, obstructing any potential

lateral fossa.
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TMM 31025-1261.1
TMM 31025-1261.1 is an anterior to mid-trunk vertebra that is nearly complete, but is

well weathered post-depositionally, more so on the anterior and right lateral portions. The

specimen is attributed to presacral 12–14, as the parapophyses are well separated from

diapophyses, and both are located on the neural arch. The neural arch is completely fused

to the centrum with only a slight textural trace of where the neurocentral suture was

located (Brochu, 1996).

The parapophyses are slightly higher on the neural arch than those on the trunk

vertebra we attribute to individual “B” (TMM 31025-257). Both of the parapophyses

are broken off at their bases. They are circular in lateral view with a diameter of about

1 cm. The left parapophysis is in the correct anatomical position, but the right

parapophysis has broken from its originally position and has shifted about 3–4 cm

posteriorly. The right diapophysis is broken off at its base, and the left diapophysis is

broken off about 1.5 cm from its base. This left diapophysis is dorsoventrally

compressed, shaped as a narrow ellipse in lateral view with the long axis along the

anteroposterior horizontal. There is a clear paradiapophyseal lamina connecting

the parapophysis and the diapophysis on the left side. There is also a posterior

centrodiapophyseal lamina connecting the diapophysis with the posterior section of the

neurocentral suture junction. The right side is too weathered and broken to see any

laminae. No zygapophyses are preserved. The neural canal is filled with sediment but

appears to be only slightly laterally compressed (Figs. 3B and 3D).

The neural spine of TMM 31025-1261.1 is complete but is broken and offset dorsally

by ∼25�. The neural spine is tall relative to the rest of the neural arch and laterally

compressed and the dorsal edge of the neural spine is sloped at 45�, increasing in height

posteriorly, in lateral view. The anteroposterior width of the neural spine is nearly

uniform throughout in lateral view. The distal end of the neural spine is slightly

rounded. The neural spine is posteriorly shifted in relation to the anteroposterior center

of the centrum. The anterior surface of the neural arch is well weathered post-

depositionally so that a hypantrum is not recognizable. The posterior surface of the

neural arch preserves a clearly defined hyposphene. The shape of the hyposphene is

triangular in posterior view, with a point directed dorsally along the dorsoventral

midline, and the ventral side is slightly concave, forming the dorsal border of the

neural canal (Figs. 3B and 3D). It has a similar shape to the hyposphene of TMM

31025-257, but the structure in TMM 31025-1261.1 extends much further distally

from the neural arch. The sides of the hyposphene both measure 1 cm and the

ventral edge, straight across from bottom of each side to the other and not along

the concave surface, measures 1.2 cm. The connection between the hyposphene

and the postzygapophyses cannot be seen, as the neural spine is broken and offset

from the point just dorsal to the hyposphene and ventral to the articular surfaces of

the postzygapophyses. There are clear spinoprezygapophyseal laminae and

spinopostzygapophyseal laminae on the anterior and posterior aspects of the

neural spine.
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TMM 31025-1261.2
TMM 31025-1261.2 is a posterior trunk vertebra and we attribute it to presacral position

somewhere among 14–17, as the parapophyses are only separated from the diapophyses

by about 1 cm, and both are located on the neural arch. It is well weathered post-

depositionally. The neural arch is completely fused to the centrum with slight bowing

where the neurocentral suture was located, but no suture is present within the bone. The

neural canal is deeply excavated and laterally compressed in anterior view, but appears

round and less laterally compressed in posterior view (Figs. 3E and 3G).

On the lateral sides of this specimen, the diapophyses are broken about 2 cm

from where they connect to the neural arch. Both are dorsoventrally compressed and

thin out posteriorly from a circle with a diameter ∼1 cm across to a flat surface with

a thickness of 0.5 cm. Both diapophyses are intact and both are dorsoventrally

compressed so that they are shaped as a narrow elliptical with the long axis along the

anteroposterior horizontal. There are clearly defined paradiapophyseal lamina

connecting the parapophysis and the diapophysis on both lateral sides. There are also

posterior centrodiapophyseal laminae connecting the diapophyses with the posterior

sections of the neurocentral suture junction on both lateral sides.

The left postzygapophysis is broken off at its base, and the right postzygapophysis

is broken off about 1.5 cm from its base and there is a subtle but recognizable

postzygadiapophyseal lamina connecting the postzygapophysis to the diapophysis on

the right lateral side. The right prezygapophysis is broken off at its base, and the left

prezygapophysis is only broken slightly at the tip with no more than half a centimeter

of missing material. There are clear prezygadiapophyseal laminae connecting the

prezygapophyses with the diapophyses on both sides. There are also clear

prezygaparapophyseal laminae connecting the prezygapophyses with the parapophyses

on both sides.

The neural spine is broken off immediately dorsal to the prezygapophyses, so

spinoprezygapophyseal laminae are obstructed from view. However, the break is not

horizontal and there is more of the neural spine preserved in posterior view with the break

on the posterior aspect of the neural spine located ∼3 cm dorsal to the postzygapophyses

(Figs. 3E and 3G). There are clear spinopostzygapophyseal laminae extending dorsally on

the intact portion of the neural spine from the postzygapophyses. There is a distinct

hyposphene dorsal to where the bases of the postzygapophyses meet at a point. The shape

of the hyposphene is triangular in posterior view, with a point directed dorsally, and the

ventral side is slightly concave, curving around the dorsal portion of the neural canal (Figs.

3E and 3G). The hyposphene is similarly shaped to the hyposphene of TMM 31025-257;

however it appears more dorsoventrally compressed in posterior view, and this does not

appear to be related to compression of the fossil post-depositionally, as no other aspects of

the vertebra appear more compressed. The sides of the hyposphene both measure 1.2 cm

and from the ventralmost portion of one lateral side to the other, measures 1.5 cm.

Although the right prezygapophysis is broken off, there is a clear hypantrum visible, and the

space would have been ∼1 cm between the two prezygapophyses.
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Rib (TMM 31025-2160)
This specimen is broken about 12 cm distally from the capitulum. The capitulum,

tuberculum, and accessory rib facet are all intact. A thin ridge extends from the dorsal

edge of the capitulum along the rib (Fig. 5). This rib fragment has an accessory articular

facet that is located just dorsal to the tuberculum (Fig. 5). We assign it to the posterior

cervical region of the axial skeleton because of the relative locations of the capitulum and

tuberculum and the presence of an accessory rib facet, as a corresponding accessory rib

articulation is seen on the posterior cervical vertebrae described in this paper (TMM

31025-177, TMM 31025-1262, TMM 31025-1261.3). An accessory rib facet between the

capitulum and tuberculum is also present in P. gracilis (Weinbaum & Hungerbühler, 2007)

and A. babbitti (Nesbitt, 2005), and it matches in position, just dorsal to the parapophysis

to the accessory rib articulation structures in the posterior cervical vertebrae described

herein. Weinbaum & Hungerbühler (2007) cited this accessory articulation as a

synapomorphy of the clade Poposauroidea, which includes P. gracilis, P. langstoni,

E. okeeffeae, and A. babbitti.

Variation in the hyposphene–hypantrum articulation in P. langstoni
The hyposphene–hypantrum articulation of the trunk vertebrae of P. langstoni presents an

important opportunity to examine within-vertebral column variation because these

vertebrae are preserved in three dimensions so that articulation surfaces and hyposphene–

hypantrum are visible and easy to discern. Moving posteriorly along the vertebral column,

the hyposphene–hypantrum articulation is present in the anteriormost trunk vertebrae

of the individuals represented by presacral 11 in individual “A” (TMM 31025-1261.4)

and presacral 12 of individual “B” (TMM 31025-257). The articulation is also present

in presacral 12 in individual “A” (TMM 31025-1261.2). All three of the preserved

hyposphenes are triangular in posterior view, and the ventralmost edges of the

triangular hyposphenes are oriented horizontally with their apices pointed dorsally

along the midline. The ventrolateral corners of the triangular hyposphenes curve slightly

ventrally around the neural canal. The hyposphenes (TMM 31025-1261.1, TMM 31025-

1261.2, TMM 31025-257) appear to be more dorsoventrally compressed (i.e., smaller

height to width ratio) in individual “B” than in individual “A.” This material described

herein includes the twelfth presacral from both individuals (TMM 31025-1261.1, TMM

31025-257), so it is likely that this variation is not based on location in the vertebral

column. The hypantra (TMM 31025-1261.4, TMM 31025-1261.2, TMM 31025-257)

reflect a complementary shape of the hyposphene structures on their respective vertebrae.

The horizontal distance between the prezygapophyses is narrower across the structure at

the dorsal most edge than at the ventralmost extent, creating a triangular space for

articulation. In summary, the hyposphene–hypantrum articulation appears triangular in

all vertebrae described herein and therefore does not vary in general shape along the

vertebral column of one individual of P. langstoni, but the two recognized individuals of

P. langstoni have hyposphene structures that are markedly different in terms of height to

width ratio (Table 1).
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DISCUSSION
Definition of the hyposphene–hypantrum articulation
The hyposphene–hypantrum articulation appears in many clades within Archosauria and has

been defined simply as a vertical wall of bone ventral to the postzygapophyses and a notch

between the prezygapophyses (Rauhut, 2003; Apesteguia, 2005; Hibbard & Williston, 1971).

Those previous studies included definitions of the hyposphene–hypantrum articulation that

were based on the vertebral morphology of saurischian dinosaurs, but they are not

comprehensive in incorporating the variation in shape in dinosaurs and pseudosuchians.

Furthermore, a number of pseudosuchians also have been reported to bear the hyposphene–

hypantrum articulation without an explanation of why it is homologous with those

structures in saurischian dinosaurs (Bonaparte, 1981; Weinbaum & Hungerbühler, 2007;

)b()a(
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arf
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Figure 5 Presacral rib of Poposaurus langstoni (TMM 31025-2160) in (A, B) lateral views, (C)

proximal view, and (D) dorsal view. Abbreviations: arf, accessory rib facet; cp, capitulum; r, ridge;

tb, tuberculum. Scales = 5 cm. Full-size DOI: 10.7717/peerj.4235/fig-5
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Peyer et al., 2008; Gower & Schoch, 2009; Lautenschlager & Desojo, 2011; Weinbaum, 2013).

This is important to clarify because the hyposphene–hypantrum has been cited as a

synapomorphy of Saurischia (Gauthier, 1986) and of at least one clade of pseudosuchians

(Ticinosuchus + Paracrocodylomorpha, Nesbitt, 2011). Here we apply an explicit definition

of this articulation to facilitate identification and future studies of intervertebral articulation

in archosaurs.

We define the hyposphene–hypantrum articulation as a bony projection, the

hyposphene, on the posterior portion of the vertebra that fits into a complementary space,

the hypantrum, on the anterior portion of the subsequent vertebra within a vertebral

series (Fig. 6). Specifically, the hyposphene is located ventral to the articular surfaces of

the postzygapophyses and is connected to these articular surfaces where they converge.

It is located dorsal to the neural canal and in posterior view is symmetrical or nearly

symmetrical across the midline. There is a distinct angle change (typically between ∼45�

and 90�) between the articular surfaces of the postzygapophyses and the lateral surfaces of

the hyposphene. The hyposphene projection must be a comparable shape and size to that

of the hypantrum space of the subsequent vertebrae because these structures articulate

precisely. The shapes in lateral view of the hyposphenes may appear as circular, square,

dorsoventrally elongate rectangular, triangular, diamond, and quadrilateral, and the most

common shapes found in pseudosuchian archosaurs are triangles and dorsoventrally

elongate rectangles (Fig. 7). Though these shapes can vary between taxa, they also can vary

within an individual. P. langstoni does not show drastic variation in hyposphene shape,

but the proportions do vary along the column and between our two individuals (i.e., ratio

of height to width increasing posteriorly in individual “B” and greater ratio of height to

width in individual “A” than in individual “B”) (Table 1). As long as these projections

extend posteriorly from the neural arch, their lateral surfaces are confluent with

the articular surfaces of the postzygapophyses, and there is a distinct angle change

between the articular surfaces of the postzygapophyses and the projection, any of these

aforementioned shapes may be considered hyposphenes. Additionally, it is important

to note that these structures are currently only known from trunk vertebrae posterior to

the first nine presacral vertebrae.

Descriptions of a vertebra with the hyposphene–hypantrum should describe the shape

that the hyposphene appears to be in posterior view. In vertebrae without the hyposphene,

the articular surfaces of the postzygapophyses may converge but not form a ventrally

elongated bony projection, as in R. callenderi (PEFO 34561) (Fig. 7K), Erythrosuchus

africanus (SAM 905) (Fig. 7J), P. gracilis (NMT RB426), orN. songeaensis (NMT RB48), or

Table 1 Height and width of each of the hyposphenes preserved in this material.

Specimen # Individual Hyposphene dimensions Height: width

Height (mm) Width (mm)

TMM 31025-257 A 11 7 1.571428571

TMM 31025-1261.1 B 10 12 0.833333333

TMM 31025-1261.2 B 10 11 0.909090909
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Figure 6 Schematic of two idealized archosaur vertebrae both with (A, B) modeled on Poposaurus

langstoni, TMM 31025-257, and without (C, D) modeled on an unnamed phytosaur trunk vertebra,

PEFO 26695 the hyposphene-hypantrum articulation in anterior (A, C) and posterior (B, D) views.

Abbreviations: ha, hypantrum; ho, hyposphene; nc, neural canal; ns, neural spine; poz, post-

zygapophysis; prz, prezygapophysis. Scales = 5 cm. Full-size DOI: 10.7717/peerj.4235/fig-6

they may not converge at all and appear well separated, as in Deinosuchus riograndensis

(TMM 43632-1) (Fig. 7I) or A. mississippiensis (Romer, 1956, Fig. 130).

The lateral surfaces of the hyposphene articulate with the medial surfaces of the

hypantrum, which is located between and ventral to the prezygapophyses and dorsal to the
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neural canal (Fig. 6). The articular surfaces of the prezygapophyses continue ventrally

from their medial surfaces to form the articular surfaces of the hyposphene. As such,

there must be a distinct angle change (typically between ∼45� and 90�) between these

Figure 7 Trunk vertebrae of pseudosuchian archosaurs and closely related taxa in posterior view,

showing examples of vertebrae with a hyposphene (A) Postosuchus alisonae, UNC 15575; (B)

Fasolasuchus tenax, PVL 3850; (C) Batrachotomus kupferzellensis, SMNS 80296; (D)

Desmatosuchus spurensis, MNA V9300; (E) Scutarx deltatylus, PEFO 31217; (F) Aetobarbakinoides

brasiliensis, CPE2 168; (G) Longosuchus meadei,TMM 31100-148; (H) Stagonosuchus nyassicus,

GPIT/RE/3832 and without a hyposphene (I) Deinosuchus riograndensis, TMM 43632-1; (J)

Erythrosuchus africanus; (K) Revueltosaurus callenderi, PEFO 34561. Scales = 1 cm.

Full-size DOI: 10.7717/peerj.4235/fig-7
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articular surfaces. In dorsal view, a hypantrum appears as a gap framed by parallel to sub-

parallel medial surfaces of the prezygapophyses, which contact the neural arch just dorsal

to the neural canal. In vertebrae without a hypantrum articulation (e.g., R. callenderi,

PEFO 34561; P. gracilis, NMT RB426; E. okeeffeae, AMNH FR 30587; D. riograndensis,

TMM 43632-1; A. mississippiensis, Romer, 1956), the medial edges of the prezygapophyses

will converge in a “v” shape and will not appear parallel in dorsal view.

Accessory intervertebral articulations within Pseudosuchia
The presence of the hyposphene–hypantrum articulation in P. langstoni allows for

comparisons with the presacral vertebrae of other pseudosuchian archosaurs. Other

closely related members of Poposauroidea, P. gracilis—the sister taxon to P. langstoni—

and the smaller E. okeeffeae, have also been reported to have a hyposphene–hypantrum

between trunk vertebrae (Weinbaum & Hungerbühler, 2007; Nesbitt, 2007).

The presacral vertebrae of the poposauroid E. okeeffeae (AMNH FR 30587, Nesbitt,

2007, Fig. 30) are only known from four semi-articulated vertebrae, and the anterior

aspect of the neural arch is only visible on the anteriormost vertebra of the articulated

series. There is not a clearly defined space between the prezygapophyses in this

vertebra to satisfy our definition of a hypantrum. There is a slight gap between the medial

aspects of the prezygapophyses, the articular surfaces of which are oriented horizontally,

however these articular surfaces do not extend ventrally to form a hypantrum in

accordance with our definition. No posterior surface of any vertebra of AMNH FR 30587

is clearly visible and intact, so we cannot conclusively state whether a hyposphene was

present in the trunk vertebrae of known material of E. okeeffeae. Additionally, because we

do not see a hypantrum present in this specimen of E. okeeffeae, we conclude that this

taxon probably did not possess the hyposphene–hypantrum. Furthermore, there are no

specimens of Shuvosaurus inexpectatus (e.g., TTU P-9001), the current sister taxon of

E. okeeffeae (Nesbitt & Norell, 2006; Nesbitt, 2007, 2011), that preserve a neural arch

where we could evaluate whether the hyposphene–hypantrum articulation was present or

absent. The other known shuvosaurid, S. longicervix (PVSJ 85), is poorly preserved

(Alcober & Parrish, 1997), and therefore it is difficult to determine definitively whether a

hyposphene–hypantrum was present in that taxon as well. The sail-backed poposauroid

Lotosaurus adentus (IVPP V 4880, IVPP V 48013) has not been reported to have the

hyposphene–hypantrum articulation.

Arizonasaurus babbitti is one of the oldest members of Poposauroidea, outside of

L. adentus + Shuvosauridae, and it has been reported to have the hyposphene–hypantrum

articulation (MSM 4590, Nesbitt, 2005, 2007). The hyposphene structure of the trunk

vertebra of A. babbitti (MSM 4590) is rectangular with the long axis oriented

dorsoventrally in posterior view and located ventral to the postzygapophyses and dorsal to

the neural canal (Nesbitt, 2005, Fig. 19). It does not have the triangular shape as in the

trunk vertebrae of P. langstoni. The sister taxon of A. babbitti is the earliest diverging

poposauroid, Xilousuchus sapingensis (IVPP V6026), and it has been cited as having the

hyposphene–hypantrum as well (Nesbitt, Liu & Li, 2010). The ninth presacral vertebra

figured by Nesbitt, Liu & Li (2010 Fig. 8) has a clearly defined hyposphene, and it is square
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in posterior view. A hypantrum between the prezygapophyses is clearly seen in anterior

view and is of comparable size and shape to the hyposphene of the same vertebra

(Nesbitt, Liu & Li, 2010, Fig. 8). The identification of this vertebra as the ninth presacral

(Nesbitt, Liu & Li, 2010) may be incorrect given that there are no other taxa with a

hyposphene in the first nine presacrals. Alternatively, the presence of a hyposphene in this

position may be autapomorphic for this taxon.

Several Triassic loricatan paracrocodylomorphs and their closest relatives possess the

hyposphene–hypantrum articulation, and this structure varies in shape and structure

between taxa and even within an individual. Stagonosuchus nyassicus (GPIT/RE/3831, von

Huene, 1938; Gebauer, 2004; Lautenschlager & Desojo, 2011) is reported to have the

hyposphene–hypantrum in the trunk vertebrae. The anterior trunk vertebra of S. nyassicus

(GPIT/RE/3831-9, von Huene, 1938; Gebauer, 2004; Lautenschlager & Desojo, 2011, Fig. 7)

has a clearly defined hyposphene that is rectangular, but it is only slightly elongated

dorsoventrally. The posterior trunk vertebra of S. nyassicus (GPIT/RE/3831-14,

von Huene, 1938; Gebauer, 2004; Lautenschlager & Desojo, 2011, Fig. 7) has a hyposphene

that is narrower mediolaterally and more elongated dorsoventrally than the hyposphene

of its anterior trunk vertebra. This shape is distinctly different from the triangular

hyposphenes of P. langstoni (Fig. 3). In anterior view, there is a clear space between the

prezygapophyses to form a hypantrum in S. nyassicus. T. ferox is a close relative to

S. nyassicus (Lautenschlager & Desojo, 2011), but the presence of the hyposphene–

hypantrum articulation in that taxon is ambiguous because the known material

(PIZ T 2817) is preserved in a flattened slab, and the vertebral column is mostly

articulated so that the anterior and posterior aspects of the vertebrae cannot clearly

be seen.

Fasolasuchus tenax (PVL 3850, Bonaparte, 1981, Figs. 10 and 11), B. kupferzellensis

(SMNS 80296, Gower & Schoch, 2009, Fig. 2), P. chiniquensis (UFRGS-PV-0156-T,

Azevedo, 1991, Fig. 11), and Saurosuchus galilei (PVSJ 32, Trotteyn, Desojo & Alcober, 2011,

Fig. 7) have hyposphene–hypantrum articulations present in their trunk vertebrae.

F. tenax has a hyposphene structure that appears rectangular in posterior view in the

anterior trunk vertebra figured by Bonaparte (1981, Fig. 10). In the posterior trunk

vertebra of F. tenax (Fig. 7B), the hyposphene structure is triangular in posterior view

with the midline apex directed dorsally and the ventrolateral corners curved slightly

ventrally around the neural canal, similar to that of P. langstoni and P. kirkpatricki

(TTU P-9002). The trunk vertebra of B. kupferzellensis figured in lateral view by Gower &

Schoch (2009, Fig. 2) (SMNS 80296) has a clearly defined hyposphene that is rectangular

and elongated dorsoventrally in posterior view (Fig. 7C); in anterior view there is a clear

space between the prezygapophyses to form a hypantrum in this specimen. The posterior

trunk vertebra of P. chiniquensis that was figured in posterior view by Azevedo (1991,

Fig. 11) has a well-defined hyposphene that is rectangular with the long axis oriented

dorsoventrally in posterior view. The shape of this hyposphene most closely resembles the

hyposphene shapes in B. kupferzellensis (SMNS 80296) (Fig. 7C) and P. kirkpatricki

(TTU P-9002). S. galilei (PVSJ 32) has a hyposphene–hypantrum articulation present on
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at least one of its posterior trunk vertebrae (Trotteyn, Desojo & Alcober, 2011), but it is

difficult to tell the shape because of poor preservation of the specimen.

A large member of the paracrocodylomorph clade Rauisuchidae, P. kirkpatricki has

been reported to have the hyposphene–hypantrum articulation present on its middle and

posterior trunk vertebrae (TTU P-9002, Weinbaum, 2013). The figured anterior trunk

vertebra and posterior trunk vertebra of TTU P-9002 have clearly defined hyposphene

structures that appear triangular in posterior view, with the ventralmost aspect as a

horizontal surface and the dorsalmost aspect as a midline apex (TTU P-9002,

Weinbaum, 2013, Figs. 4 and 5). The ventrolateral corners of the triangular hyposphene

also slightly curve around the neural canal at its dorsal margin. This shape is nearly

identical to those hyposphenes of P. langstoni in the anterior trunk vertebrae TMM-

31025-1261.1 and TMM-31025-1261.2. The hypantrum of the anterior portion of the

neural arch of the anterior (Weinbaum, 2013, Fig. 4) and posterior (Weinbaum, 2013,

Fig. 5) trunk vertebrae of P. kirkpatricki (TTU P-9002) also appear triangular in anterior

view with a shape and size complementary to the hyposphene of the same vertebra.

The hyposphene structure of the mid-trunk vertebra of P. kirkpatricki (TTU P-9002,

Weinbaum, 2013, Fig. 4) appears rectangular in posterior view with the long axis oriented

dorsoventrally. The one known trunk vertebra of P. alisonae (UNC 15575) has clear

hyposphene and hypantrum structures (Fig. 7A). The hyposphene appears triangular in

posterior view, similar to those of the anterior and posterior trunk vertebrae of

P. kirkpatricki (TTU P-9002), with the midline apex directed dorsally and the ventrolateral

corners curved slightly around the dorsal edge of the neural arch (Peyer et al., 2008, Fig. 4).

The hypantrum of P. alisonae is of complementary shape and size to the hyposphene.

Just outside of Paracrocodylomorpha, N. songeaensis (NMT RB48, Nesbitt et al., 2014)

was reported to possess the hyposphene–hypantrum articulation on its mid-trunk

vertebrae. Evidence for a hypantrumwas cited as a small gap between the anterior portion

of the prezygapophyses, and the hyposphene was cited as a thin, ventrally directed lamina

of bone between the postzygapophyses. However, this proposed hyposphene was not

clearly defined, and appears simply as the postzygapophyses converging at the midline,

without an extension of a bony process ventral to them (NMT RB48, Nesbitt et al., 2014,

Fig. 4). There is a slight gap between the medial aspects of the prezygapophyses; however,

articular surfaces do not extend ventrally from the prezygapophyses to form a hypantrum

in accordance with our refined definition. This morphology in N. songeaensis is similar to

that in E. okeeffeae, which we have concluded does not have the hyposphene–hypantrum

articulation.

Hyposphene–hypantrum articulations have been reported in some members of

Aetosauria, a group of quadrupeds with an extensive osteoderm carapace (Parker, 2008;

Desojo, Ezcurra & Kischlat, 2012; Parker, 2016b). The largest known aetosaur, D. spurensis

(MNAV9300, Parker, 2008), has hyposphene–hypantrum articulations between its trunk

vertebrae. The hyposphene structures of the anterior and mid-trunk vertebrae are

rectangular in posterior view and more elongated dorsoventrally relative to the

hyposphene structures of the posterior trunk vertebrae (Fig. 7D). The rectangular

hyposphenes of the anterior and mid-trunk vertebrae of D. spurensis appear more similar
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to those structures of B. kupferzellensis, F. tenax, and P. chiniquensis than to taxa with

triangular hyposphenes (e.g., P. langstoni). The posterior trunk vertebrae of D. spurensis

have hyposphenes that have a width and height nearly equal to each other. These

hyposphenes also curve around the neural canal and appear triangular in posterior view

(MNAV9300, Parker, 2008, Fig. 9). These triangular hyposphenes of the posterior trunk

vertebrae appear more similar to the structures of the anterior trunk vertebrae of

P. langstoni and P. kirkpatricki than to taxa with rectangular hyposphenes.

Several other aetosaurs besides D. spurensis have been reported to have the

hyposphene–hypantrum articulation including S. deltatylus (PEFO 34045, Parker, 2016b),

possibly Longosuchus meadei (TMM 31100-448, TMM 31100-452), and Aetobarbakinoides

brasiliensis (CPE 2 168, Desojo, Ezcurra & Kischlat, 2012). However, a hyposphene

structure is difficult to infer on most of the vertebrae of A. brasiliensis (CPE 2186, Desojo,

Ezcurra & Kischlat, 2012, Fig. 5) (Fig. 7F) because much of the holotype is articulated or

broken on the neural arch. Desojo, Ezcurra & Kischlat (2012) described A. brasiliensis as

having hyposphenes that are “Y-shaped” where the elongated hyposphene structure forms

the “trunk” of the “Y” and the postzygapophyses connected and dorsal to it form the top

two dorsolaterally projecting “branches” of the “Y” in posterior view. On our close

inspection of the well-preserved and non-articulated vertebrae of A. brasiliensis, there

does not appear to be a distinct angle change between the articular surfaces of the

postzygapophyses to the bony projection ventral to and between them (Fig. 7F). Therefore

we conclude that A. brasiliensis does not have a hyposphene–hypantrum according to our

definition. Parker (2016b) did not consider the aetosaur S. deltatylus to have a true

hyposphene–hypantrum, however the “ventral bar” structure on the posterior aspect of

its vertebrae (Parker, 2016b, Fig. 12) does fit our definition of a true hyposphene.

S. deltatylus has two different shape varieties of hyposphene structures present in its

trunk vertebrae: one that is circular in posterior view and tapers to a point distally

from the body of the vertebra (PEFO 34045 FF-22, Parker, 2016b, Fig. 13) (Fig. 7E) and a

second that is triangular with a dorsally oriented point extending along the dorsoventral

margin of the neural arch (PEFO 34045 FF-51, Parker, 2016b, Fig. 12). S. deltatylus also

preserves hypantrum structures of complementary size and shapes on the anterior

aspects of its neural arches. Scutarx robertsoni (Walker, 1961, Fig. 7) has a “ventral bar”

shaped hyposphene in an anterior dorsal vertebra (R 4799) that appears very similar to

that of S. deltatylus. S. robertsoni also preserves complementary hypantrum structures on

the anterior aspects of the anterior dorsal (R 4799) and posterior cervical (E.M. 30R)

vertebrae (Walker, 1961, Fig. 7).

The aetosaur L. meadei (TMM 31100-448, TMM 31100-452) may have a hyposphene–

hypantrum articulation in its trunk vertebrae, but this is ambiguous because of the poor

preservation of known material. The trunk vertebra of L. meadei, TMM 31100-448

appears to have a hyposphene that is square in posterior view; however, the

postzygapophyses and surrounding portions of the neural arch are broken and

compressed, making it difficult to definitively discern a hyposphene structure according

to our definition (Fig. 7G). Neither Typothorax coccinarium (NMMNH P-12964,
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Heckert et al., 2010, Fig. 4A) nor Paratypothorax andressorum (PEFO 3004, Lucas, Heckert

& Rinehart, 2006; Hunt & Lucas, 1992, Fig. 4) was reported to have the hyposphene–

hypantrum, and we concur with this through our observations of the published figures of

those materials and through direct observation. The small aetosaur Coahomasuchus

kahleorum (TMM 31100-437, Parker, 2016a) does not appear to have the hyposphene–

hypantrum in its trunk vertebrae; however, the known vertebral material is mostly

articulated, poorly preserved, and portions of the neural arches are broken or obscured

(TMM 31100-437).

PHYTOSAURIA

AVEMETATARSALIA

Parringtonia gracilis

Revueltosaurus callenderi

Arizonasaurus babbitti

Poposaurus gracilis

Poposaurus langstoni

Prestosuchus chiniquensis

Batrachotomus kupferzellensis

Fasolasuchus tenax

Postosuchus kirkpatricki

CROCODYLOMORPHA

SQUAMATA

Ticinosuchus ferox

ORNITHOSUCHIDAE

ARCHOSAURIA

PARACROCODYLOMORPHA

PSEUDOSUCHIA

Nundasuchus songeaensis

Effigia okeeffeae

Gracilisuchus stipanicicorum

Turfanosuchus dabanensis

Shuvosaurus inexpectatus

Sillosuchus longicervix

Xilousuchus sapingensis

Typothorax coccinarium

Paratypothorax andressorum

Coahomasuchus kahleorum

Aetobarbakinoides brasiliensis

Desmatosuchus spurensis

Longosuchus meadei

Scutarx deltatylus

AETOSAURIA

Postosuchus alisonae

Ticinosuchus ferox

Mandasuchus tanyauchen

Figure 8 The distribution of the hyposphene–hypantrum articulation in Pseudosuchia and close

relatives. Relationships from Nesbitt, Liu & Li (2010) and Nesbitt et al. (2014). Hyposphene–hypan-

trum present = blue; hyposphene–hypantrum absent = orange; ambiguous for hyposphene–hypantrum

presence/absence = black. Full-size DOI: 10.7717/peerj.4235/fig-8
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Although it is present in a few aetosaurs, the hyposphene–hypantrum articulation

is not present in the sister taxon to Aetosauria, R. callenderi (PEFO 34561) (Fig. 7K).

It is also not present in P. gracilis (NMT RB426), the sister taxon of R. callenderi

(PEFO 34561) + Aetosauria (Nesbitt et al., in press). The postzygapophyses of the

vertebrae of P. gracilis converge at the midline but they do not extend into a projection

ventrally. The articular surfaces of the postzygapophyses of the few known anterior

trunk vertebrae of R. callenderi that are intact and not obscured by sediment

(PEFO 34561-DVf, PEFO 34561-DVh) do converge; however, they do not have a bony

and dorsoventrally elongated process that could definitively be a hyposphene. The

cervical vertebrae (PEFO 34561-CV) of this specimen definitively do not have the

hyposphene–hypantrum articulation. Therefore, both R. callenderi and P. gracilis are

small pseudosuchian archosaurs that lack the hyposphene–hypantrum.

Relationship of the hyposphene–hypantrum articulation
with body size
The articulation structures of the hyposphene–hypantrum are widespread in the

clade Pseudosuchia, but are noticeably absent in the group Crocodylomorpha (e.g.,

Sphenosuchus acutus, UCMP 129740; D. riograndensis, TMM 43632-1; A. mississippiensis,

TMM M-12606) (Fig. 8), which includes the only living pseudosuchians, the

crocodylians. Most early members of Crocodylomorpha are markedly smaller (i.e., shorter

femoral lengths) (Turner & Nesbitt, 2013) than their paracrocodylomorph relatives

(Fig. 9), such as the poposaurids (e.g., P. langstoni; P. gracilis,Weinbaum & Hungerbühler,

2007, TTU P-10419), the rauisuchid P. kirkpatricki (TTU-P 9002,Weinbaum, 2013), other

pseudosuchians (i.e., P. chiniquensis, UFRGS-PV-0156-T, Azevedo, 1991; F. tenax, PVL

3850, Bonaparte, 1981; S. nyassicus, GPIT/RE/3831, Lautenschlager & Desojo, 2011;

Mandasuchus tanyauchen, NHMUK PV R6792, Butler et al., in press), and the largest-

known aetosaur D. spurensis (MNAV9300, Parker, 2008). Because the hyposphene–

hypantrum articulation is in many large-bodied taxa but not in smaller ones (Fig. 9),

we explored this potential correlation with body size by assigning each taxon we examined

Figure 9 Plot showing femoral length versus hyposphene–hypantrum presence or absence (Table 2)

with pseudosuchian archosaurs as data points (n = 24). Hyposphene–hypantrum present = blue;

hyposphene–hypantrum absent = orange. Each data point corresponds to a taxon included in Table 2.

See Table 2 caption for explanation about color and placement of the two phytosaur data points.

Full-size DOI: 10.7717/peerj.4235/fig-9
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(i.e., each taxon included in our phylogenetic tree, Fig. 8) to either presence or absence of

the hyposphene–hypantrum (Table 2), and then plotted these two groups by their femoral

length as an estimate for body size (see methods in Fariña, Vizcaı́no & Bargo, 1998;

Christiansen & Fariña, 2004; Farlow et al., 2005; Carrano, 2006; Turner & Nesbitt, 2013).

With these data, we found a relationship between larger body sizes and the presence of the

Table 2 Table listing all taxa used in Fig. 8, with the addition of two phytosaurs (Smilosuchus

gregorii, Machaeroprosopus pristinus), and includes whether we consider the taxon to possess a

true hyposphene–hypantrum articulation, the taxon’s femoral length, and the source(s) we used

for the femoral length data.

Taxon Hyposphene–

hypantrum? (Y/N)

Femoral

length (mm)

Source

Postosuchus kirkpatricki Y 528 Turner & Nesbitt (2013)

Postosuchus alisonae Y 558 Turner & Nesbitt (2013)

Fasolasuchus tenax Y 750 Turner & Nesbitt (2013)

Batrachotomus kupferzellensis Y 420 Turner & Nesbitt (2013)

Prestosuchus chiniquensis Y 538 Turner & Nesbitt (2013)

Mandasuchus tanyauchen Y 212 Butler et al. (in press)

Poposaurus langstoni Y 353 Turner & Nesbitt (2013)

Poposaurus gracilis Y 353 Turner & Nesbitt (2013)

Sillosuchus longicervix ? 440 Alcober & Parrish (1997)

Shuvosaurus inexpectatus N 255 Turner & Nesbitt (2013)

Effigia okeeffeae N 301 Turner & Nesbitt (2013)

Arizonasaurus babbitti Y 490 Turner & Nesbitt (2013)

Xilousuchus sapingensis Y 302 Turner & Nesbitt (2013)

Ticinosuchus ferox ? 240 Turner & Nesbitt (2013)

Nundasuchus songeaensis N 230 NMT RB48

Turfanosuchus dabanensis N 136 Turner & Nesbitt (2013)

Gracilisuchus stipanicicorum N 78 Turner & Nesbitt (2013)

Typothorax coccinarium N 291.8 Heckert et al. (2010)

Paratypothorax andressorum N ? Hunt & Lucas (1992) and

Lucas, Heckert & Rinehart (2006)

Coahomasuchus kahleorum N 109 Kubo & Kubo (2012) and

Parker (2016a)

Longosuchus meadei ? 337 Turner & Nesbitt (2013)

Desmatosuchus spurensis Y 450 Parker (2008)

Scutarx deltatylus Y ? Parker (2016b)

Aetobarbakinoides brasiliensis N 120 Desojo, Ezcurra & Kischlat (2012)

Revueltosaurus callenderi N 90 PEFO 34561

Parringtonia gracilis N 74 NMT RB426

Smilosuchus gregorii N 545 Turner & Nesbitt (2013)

Machaeroprosopus pristinus N 444 Turner & Nesbitt (2013)

Notes:
The colored rows correspond to the data points used in Fig. 9, with the colors corresponding to presence/absence of the
hyposphene–hypantrum (blue = present, orange = absent). The black rows are taxa that are ambiguous for either
presence/absence or lack femoral length data, and these taxa are therefore not included in Fig. 9. The phytosaurs are also
represented in black in this table because of the ambiguous phylogenetic position of Phytosauria as either early diverging
within Pseudosuchia or as the sister group to Pseudosuchia. Because of their lack of a true hyposphene–hypantrum, they
are depicted in Fig. 9 under that classification in the color black.
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hyposphene–hypantrum articulation: taxa with femora length >300 mm typically have

this extra articulation (Fig. 9). While our data support this correlation, the relationship is

solely visual at present and deserves rigorous statistical testing, which will be done in

future studies.

An exception to this body size relationship is phytosaurs, which are either the earliest

diverging pseudosuchians (Gauthier, 1986; Benton & Clark, 1988; Sereno, 1991; Benton, 1999;

Ezcurra, 2016) or the sister group of Archosauria (Nesbitt, 2011). All taxa in this clade that we

observed lack the hyposphene–hypantrum articulation but some have femoral lengths

greater than many pseudosuchians that possess the articulation (e.g., Smilosuchus gregorii,

545 mm; Machaeroprosopus pristinus, 444 mm) (Fig. 9). The absence of the hyposphene–

hypantrum in phytosaurs may be related to their inferred semi-aquatic ecology (Parrish &

Padian, 1986), which is divergent from the terrestrial ecology of other early pseudosuchians.

This could mean that femoral length cannot explain the presence or absence of the

hyposphene–hypantrum in aquatic forms, and this may also explain the absence of the

structure in the transition to a more aquatic ecology within Crocodylomorpha.

In summary, our observations of pseudosuchian archosaurs both with and without the

hyposphene–hypantrum articulation showed a clear relationship between larger body

sizes and the presence of the hyposphene–hypantrum articulation in trunk vertebrae

across pseudosuchian archosaurs. Because of this close fit, this feature may be controlled

by increases or decreases in body size and not strictly by inheritance. If so, the presence or

absence of hyposphene–hypantrum would have limited use as a character in phylogenetic

analyses of archosaurs (Gauthier, 1986; Nesbitt, 2011) and the character should be applied

with caution when used to assign isolated vertebrae to pseudosuchian clades.
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